
applied  
sciences

Article

Application of Multiple-Scales Method for the
Dynamic Modelling of a Gear Coupling

Enrico Pipitone, Christian Maria Firrone * and Stefano Zucca

Dipartimento di Ingegneria Meccanica e Aerospaziale (DIMEAS), Politecnico di Torino,
Corso Duca degli Abbruzzi, 24, 10129 Torino, Italy; enrico.pipitone@polito.it (E.P.); stefano.zucca@polito.it (S.Z.)
* Correspondence: christian.firrone@polito.it

Received: 13 February 2019; Accepted: 12 March 2019; Published: 23 March 2019
����������
�������

Abstract: Thin-walled gears, designed for aeronautical applications, have shown very rich dynamics
that must be investigated in advance of the design phase. One of the signatures of their dynamics
is coupling due to the meshing teeth which stand-alone gear models cannot capture. This paper
aims to investigate the dynamics of thin-walled gears considering time-varying coupling due to the
gear meshing. Each gear is modelled with lumped parameters according to a local rotating reference
system and the coupling is modelled by a traveling meshing stiffness. The set of equations of motion
is solved by the non-linear Method of Multiple-Time-Scales (MMTS). MMTS is a very powerful
technique that is widely used to solve perturbation problems in many fields of mathematic and
physics. In the analyzed numerical test case, the relevance of gear coupling is demonstrated as well as
the capability of the MMTS to capture the fundamental features of the system dynamics. In this study
the analytical methodology, which uses MMTS, allows for the calculation of the forced response of
the system made of two meshing gears despite the presence of a parametric quantity, i.e., the mesh
stiffness. The calculation is performed in the frequency domain using modal coordinates, which
ensures a fast computation. The result is compared with time domain analysis for validation purposes.

Keywords: dynamics; mesh stiffness; forced response; time-variant parameters; Method of Multiple
Time-Scales; cyclic-symmetric systems dynamics; lumped parameters model

1. Introduction

The need to identify a non-linear methodology for a dynamic study of two meshing gears moves
from the evidence of some critical resonances occurring during operations, which cannot be investigated
by analyzing a single gear considered as a stand-alone component, but it requires the analysis of the
overall system which can be made of two or more than two meshing gears (planetary system), where
time-varying parameters and non-linearities appear in the equations of motion. In practice, it is
experimentally verified that one gear can influence the dynamics of the other meshing gears, under
certain conditions, causing unexpected resonances, which are dangerous for the overall system. Then,
a dynamic coupling is established between the meshing gears. This phenomenon is mainly due to
the fluctuation of the mesh stiffness at the meshing teeth, which varies because of the different mesh
conditions and contact points during meshing. Fluctuations of the mesh stiffness can induce severe
instability conditions and affect also the resonances of the system. The phenomenon of dynamic
coupling can be experimentally verified in industrial applications, in particular for aeronautical
applications where the gears, having specific mechanical characteristics and working at critical speed
regimes, show mutual interactions, which largely affect the forced response of the system. In more
detail, the dynamic coupling causes critical resonances on a gear, which are induced by the excitation of
the mode shapes of the meshing gear. The presence of these mutual interactions among the components
leads to a different study of the system, which must include all the gears involved in the interactions.
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The dynamic coupling is a direct consequence of the variations of tooth flexibility (mesh stiffness)
because of the different contact conditions during rotation, but also because of the variations of the
contact ratio. Thus, time-varying mesh stiffness causes the system to be non-linear. It is worth
remembering that here the term “non-linear” is adopted to highlight the fact that the system is not
the usual Linear Time-Invariant System (LTIS), but a Linear Time-Variant System (LTVS). Being the
system of the type LTVS, it is not possible to compute the forced response by inverting the dynamic
stiffness matrix as for a LTIS, since the latter is a time-variant parameter inside the equation of motion.
Nevertheless, the dependent variable of the equation of motion does not show elevation to powers or
other non-linearities (e.g., Duffing equation). Then, the superimposition effect principle is valid for such
a system and it will be used in the following discussion. As a consequence, the adoption of a “non-linear”
method is needed to compute the forced response of the system. The dynamics of gear systems have
been extensively studied by researchers for decades and still represent an important matter of interest
for the understanding of phenomena affecting the dynamics of such systems. The evaluation of the
mesh stiffness variations and the related non-linear aspects have a primary importance for researchers
who provide several modelling solutions of the phenomenon [1] for mathematical definition. According
to the different types of modelling of the mesh stiffness, many works provided different methodologies
for the computation of the response of the system, according to different levels of complexity. Most of
the works focused on the combined effect of mesh stiffness variation and backlash between the meshing
teeth, which affects largely the response of the meshing gears, developing non-linear methodologies for
the iterative and numerical computation of the response [2–9]. Other studies focused on the analysis
of the instability conditions, which can be caused by the fluctuations of the mesh stiffness involving
sometimes wide operational speed ranges of the gears and can lead to failures. Works on instability
provide an analytical solution, using perturbation methods (e.g., method of multiple time-scales, MMTS)
to establish relations between the analyzed instability conditions and the entity of the mesh stiffness
fluctuations [10]. Recently, instability analyses and forced response studies were extended to more
complex systems like planetary gear systems [11–14]. Most of the cited works analyze the dynamics of
a gear system by considering the gears as rigid bodies connected by the mesh stiffness and introducing
the transmission error between two meshing gears, which consider the fluctuations of an equivalent
tooth compliance that excites the system.

In this paper, the aim is to consider the gears as compliant bodies and compute analytically the
forced response of the system excited both parametrically and externally. The backlash phenomenon is
not considered at this stage in order to focus the attention on the phenomenon of the dynamic coupling
and on the method to be developed to study the phenomenon without the nonlinearity introduced by
intermitting contacts during meshing. Here, transmission error cannot be used anymore since the gear
bodies are considered as compliant. The gears, which constitute the overall system, are linked together by
means of a time-variant mesh stiffness, which acts on the nodes of the teeth, where the contact takes place.
In other words, the system sees both a parametric excitation and an external force exciting the system.
The methodology developed here applies the Method of Multiple-Time-Scale (MMTS) to compute the
frequency response of a single mesh gear pair, modelled with lumped parameters, and investigate the
dynamic coupling, which is established between the gears, verifying the mutual interactions and resonances
induced by the phenomenon. MMTS allows a good approximation to the solution of the problem by
introducing “scales” variables, which will substitute the independent variable of the problem. The solution
of the problem passes through the elimination of the so-called “secular terms”. This procedure represents
a necessary solvability conditions for the solution of the problem. In this paper, numerical examples of
forced response are reported, based on test cases. Upon these test-case analyses, the methodology is finally
validated by means of direct time integration (DTI) of the non-linear equations of motion.

2. Model of the System

The system under analysis is made of two meshing gears (Gear-1 or G1, and Gear-2 or G2, Figure 1).
For each gear, a local reference system rotating with the gear itself is defined. Each gear is divided
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into sectors (Z1 for Gear-1, and Z2 for Gear-2), one per each tooth (Figure 2). A gear ratio η can be
defined for the system under analysis as the ratio between Z1 and Z2. Each sector is modelled as a
lumped parameter model with two degrees of freedom (dof), or nodes, one for the tooth and one for
the gear sector wheel (Figure 3). The rotation of each gear around its own axis is allowed (no radial or
axial displacement are allowed, only tangential displacement is allowed). The latter assumption is
reasonable for the case of thin walled spur gears where radial and axial displacements can be assumed
as negligible. The sectors are then coupled together. The periodic coupling between the teeth of the
two gears is modelled by a time-variant mesh stiffness KM(t), described in more detail in Section 3.
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Figure 3. Lumped parameters model of the sectors of the gears Gear-1 and Gear-2.

As shown in Figure 3, the two gears are constrained to ground by means of the stiffness elements
ka,1 and ka,2 respectively. The mechanical characteristics of mass mb,1 and mb,2, and stiffness kb,1
and kb,2 are associated to the teeth of the gears, whose displacement coordinates are xG1,t and xG2,t
(respectively for the teeth of G1 and the teeth of G2). The mechanical characteristics of mass mc,1 and
mc,2, and stiffness kc,1 and kc,2 are associated to the gear sector wheel, whose displacement coordinates
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are xG1,c and xG2,c (respectively for the sector wheel of G1 and the sector wheel of G2). In Figure 3,
a force acting on the meshing teeth dof (equal but with opposite direction for the tooth of G1 and
the tooth of G2) is shown, which represents the force establishing between them when the meshing
couple is in contact. Obviously, when the couple is not meshing, no forces are exchanged. Then,
the force travels along the circumference of each gear as the system rotates. The excitation force will be
discussed more in detail in Section 5.

The physical displacement vector (with the corresponding size) is:

{x} =
{{

xG1

}T ,
{

xG2

}T
}T

1xN , (1)

where, {
xG1

}T
=
{{

xG1,c
}T ,

{
xG1,t

}T
}T

1 x 2Z1 , (2)

{
xG2

}T
=
{{

xG2,c
}T ,

{
xG2,t

}T
}T

1 x 2Z2 , (3)

with N = 2 Z1 + 2 Z2. {x} including Gear-1 displacement coordinates, xG1 , subdivided into xG1,c which
indicates the displacement of the nodes of the gear wheel, and xG1,t indicating the displacement of the teeth.
The same holds for xG2 of Gear-2. The equation of motion, in matrix form, can be written in general as:

M
..
x + Ĉ

.
x + K̂(t) x = F̂(t), (4)

where M is the mass matrix; Ĉ is the damping matrix; K̂(t) is the stiffness matrix which includes
time-variant parameters, corresponding to the mesh stiffness KM(t) used to couple the two gears;
F̂(t) is the force vector containing non-zero values for the teeth dof. As anticipated before, F̂(t) is a
time-variant vector since the mesh force passes from one tooth to another as the system rotates. Then,
each tooth is periodically subjected to a force excitation due to the meshing, where the period is equal
to the rotation period of the gear. In the next section, the mesh stiffness will be discussed, then the
assembly of the matrices will be presented in Section 4.

3. Definition of Mesh Stiffness

During meshing, many factors can induce fluctuations of the stiffness characteristics of the
teeth. As explained before, the fluctuations of the mesh stiffness can be due to different contact
conditions given by different contact ratios and contact positions along the tooth face. Hertzian contact
phenomena can also influence the stiffness of the teeth. The combined effect of all these fluctuation
sources produces a time history of the mesh stiffness acting on a single tooth. In this paper the time
history of the mesh stiffness is not investigated in detail and it is approximated to a rectangular
waveform traveling from one tooth to another one. In more detail, the mesh stiffness, which couples
the nth tooth pair, is assumed to have a constant value kt when the nth tooth pair is in contact and
a null value when the contact is missing. Within the meshing time interval, the constant value, kt,
assumed by the mesh stiffness can represent an equivalent mean value of a real trend during meshing.
Since rotating reference systems are used, in each gear the mesh stiffness rotates with the same speed
as the gear but in the opposite direction. In Figure 4 the time history of a generic mesh stiffness KM(t)
is shown with equivalent value kt and unitary contact ratio, acting on a single tooth of a gear, with Z
sectors (teeth) rotating at certain speed with revolution period T. In this qualitative example of mesh
stiffness, one can distinguish between the meshing time interval, when the tooth is in contact, from the
rest of the time history when the tooth is not in contact and the mesh stiffness assumes a null value.
Once a full revolution is performed, so after a period T, the tooth experiences again the mesh stiffness.

The rectangular waveform can be translated into a sum of harmonics by developing the Fourier
Series of time trend:

KM(t) = Kc + ∑∞
s=1[K

s
Va cos(sΩt) + Ks

Vb sin(sΩt)], (5)
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where Kc is the mean value of the function, s is the harmonic index, Ω is the speed of the gear
(T = 2π/Ω), while Ks

Va and Ks
Vb are the coefficients of the “cosine” harmonics and the “sine” harmonics,

respectively. The expression of the Fourier series can be further manipulated by means of the Euler
formula, to redefine Equation (5) as the real-valued form of the complex notation of the Fourier Series
which will be used in the following discussion (Equation (6)).

KM(t) = Kc + KV(t) = Kc + ∑∞
s=1

[
Ks

Vei sΩ t + Ks
V e−i sΩ t

]
, (6)

where:
Ks

V =
1
2
(Ks

Va − iKs
Vb); Ks

V , complex conjugate of Ks
V . (7)Appl. Sci. 2019, 9, x FOR PEER REVIEW 5 of 24 
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Figure 4. Qualitative time history of the mesh stiffness over one revolution period.

In Figure 5a,b a numerical example is shown (with Z1 = 10, Z2 = 20 and kt = 106 N/m ) where T1

and T2 are the revolution periods of Gear-1 and Gear-2 respectively, and they are different from one
another since Z1 6= Z2.

By looking at the previous example, it is easy to note that the periodic time history of the mesh
stiffness of the two gears is different. As a matter of fact, the rectangular waveform is the same, but its
period differs in the two gears, being T1 for Gear-1 and T2 for Gear-2. Here, this concept is clarified with
an example. Let us consider the previous system with Z1 = 10 teeth and Z2 = 20 teeth. In Figure 6a the
couple 1-1 (tooth-1 of G1—tooth-1 of G2) starts meshing for an angle θ1 = 0◦ of G1. After a full revolution
of G1 (Figure 6e) tooth-1 of G1 meshes again but now with tooth-11 of G2. The same is for the other
couples 2-2 and 2-12 (Figure 6b–f) and so on. Thus, a certain couple (i-j) meshes with a base period that is
twice the base period T1. Of course, the latter relation changes for systems with different number of teeth.
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Figure 6. (a) Mesh couple for θ1 = 0◦; (b) Mesh couple for θ1 = 36◦; (c) Mesh couple for θ1 = 72◦;
(d) Mesh couple for θ1 = 180◦; (e) Mesh couple for θ1 = 360◦; (f) Mesh couple for θ1 = 1 round+36◦.

4. Equations of Motion and Construction of the Matrices

Having adopted a lumped parameters model, it is convenient to write, for clarity’s sake,
an equation of motion (considering at this stage the un-damped unforced system) of one dof connected
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to the ith tooth of Gear-1. Then, let us consider the previous example of a system constituted by one
gear (Gear-1) having 10 teeth (Z1) and a second gear (Gear-2) having 20 teeth (Z2). Let us write the
equation of motion of tooth-1 of Gear-1. By looking at Figure 7 below, neglecting at this stage the
presence of damping and excitation force, the resulting equation of motion is:

mb
..
xt1,1 + kb

(
xt1,1 − xc1,1

)
+ KM1,1(t)

(
xt1,1 − xt2,1

)
+ KM1,11(t)

(
xt1,1 − xt2,11

)
= 0, (8)

where mb refers to mass of the teeth; kb, nominal stiffness of the teeth; KM1,1(t) and KM1,11(t) mesh
stiffness coupling the 1-1 teeth pair and 1-11 teeth pair respectively.
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It is possible to write the latter equation in a clearer form as follows:

mb
..
xt1,1 + kbxt1,1 +

(
KM1,1(t) + KM1,11(t)

)
xt1,1 − KM1,1(t) xt2,1 − KM1,11(t) xt2,11 − kbxc1,1 = 0. (9)

In Equation (9), two types of time-variant stiffness can be highlighted. The first type includes
KM1,1(t) and KM1,11(t). The two terms refer to a specific teeth pair that meshes during operation. They
are characterized by a rectangular waveform having a period Tpair that is strictly dependent on the
number of teeth of the two gears. It is easy to derive Tpair and to relate it to the revolution periods of
the two gears, T1 and T2 respectively. In general, Tpair is a multiple of both the periods T1 and T2. It is
convenient to write the latter relation in a mathematical form:

Tpair = nT1 T1 = nT2 T2 (10)

where the coefficients nT1 and nT2 define the multiple of the respective revolution periods. In the
example analyzed here it is easy to note that nT1 = 2 and nT2 = 1. In other words, a specific pair
meshes after two revolution of the Gear-1 as well as after one revolution of Gear-2. The other type
of variable stiffness term which appears into Equation (9) is the term KM1,1(t) + KM1,11(t). This sum
creates a rectangular waveform different from the previous one. As a matter of fact, KM1,1(t) +KM1,11(t)
is a waveform with the same constant value kt but with a period exactly equal to the revolution period
T1, as shown in Figure 8.

Then, for all the equations of motion of the dof belonging to Gear-1, two different sets of harmonics
appear into the equation. The fundamental frequencies, which describe the two sets, are respectively:

Ω1 =
2π

T1
, (11)
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Following the same approach, it is possible to write the equations of motion for the dof belonging
to Gear-2. For those equations, still two types of variable stiffness can be distinguished into the
resulting equation (here the equation of motion is not reported because is similar to Equation (9).
The first type is again the rectangular waveform of the single pair of teeth described by the period
Tpair, so by the fundamental frequency Ω3. The second type of time-variant stiffness term is the sum of
all the other pair waveforms involved into the equation, but now the resulting rectangular waveform
has a base period equal to the revolution period of Gear-2, i.e., T2. Therefore, another set of harmonics
appears in the equations of motion of the system and it is described by the fundamental frequency Ω2,
which is the speed of Gear-2

Ω2 =
2π

T2
(13)

Finally, the construction of the stiffness matrix K̂(t) allows to write the full stiffness matrix in the
next form (Equation (14)), by properly distinguishing between the terms referred to the three different
sets of harmonics, having fundamental frequencies Ω1, Ω2 and Ω3:

K̂(t) =
(
Kc + ˆKV1(t) + ˆKV2(t) + ˆKV3(t)

)
, (14)

ˆKV1(t) = ∑∞
s1=1[K

s1
V1eis1Ω1t + Ks1

V1e−is1Ω1t], (15)

ˆKV2(t) = ∑∞
s2=1[K

s2
V2eis2Ω2t + Ks2

V2e−is2Ω2t], (16)

ˆKV3(t) = ∑∞
s3=1[K

s3
V3eis3Ω3t + Ks3

V3e−is3Ω3t]. (17)
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The mass matrix M and the stiffness matrix K̂(t) are obtained by writing the equation of motion
for each dof of the system as shown in Equation (9) according to the matrix notation. The damping
matrix Ĉ will be defined later in Section 6.1 assuming a modal damping ratio ς to the mode shapes of
the system.

5. Excitation Force

A mesh force applied to two meshing teeth excites the system. The mesh force F(t) of Figure 3
corresponds to a torque (for example applied on G1) and a resistant torque (applied on G2) acting on
the system. Since the mesh force rotates along the gears as the system rotates, each tooth of a gear
undergoes periodically the same mesh force, with a period that is equal to the rotation period of the
gear itself (T1 for teeth of G1 and T2 for the teeth of G2) each tooth is subjected to the same force with a
time delay. During meshing, the value of the mesh force is assumed to be constant. Then, considering
the generic ith tooth of a gear, the mesh force FGi(t) acting on it will have the same trend of the mesh
stiffness in the time domain (rectangular waveform, Figure 4). As a consequence, the force vector
F̂(t) in the equation of motion Equation (4) contains, in correspondence to the teeth dof, the mesh
force trends FGi(t), properly phased in the time domain according to the position of the tooth which is
considered (e.g., if tooth-1 of G1 undergoes F11(t), tooth-2 of G1 undergoes F12(t) = F11(t + ∆T), being
∆T the meshing time interval). Finally, the force vector F̂(t) can be represented as

F̂(t) =



{0}Z1×1
F11
...

F12Z1


Z1×1

{0}Z2×1
F21
...

F22Z2


Z2×1


N×1

(18)

As for the mesh stiffness, it is convenient to express the mesh force as a Fourier series, since it is
periodic in the time domain. This will be advantageous for the computation of the forced response
(Section 6), since each harmonic will be considered separately, computing the overall response as
a superimposition of the effects due to each harmonic. As a matter of fact, the system is a linear
time-variant system whereby the superimposition principle is valid. Then, let us write the expression
of the force function, in the Fourier series. It is convenient to distinguish between the force acting
on the teeth nodes of Gear-1 from the force acting on the teeth nodes of Gear-2. The two force sets,
expressed in Fourier Series, have fundamental frequencies that are the speed of the Gear-1 (Ω1) for the
excitation force terms acting on the teeth nodes of Gear-1 and the speed of Gear-2 (Ω2) for the excitation
force terms acting on the teeth nodes of Gear-2. As a consequence, let us write the general expression
of the force acting on the ith tooth of G1 and the force acting on the jth tooth of G2 respectively in
Equations (19) and (20):

F1i (t) = F1i ,0 + ∑∞
k1=1[F1i

k1
a cos(k1Ω1t) + F1i

k1
b sin(k1Ω1t)]; (19)

F2j(t) = F2i ,0 + ∑∞
k2=1[F2j

k2
a cos(k2 Ω2t) + F2j

k2
b sin(k2Ω2t)]. (20)

As for the mathematical expression of the mesh stiffness (Section 3), The Fourier Series of the
mesh force can be written by means of the exponential notation. Equations (19) and (20) become:

F1i (t) = F1i ,0 + ∑∞
k1=1[ Fk1

1i
eik1Ω1t + Fk1

1i
e−i k1Ω1t], (21)
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F2i (t) = F2i ,0 + ∑∞
k1=1[ Fk2

2i
eik1Ω1t + Fk2

2i
e−i k2Ω2t], (22)

With
FkG

Gi
=

1
2

(
FGi

kG
a − i FGi

kG
b

)
, (23)

FkG
Gi

=
1
2

(
FGj

kG
a + i FGj

kG
b

)
. (24)

Being the forcing functions F1i (t) and F2j(t) expressed as a series of harmonics with frequencies k1Ω1

and k2Ω2 respectively, it is convenient to separate the force vector F(t) into a sum of two vectors
whose components can be expressed as harmonics having frequencies k1Ω1 and k2Ω2, respectively
F̂1(t) (Equation (25)) and F̂2(t) (Equation (26)). Thus, let us represent the two vectors as follows:

F̂1(t) =



{0}Z1×1
F11
...

F12Z1


Z1×1

{0}2Z2×1


N×1

, (25)

F̂2(t) =



{0}2Z1×1
{0}Z2×1
F21
...

F22Z2


Z2×1


N×1

. (26)

The overall forcing function vector F(t) is

F̂(t) = F̂1(t) + F̂2(t). (27)

6. Forced Response Computation with MMTS

Section 6 deals with the development of a general analytical solution of the forced response of the
system under exam using MMTS. MMTS is a very used technique able to obtain approximations of
solutions to non-linear problems. It works by substituting different “scales” variables (according to the
level of approximation the user desires) to the independent variable of the equation, treating them
as independent variables. Being a frequency-based method, it allows the study of the response of a
complex system in a very flexible way, reducing considerably the computational time, with respect to
other time-based methods which provide a numerical and iterative solution to the problem. Before
going through the discussion of MMTS, it is advantageous to rewrite the equation of motion Equation
(4) in terms of modal coordinates. The use of modal coordinates leads to a great simplification of
the problem by decoupling the equation of motions. Moreover, it allows the direct evaluation of the
effect of a harmonic component of the excitation force on the respective mode shape that is excited
by that component. Thus, the following Paragraph 6.1 is dedicated to the transformation of the
equation of motion in modal coordinates while the mathematical development of MMTS is discussed
in Paragraph 6.2.

6.1. Modal Analysis and Transformation of the Equation of Motion in Modal Coordinates

Since the stiffness matrix K̂(t) contains time-variant elements, the computation of modal analysis
cannot be performed in general. For this reason, the computation of the modal analysis is performed
on the mean part of the stiffness matrix KC (Equation (14)) (KC is a symmetric matrix). Thus, let us
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consider the time-invariant (unforced and undamped) part of the equation of motion Equation (4)
(Equation (28)) and perform the modal analysis (Equation (29)).

M
..
x + KCx = 0; (28)

det
(

KC −ω2M
)
= 0, eigenvalue problem → ω2

n, ψn, n = 1÷ N; (29)

Ψ = [ψ1, . . . , ψn, . . . , ψN ]N×N , modal matrix
ωn, natural f requency

From modal analysis, the natural frequencies ωn and mode shapes ψn of the (mean) overall system
are obtained. Then, let us apply Direct Modal Transformation (DMT, Equation (30)) to the equation of
motion using the modal matrix Ψ and multiply the latter by the transpose of the modal matrix ΨT .
The resulting equation written in modal coordinates (u, vector of modal coordinates) is reported in
Equation (31).

x = Ψu . (30)

Mmod
..
u + Ĉmod

.
u + Kc,mod u + D̂(t) u = P̂(t), (31)

with: Mmod, modal mass matrix; Ĉmod, modal damping matrix; Kc,mod, modal mean stiffness matrix;

D̂(t) = ΨTK̂V(t)Ψ; (32)

P̂(t) = ΨT F̂(t) (33)

If the mode shapes are normalized with respect to the unitary modal masses, Mmod is equal to
the identity matrix and Kc,mod is a diagonal matrix having on its main diagonal the eigenvalues of the
system ω2

n. As anticipated in Section 2, damping is not modelled physically into the model. For the
sake of simplicity, damping is introduced by means of the modal damping ratio ςn to be associated to
each nth mode shape. It is possible to obtain the modal damping ĉn as:

ĉn = 2
ςn√

kmodn × mmodn
= 2

ςn√
ω2

n
, = 1÷ N; (34)

with mmodn modal mass of the nth mode shape (mmodn = 1, if the mode shapes are normalized with
respect to the unitary modal masses) and kmodn modal stiffness of the nth mode shape (kmodn = ω2

n,
if the mode shapes are normalized with respect to the unitary modal masses). Then, the modal damping
matrix Ĉmod is a diagonal matrix having on its main diagonal the modal damping ĉn, satisfying the
following relation that allows computation of the damping matrix in physical coordinates.

C = ΨT−1 Ĉmod Ψ−1 (35)

The diagonalization of most of the matrices inside the equation of motion allows us to write
singularly the equations of motion in modal coordinates (Equation (36)). The only term that is not
diagonalized is D̂(t) being a non-symmetric matrix that was not involved in the modal analysis. As a
consequence, in the nth equation of motion in modal coordinates D̂(t) must be expressed as sum of the
products of the elements D̂nr(t) (elements of the matrix D̂(t) at nth row and rth column) times the rth
modal displacement ur.

..
un + ĉn

.
un + ω2

n un +
N

∑
r=1

{
D̂nr(t) ur

}
= P̂n(t), n = 1÷ N (36)

The Equation (36) represents the useful equation for the development of MMTS by means of
which it is possible to compute the modal response un, in the frequency domain, of the generic nth
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mode shape subjected to a modal force P̂n(t). The development of MMTS will be presented in the next
Paragraph 6.2 starting from the single nth equation of motion in modal coordinates (Equation (35)).

6.2. Forced Response Computation Using MMTS

MMTS operates by substituting the independent time variable t with the time scales t0, t1, t2,
. . . , where t0 = ε0t, t1 = ε1t and t2 = ε2t and ε is the scale factor which describes the time scale.
The relation between the original time variable and the new time scales is expressed in Equation (37).
Here, the series approximating the old variable t is truncated at the second order (power ε2):

t = t0 + t1 + o
(

ε2
)
= t + εt + o

(
ε2
)
= t + τ + o

(
ε2
)

. (37)

As a consequence, the dependent variable un(t) as well as the derivative operators need to be
written (Equations (38)–(40)), in the new time scale variables:

un = un0(t, τ) + ε un1(t, τ) + o
(

ε2
)

, n = 1÷ N; (38)

d
dt
⇒ ∂

∂t
+ ε

∂

∂τ
+ o
(

ε2
)

, (39)

d2

dt2 ⇒
∂2

∂t2 + 2ε
∂2

∂t∂τ
+ o
(

ε2
)

. (40)

The solution to the problem requires the proper manipulation of the equations of motion. Recalling
Equation (36), the manipulation consists of associating some terms of the equation to the coefficient ε

(Equations (41)–(43)). Let us associate the time-variant part of the stiffness matrix, D̂(t), the damping
matrix ĉn and the modal force P̂n(t) to the scale factor ε:

D̂(t) = ε D(t), (41)

ĉn = ε cn; (42)

P̂n(t) = ε Pn(t). (43)

Substituting Equations (41)–(43) into Equation (36), the latter becomes:

..
un + ε cn

.
un + ω2

n un +
N

∑
r=1
{ε Dnr(t) ur} = ε Pn(t), n = 1 : N. (44)

Once the new equation of motion Equation (44) is defined, the MMTS operates by substituting
the new expression of the modal response un(t) (Equation (38)) and the new derivative operators
(Equations (39) and (40)) into Equation (44). The resulting equation of motion will be an equation
where all the terms are characterized by a multiplying coefficient that is in general a power of the scale
factor ε (εn). Then, a separation of the terms according to the power of ε is performed, by creating n
different equations. The new equations are reported below (Equations (45) and (46)).

• Equation corresponding to the power ε0:

..
un0 + ω2

nun0 = 0 . (45)

• Equation corresponding to the power ε1:

..
un1 + ω2

nun1 = −2
∂2un0

∂t∂τ
−∑N

r=1{Dnr(t) ur0} − cn
∂un0

∂t
+ Pn(t). (46)
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The solution of Equation (45) can be written in the general form

un0 = An(τ)eiωnt + An(τ)e−iωnt = An(τ)eiωnt + CC, (47)

where An(τ) is a function of the time variable τ. Substituting Equation (47) into Equation (46) and
adopting the notation in Equation (48), one obtains Equation (49):

.
(. . .) =

∂(. . .)
∂t

; (. . .)′ =
∂(. . .)

∂τ
; (48)

..
un1 + ω2

nun1 = −2
[
iωn A′neiωnt + CC

]
−∑N

r=1
{

Dnr(t)
[
Areiωrt + CC

]}
−

cn
[
iωn Aneiωnt + CC

]
+ Pn(t),

(49)

where the quantity CC represents the complex conjugate of the previous term.
In order to solve the N equations of motion (Equation (49)) in the modal coordinate u it is necessary

to develop the terms Dnr(t) and Pn(t) in their harmonic series:

D(t) = D1(t) + D2(t) + D3(t), (50)

D(t) =
∞
∑

s1=1
[Ds1

1 ei s1Ω1t + Ds1
1 e−is1Ω1t]+

∞
∑

s2=1
[Ds2

2 ei s2 Ω2 t + Ds2
2 e−i s2Ω2t]

+
∞
∑

s3=1
[Ds3

3 ei s3Ω3t + Ds3
3 e−i s3Ω3t]

(51)

P(t) = P1(t) + P2(t), (52)

P(t) = P1,0 + P2,0 + ∑∞
k1=1 [P

k1
1 eik1Ω1t + Pk1

1 e−i k1Ω1t]

+∑∞
k2=1 [P

k2
2 eik2Ω2t + Pk2

2 e−i k2Ω2t].
(53)

It is worth to remind that the fundamental frequency Ω1 is the speed of G1, the fundamental
frequency Ω2 is the speed of G2, linked to Ω1 through the gear ratio η = Z1

Z2 and the fundamental
frequency Ω3 is the frequency whereby a generic pair of teeth meshes (see Equations (11)–(13)).
Substituting the expressions Equation (51) and Equation (53) into Equation (49), one obtains the
extended pth equation of motion in modal coordinates with all the time-variant parameters developed
inside (see Appendix A, Equation (A2)). This equation contains all the harmonics of the excitation force,
but they can be treated singularly by computing the forced response to each harmonic component of the
force. Finally, a sum of all the response contributions can be performed, thanks to the superimposition
effect principle, so to compute the overall multi-harmonic response. Thus, the following discussion
analyzes the forced response to the generic kth harmonic component of P1(t) acting on the teeth of
G1. The same approach is used to compute the forced response to the second set of harmonics P2(t)
acting on the nodes of G2, but here they are not treated for sake of clarity. Let us consider the following
equation (Equation (54)) of the pth modal equation of the system, where only the generic kth harmonic
component of the force function P1(t) is considered:

..
up1 + ω2

pup1 = −2iωp A′peiωpt

−∑N
r=1 ∑∞

s1=1[ D1
s1
pr Ar ei(s1Ω1 + ωr)t + D1

s1
pr Ar ei(s1Ω1 − ωr)t ]

−∑N
r=1 ∑∞

s2=1[ D2
s2
pr Ar ei(s2ηΩ1 + ωr)t + D2

s2
pr Ar ei(s2ηΩ1 − ωr)t ]

−∑N
r=1 ∑∞

s3=1[ D3
s3
pr Ar e

i(s3
Ω1
nT1

+ωr)t
+ D3

s3
pr Ar e

i(s3
Ω1
nT1
−ωr)t

]

−icpωp Apeiωpt + P1
k1
p ei k1Ω1t + CC.

(54)

It is now possible to investigate and remove the unwanted secular terms, inside the latter equation.
The elimination of secular terms represents a solvability condition for the solution of the problem,
because of the additional freedom introduced with the new independent variables. In order to eliminate
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secular terms, the resonant terms of each equation need to be forced to zero. The discussion upon
secular terms research and elimination is faced more in detail in the Appendix B. Two types of resonant
terms can be distinguished inside the equation Equation (54) which can give secular terms: the first
type gives “exact” secular terms and they are reported in Equations (55) and (56); the second type can
gives nearly secular terms when the excitation frequency k1Ω1 approaches to ωp, and they are reported
in Equations (57)–(59).

− 2iωp A′peiωpt, (55)

− icpωp Apeiωpt, (56)

D1
s1
pr Ar ei(s1Ω1−ωr)t, (57)

D2
s2
pr Ar ei(s2 η Ω1−ωr)t, (58)

D3
s3
pr Ar ei(s3

Ω1
nT 1
−ωr)t. (59)

Since we are interested in the computation of the pth modal response, it is convenient to introduce
an auxiliary frequency variable σ to express the neighborhood of the excitation frequency k1Ω1 to the
pth natural frequency ωp:

k1Ω1 = ωp + εσ; (60)

Ω1 =
ωp

k1
+ ε

σ

k1
. (61)

By properly substituting the frequency variable σ and performing secular terms elimination by
equating to zero the sum of all the possible secular terms, in their critical conditions (see Appendix B
for a detailed development), one obtains the following equation in the unknown Ap, which is the
amplitude of the pth modal response up0:

−2iωp A′p − D1
(2k1)
pp Ap ei 2 σ τ − D2

( 2ηk1 )
pp Ap ei 2στ − D3

( 2 nT1 k1)
pp Ap ei 2στ

−icpωp Ap + P1
k1
p ei στ = 0.

(62)

Now, let
Ap = ap eiστ . (63)

Substituting Equation (63) into Equation (62), it follows

− 2iωp

(
a′p + iσap

)
eiστ −D ap eiστ − icpωpap eiστ + P1

k1
p ei στ = 0, (64)

where
D = D1

(2 k1)
pp + D2

( 2 η k1 )
pp + D3

( 2 nT1 k1)
pp . (65)

In order to have a steady-state solution a′p =
∂ap
∂τ has to be null. By eliminating the common term

eiστ , the equation Equation (64) becomes:

2σωpap −D ap − icpωpap + P1
k1
p = 0. (66)

From Equation (66) it is possible to derive analytically an expression of ap as a function of the
frequency variable σ. As a consequence, the analytical solution of the modal response up0 (Equation
(67)) due to the kth harmonic of the excitation force P1(t) is derived.

up0 = Ap(τ)eiωpt + CC = ap(σ) ei (ωp+σε) t + CC. (67)
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Since ap is a complex quantity, it is convenient to express ap according to its real and imaginary
parts (Equations (68)–(70)). The analytical expression of the real and imaginary parts is derived as a
function of σ:

ap = aR + i aI ; (68)

aR =
PI
(
DI − cpωp

)
+ PR

(
2σωp +DR

)
ω2

p

(
c2

p + 4σ2
)
−D2

R −D2
I

, (69)

aI =
aR
(
DI + cpωp

)
−PI

2σωp +DR
, (70)

where:
P1

k1
p = PR + i PI , (71)

D = DR + i DI , (72)

The latter expressions (Equations (68)–(72)) allow the computation of the modal response of the
pth mode shape in the frequency domain. Each mode shape, connected to a specific nodal diameter of
the system, is excited in resonance by some EO of the mesh force, according to the law reported in the
following equation Equation (73), from gear dynamics theory [9]:

EO = mZ± ND , m = 1, 2, . . . . (73)

Thus, the construction of the multi-harmonic forced response is computed by considering, one by
one, each EO of the mesh force, associating it to the mode shapes, which are described by the relative
nodal diameter ND, excited by the selected EO and computing the modal responses. Once the modal
responses in the frequency domain are computed for all the EO, they are transformed through DMT
(Equation (30)), passing from modal coordinates to physical coordinates, and the forced response of a
given node is developed in the time domain (in our case the nodes of the teeth of the gears) as the sum
of all the mode shapes contributions (i.e., DMT). The validity of the superimposition effect principle
(as explained in the Introduction) allows the summation of all the responses due to the different EO in
the time domain. The result will be a multi-harmonic response, developed in the time domain. Since
the response is not described by a single harmonic it is not possible to acquire the amplitude of the
time domain response. Thus, the latter will be expressed by acquiring the peak-to-peak measure of the
time domain trend as function of a reference frequency (which can be the speed of G1 or the speed of
G2 as well) defining uniquely the excitations (both parametric and external) of the overall system. As a
matter of fact, setting a certain speed for G1 means also setting the speed of G2 since the speed of the
gears are linked by the gear ratio. As consequence, the mesh stiffness and mesh force, representing the
parametric and the force excitations respectively, directly depend on the speed of the two gears. Finally,
the reference frequency describes uniquely the operational conditions of the overall system. In the
next section an example of forced response is computed on a dedicated test case and a comparison
with Direct Time Integration (DTI) method is made to validate the MMTS methodology, developed
into this paper.

7. Forced Response Computed on Test-Cases

In this Section, a study of the forced response of a test case is presented. The aim is to show when
MMTS is applied for such applications and why it is convenient to use it. Such a problem can be
studied, on the other hand, by Direct Time Integration (DTI) of the equations of motion but this is a
very time-consuming method which makes difficult a detailed study of the forced response over a
wide range of operational frequency. Anyway, here DTI is used to validate the methodology that is
developed in this paper. More in detail, given a certain system model, characterized by given mass,
stiffness and damping matrices, two parallel studies are developed on the system, applying MMTS and
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DTI respectively. The validation of the MMTS methodology is made by comparing the peak-to-peak
(P2P) measures of the multi-harmonic response developed in the time domain, calculated with the
two methods. Here, the P2P result is plotted against a reference frequency, which is decided at the
beginning of the calculation and defines uniquely all the excitations of the system (both parametric
and external excitation). The reference frequency chosen for the P2P plots is the speed of Gear-1,
Ω1. As a matter of fact, the speed of Gear-2, Ω2, is directly connected to Ω1 through the gear ratio η.
Then, all the parametric and external excitations are directly defined. Through the test-case analysis,
the dynamic coupling phenomenon is investigated, by remarking its causes and consequences. It is
demonstrated that the dynamic coupling, caused by the presence of a time-variant mesh stiffness, leads
to a nodal coupling of certain nodal diameters of the meshing gears. To clearly note the phenomenon,
a specific test case is built. In more detail, the example which has been used several times in this
paper is considered. That is the case of a couple of gears (G1 and G2) having respectively Z1 = 10
teeth and Z2 = 20 teeth. The system model of each gear, as it was introduced at the beginning of the
paper (Section 2) is constituted by two nodes per sector of the gear (the number of sectors is equal to
the number of teeth). As consequence, each gear has number of dof equal to twice the number of its
teeth. Being the dimension of the gear model twice the number of the sectors, two modal families of
natural frequencies can be derived by performing modal analysis of both the gears considering them
as stand-alone components. In Figure 9a,b the frequency vs. nodal diameter diagram of the two gears
(considered as stand-alone components) is reported, given the mechanical characteristics of the gears
shown in table Tables 1 and 2.
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Table 1. Mechanical characteristics of G1 model.

GEAR-1

Z1 10 Teeth

ND [0,...,5]
Mechanical characteristics

mb 0.2 (kg)
mc 1 (kg)
ka 107 (N/m)
kb 107 (N/m)
kc 108 (N/m)
damping ratio 0.005 (-)

Table 2. Mechanical characteristics of G2 model.

GEAR-2

Z2 20 Teeth

ND [0,...,10]
Mechanical characteristics

mb 0.2 (kg)
mc 2 (kg)
ka 107 (N/m)
kb 107 (N/m)
kc 108 (N/m)
damping ratio 0.005 (-)

The gears are coupled by means of a mesh stiffness of the same type described in Section 3. So,
it assumes for the nth pair of meshing teeth a constant value equal to kt when the pair is in contact,
it assumes a null value when it is not. In this test-case kt is equal to 106 N/m. The mesh stiffness
causes a modal coupling between some modes characterized by specific nodal diameters of the two
gears respectively. It is good to remember that the mesh stiffness does not have a remarkable influence
on the natural frequencies, which remains practically equal to those of the two gears considered as
stand-alone components, even though it may have an important influence on the dynamic response of
the overall system. In such a case the numbers of teeth Z1 and Z2 has a strong relation with each other.
This condition emphasizes the nodal coupling between specific nodal diameters of the gears. It is
worth to remind that such a system represents an unusual system because, in practice, gear systems
are never designed with such numbers of teeth to avoid the same couple of teeth meshes too often.
Nevertheless, this choice, which does not affect the validity of the methodology, aims to boost the
effect of the analyzed phenomenon of the dynamic coupling so to better understand it. In Figure 10
an example of nodal coupling is reported for the system under analysis. That is the case of a nodal
coupling between the nodal diameter ND-5 of G1 and the nodal diameter ND-10 of G2. By recalling
the vector of the physical coordinates of the system defined in Section 2 (Equation (1)), the mode
shape shown in Figure 10 contains both the nodal diameters. It means that an excitation of ND-5 of
G1 affects the vibration of G2 which will vibrate at the same natural frequency with a ND-10 shape.
It is important to remark that the ND-5 of G1 (considered as stand-alone component) has a natural
frequency ω5 = 1118 Hz (see Figure 9a). When the G1 is coupled to G2 by means of the mesh stiffness,
the ND-5 of G1 still has natural frequency ω5, but the mode shape of the coupled system associated to
that natural frequency shows an ND-5 mode shape coupled to an ND-10 of G2. In other words, it is
numerically demonstrated that a mesh stiffness with such a value of kt causes the coupling between
the nodal diameters of the gears without changing remarkably the natural frequencies with respect
to those of the gears (considered as stand-alone components). The choice to keep a value of kt that
does not cause a remarkable change in the natural frequencies is a reasonable assumption that verifies
what is experimentally found in the industrial applications. As a matter of fact, real test cases are
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characterized by mode shapes showing modal couplings between nodal diameters at given natural
frequencies, which are practically the same of those of the stand-alone gears. Thus, the test case under
exam aims at simulating a real coupled system where the dynamic characteristics of the mode shapes
and natural frequencies remain practically unchanged.
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As it was described in Section 5, the external force acting on the system is a mesh force which
travels from one tooth to another one with the mesh stiffness. In other words, a force of value Fm acts
on the teeth nodes (with same value but with opposite direction) of a specific nth teeth pair when it is
in contact. So, as for the mesh stiffness, the Fourier series of the mesh force is studied, as described in
Section 5. In Figure 11a,b the harmonic content (or Engine Orders, EO) of the forces, acting on the two
gears respectively, is shown in terms of amplitudes of the various EO.

As anticipated in Section 6.2 (Equation (73)), a harmonic index EO of the travelling force excites
mode shapes characterized by a specific ND. Since the ND under analysis for G1 is 5, the EO excitation
that have been selected are: 5, 15, 25, 35. MMTS allows the computation of the modal response of the
mode shape of interest due to the selected EO. The forced response in the physical coordinates is easily
derived through Direct Modal Transformation (DMT). Here, the forced response (expressed as the
P2P measure of the multi-harmonic response developed in the time domain) of the teeth of the two
gears is computed, in a given operational speed range (the reference speed is the speed of G1) where
the excitation of the mode shape in Figure 8 occurs. What is expected is to see a resonance of the G1

due to the excitation of the ND-5 by some EO of the mesh force and an “induced” resonance of the
G2 due to the action of the latter EO exciting the G1. The fact that the second resonance is induced
by the first one is demonstrated by the fact that no excitation of the ND of G2 should be present for
that operational frequency conditions. As a matter of fact, by looking at the Campbell diagrams of the
gears, you can note that for G1 (Figure 12a) the involved EO crosses the natural frequency line in that
operational speed range, while for G2 (Figure 12b) no crossing of the natural frequency lines occurs by
the involved EO. Thus, the conclusion is that the second resonance on G2 is caused by the first one
on G1.

The P2P measure of the multi-harmonic response of the two gears computed using MMTS is
reported in Figure 13. Here, also the P2P measure computed by means of DTI is shown in order to
make a comparison between the two results. It is worthy to note that there is a big difference in terms
of computational time for the construction of the forced response using the two methodologies (MMTS
and DTI). In more detail, a DTI study can take some hours, and the computational time can increase
considerably as the number of dof of the system increases as well as the resolution of the operational
speed range and the integration time interval increase. As consequence, the computational efforts
can be practically unsustainable for systems with a large number of dof and very low damping ratios
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whereby DTI must integrate for larger time interval in order to reach a steady-state response, where
the transient part is completely extinguished (i.e., a real test-case of gear system where damping ratio
is lower than 0.1%). On the other hand, MMTS, operating in the frequency domain, results in a very
fast calculations of the forced response which can take few minutes and then it allows to select the EO
of interest which have an influence in a given operational speed range, neglecting the minor effects of
other EO and so reducing considerably the computational efforts. In both the analysis, two resonance
peaks are visible in a given operational speed range (speed of G1 from 210 Hz to 240 Hz). The blue
curves are the resonances of G1 computed respectively with MMTS and DTI. The same for the red
curves. The resonance of G2 is induced by the resonance of G1, as anticipated before. By looking at the
figures Figure 14a,b showing respectively the FFT of the time domain responses, computed through
DTI, of the gears (respectively shown in the figures Figure 15a,b), it is easy to note that the main
harmonic component of the multi-harmonic response in both cases is exactly the natural frequency
of the mode shape shown in Figure 10 which couples ND5 of G1 to ND10 of G2. This represents an
additional proof that the resonance of G2 is directly induced by the excitation of that single mode
shape by the mesh force on the G1. This is a clear example of dynamic coupling between two meshing
gears and MMTS allowed to forecast the resonance of G2 induced by the excitation of the ND of G1

and this could not be possible if you have considered the gears as stand-alone components. In that
case, no interaction between the ND of the gears can be studied.
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8. Conclusions

The objective of this paper is to investigate the mutual interactions (dynamic coupling) which
affect the response of a couple of meshing gears, by developing a methodology able to compute easily,
with limited computational efforts, the forced response of the gears, without loosing the generality
and complexity of the system. As a matter of fact, here the gears are considered as compliant bodies.
As opposed to other methodologies which were developed in the past, whereby the assumption
of the gears as rigid bodies needed to be supported by the introduction of the transmission error
to simulate the compliance of the gears. Here, the challenge is to couple two compliant gears
(whose dynamic characteristics are automatically included) and to investigate how the dynamics
of a gear interacts with the other one when phenomena of mesh stiffness fluctuations occur. In addition
to that, the methodology provides guidelines for an analytical solution to the problem, allowing the
researcher to compute the forced response of a complex system undergoing both a parametric and
external excitation. The choice of MMTS for the mathematical solution of the linear time-variant
problem is addressed to its capability to provide an analytical solution to the problem, by strongly
simplifying it. This is a great advantage for applications like gear coupling where the simplicity of the
methodology (MMTS) compensates for the complexity of the system and allows for the analysis of the
behavior of the gears in a considerably wide range of operation.
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Appendix A Forced Response Computation

Complete pth equation of motion in modal coordinates including all the harmonic sets of both the
parametric and the excitation force, expressed in Fourier Series:
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..
up1 + ω2

pup1 = −2
[
iωp A′pei ωp t + CC

]
−∑N

r=1 ∑∞
s1=1

{[
D1

s1
pr ei s1 Ω1 t + D1

s1
pre−i s1 Ω1 t

][
Areiωrt + CC

]}
−∑N

r=1 ∑∞
s2=1

{[
D2

s2
pr ei s2 η Ω1 t + D2

s2
pre−i s2 η Ω1 t

][
Areiωrt + CC

]}
−∑N

r=1 ∑∞
s3=1

{ [
D3

s3
pr ei s3

Ω1
nT 1

t
+ D3

s3
pr e−i s3

Ω1
nT 1

t
][

Areiωrt + CC
]}

−cp

[
iωp Apeiωpt + CC

]
+ P10,p + ∑∞

k1=1[ P1
k1
p ei k1 Ω1 t + P1

k1
p e−i k1 Ω1 t]

+P20,p + ∑∞
k2=1[ P2

k2
p ei k2 η Ω1t + P2

k2
p e−i k2 η Ω1 t].

(A1)

Further manipulations of Equation (A1) allows to write the right-hand side (RHS) of the equation
in a clearer form, by grouping the CC terms (Equation (A2)):

RHS = −2iωp A′peiωpt −∑N
r=1 ∑∞

s1=1

[
D1

s1
pr Ar ei(s1Ω1 + ωr)t + D1

s1
pr Ar ei(s1Ω1 − ωr)t

]
−∑N

r=1 ∑∞
s2=1

[
D2

s2
pr Ar ei(s2 η Ω1 + ωr)t + D2

s2
pr Ar ei(s2 η Ω1 − ωr)t

]
−∑N

r=1 ∑∞
s3=1

[
D3

s3
pr Ar ei(s3

Ω1
nT 1

+ ωr)t + D3
s3
pr Ar ei(s3

Ω1
nT 1
− ωr)t

]
−icpωp Apeiωpt + 1

2 P1,0 p + ∑∞
k1=1

[
P1

k1
p ei k1 Ω1 t

]
+ 1

2 P2,0 p + ∑∞
k2=1

[
P2

k2
p ei k2 η Ω1 t

]
+ CC.

(A2)

Appendix B Elimination of secular terms

Here, the possible secular terms are analyzed. Two types of resonant terms can be distinguished
inside the equation Equation (54) which can give secular terms: the first type gives “exact” secular
terms and they are reported in Equations (A3) and (A4); the second type can give secular terms as the
excitation frequency k1Ω1 approaches to ωp, and they are reported in Equations (A5)–(A7). These terms
are called nearly secular terms.

− 2iωp A′peiωpt; (A3)

− icpωp Apeiωpt; (A4)

D1
s1
pr Ar ei(s1Ω1−ωr)t; (A5)

D2
s2
pr Ar ei(s2 η Ω1−ωr)t; (A6)

D3
s3
pr Ar ei(s3

Ω1
nT 1
−ωr)t. (A7)

Nearly secular terms become “exact” secular terms in specific conditions. Below, each nearly secular
term is analyzed to find the critical conditions which cause secular terms.

k1Ω1 = ωp + εσ . (A8)

• D1
s1
pr Ar ei(s1Ω1−ωr)t:

It produces secular terms for r = p and s1Ω1 approaching to 2ωp. The condition which verifies
this case is s1 = 2k1. As consequence, by substituting the latter relation, it follows:

s1Ω1 =
s1

k1
ωp + ε

s1

k1
σ = 2ωp + 2σε . (A9)

• D2
s2
pr Ar ei(s2 η Ω1−ωr)t :

It produces secular terms for r = p and s2η Ω1 approaching to 2ωp. The condition which verifies
this case is s2 = 2 η k1. As consequence, it follows:
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s2η Ω1 =
s2 η

k1
ωp + ε

s2 η

k1
σ = 2ωp + 2σε . (A10)

• D3
s3
pr Ar ei(s3

Ω1
nT 1
−ωr)t:

It produces secular terms for r = p and s3
Ω1
nT1

approaching to 2ωp. The condition which verifies

this case is s3 = 2 nT1 k1. As consequence it follows:

s3Ω1

nT1

=
s3 ωp

k1 nT1

+ ε
s3 σ

k1 nT1

= 2ωp + 2σε . (A11)

Now it is possible to eliminate secular terms by applying the critical conditions analyzed before,
summing up the resonant terms and forcing them to zero. It follows:

−2iωp A′peiωpt − D1
s1
pp Ap ei (s1 Ω1 − ωp) t − D2

s2
pp Ap ei (s2 η Ω1 − ωp) t−

D3
s3
pp Ap e

i ( s3
nT1

Ω1 − ωp) t
− icpωp Apeiωpt + P1

k1
p ei k1Ω1 t = 0.

(A12)

Substituting the equations Equations (A9)–(A11) into Equation (A12):

−2iωp A′peiωpt − D1
(2 k1)
pp Ap ei ( 2σε ) t ei ωp t − D2

( 2ηk1 )
pp Ap ei (2σε) t ei ωp t−

D3
( 2 nT1 k1)
pp Ap ei ( 2σε )t ei ωp t − icpωp Apei ωp t + P1

(k1)
p ei σεt ei ωp t = 0.

(A13)

It is possible to eliminate the common term eiωpt into Equation (A13) and write the equation,
considering that εt is exactly equal to τ:

−2iωp A′p − D1
(2k1)
pp Ap ei2στ − D2

(2ηk1 )
pp Ap ei2στ − D3

(2nT1 k1)
pp Ap ei2στ − icpωp Ap

+P1
k1
p ei στ = 0.

(A14)
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