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Abstract: To effectively prevent land subsidence over abandoned coal mines, it is necessary to
quantitatively identify vulnerable areas. In this study, we evaluated the performance of predictive
Bayesian, functional, and meta-ensemble machine learning models in generating land subsidence
susceptibility (LSS) maps. All models were trained using half of a land subsidence inventory, and
validated using the other half of the dataset. The model performance was evaluated by comparing
the area under the receiver operating characteristic (ROC) curve of the resulting LSS map for each
model. Among all models tested, the logit boost, which is a meta-ensemble machine leaning model,
generated LSS maps with the highest accuracy (91.44%), i.e., higher than that of the other Bayesian
and functional machine learning models, including the Bayes net (86.42%), naïve Bayes (85.39%),
logistic (88.92%), and multilayer perceptron models (86.76%). The LSS maps produced in this study
can be used to mitigate subsidence risk for people and important facilities within the study area, and
as a foundation for further studies in other regions.
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1. Introduction

Coal mining was once the driving force of the national industry and economic development in
Korea, but this situation changed as demand for coal decreased. Gangwon Province was once Korea’s
largest coal mining area but most of its mines were closed in the early 1990s. Among the environmental
problems that follow mine closures, land subsidence events can threaten human life and damage
property and infrastructure, including buildings, houses, railroads, and roads [1–4]. Recovery of
surface structures following land subsidence is difficult and costly; therefore, it is necessary to predict
land subsidence susceptibility (LSS) zones before subsidence occurs, and to implement management
strategies in these zones [3].

Generally, prediction of subsidence susceptibility zones requires the input of several
environmental factors and the application of perdition models [5]. Several previous studies have
developed quantitative and qualitative models that have been successfully applied in various hazard
susceptibility zones worldwide [3–11]. These include logistic regression (LR) [3], frequency ratio
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(FR) [3,6], weight of evidence (WOE) [3], evidential belief function (EBF) [4], artificial neural network
(ANN) [3,5,7,8], support vector machine (SVM) [9], random forest (RF) [10], and fuzzy logic (FL) [8,11]
models. Single LSS mapping models can be combined to form ensemble models, which provide
more precise and meaningful results [9]. Ensemble models based on machine learning have recently
improved the prediction accuracy and performance of single classifiers [12]. The main advantages of
this approach are the ability to represent complex relationships between influential factors, and to
incorporate spatial data of various scales [13].

Based on existing studies, probability and statistical models using geographical information
systems (GIS) have been applied extensively to predict the susceptibly of geohazards, such as
landslides, floods, subsidence, and rockfalls [3,14–16]. Recently, data mining and machine learning
models for addressing nonlinear problems have been developed, which have been applied frequently
and had their performances compared in landslide susceptibility mapping [17–20]. In ground
subsidence hazard mapping, ground subsidence hazard maps around abandoned underground coal
mines (AUCMs) have been constructed by integrating the adaptive neuro-fuzzy inference system
and GIS [21]. In addition, a fuzzy operator, decision tree with the CHAID and QUEST algorithms,
and the frequency ratio have been applied to construct subsidence susceptibility maps at AUCMs
in Korea [2,11]. In this study, we investigated the performance of some models that have never
been applied to land subsidence prediction. Therefore, in this study, we generated LSS maps for a
South Korean district containing abandoned subsurface coal mines using machine learning methods,
including a logit boost meta-ensemble model, two Bayesian models (Bayes net and NB models) and
two functional models (logistic and multilayer perceptron models). The reliability and accuracy of
all models were assessed by comparing their area under the receiver operating characteristic (ROC)
curves. Data processing was performed using WEKA 3.9.2 and ArcGIS 10.5 software to produce five
machine learning algorithms.

2. Land Subsidence in the Study Area

The study area, Hwajeon, is located in the city of Taebaek, South Korea (Figure 1), at
37◦11′07”–37◦11′07” N, 128◦56′40”–128◦57′43” E. Underground coal mining activities were carried out
in Taebaek for nearly 20 years. The coal seams in this area were irregularly disturbed and inclined with
various widths by reverse and thrust faults [22]. Therefore, the slant-chute block caving method was
mainly used. About 10 million tons of coal were mined from the study area between 1953–1991 [22],
and coal was transported to other areas by railroad beginning in 1973 (Figure 1). Since 1990, most of the
coal mines have been closed due to reduced coal demand. However, the abandoned underground coal
mines are currently causing land subsidence in the study area [11,21–23]. Additionally, infrastructure
has been damaged by the land subsidence, as shown in photographs in a previous report [11].

Subsidence is caused by a variety of contributing factors, including geological discontinuities,
presence of water, mining depth, and weak overburden [24,25]. The two forms of subsidence caused by
underground coal mining are trough and sinkhole subsidence [25]. In the study area, a very irregular
sinkhole occurred due to many complex underground coal mine pits excavated via slant–chute block
caving in combination with the aforementioned factors [22]. After a mine cavity is excavated, roof
stability becomes unstable over time due to changes in the strength and stress of the roof strata. Under
such conditions, additional contributing factors can lead to the occurrence of sinkholes [25]. The
Coal Industry Promotion Board [11,26] has reported 24 land subsidence events within the study area.
Figure 1 shows a representative land subsidence from location S1 to location S6 of a subsidence event
reported in 1999. Table 1 provides a description of the land subsidence. Locations S1 to S5 of this land
subsidence mainly occurred along railways and at elevations above 800 m. Location S6 occurred in
residential areas and at a lower elevation than S1–S5. Also, the depth of subsidence of S6 is the deepest
(508 mm). Some photographs providing evidence of the land subsidence have been published [11,23].
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Figure 1. The study area in Taebaek, South Korea.

Table 1. Description of representative land subsidence in the study area [22].

Location Structure Elevation
(m)

Mining
Depth (m)

Thickness (m)
and Slope of Coal

Seam

Subsidence
Depth (mm) Other

S1 Railway 885 20–30 1–2
40–50◦ 90

-The coal seam is oblique to the railroad.
-Shallow depth of mine
-Sinkhole-type subsidence

S2 Railway 885 0 – 72 -Progression of cavity by mining
-Subsidence by limestone cavity

S3 Railway 885 30–50 1–2
20◦ 329 -Subsidence along railway

S4 Railway 885 40–65 2
20◦ 223 -Shallow depth of mine

-Coal bonanza

S5 Tunnel
Railway 810 30–260 105

50–70◦ 65
-The tunnel is located above the mine
cavity.
-Vertical cracks and leakage in tunnel

S6 Road 765 60–98 3
20◦ 508 -Residential area and elementary school

-Differential subsidence

3. Construction of Spatial Database

It is necessary to determine the factors affecting the land subsidence of a coal mine area. The
lithology of the overburden rocks, geological discontinuities, ground slope, scope of the mined cavity,
extent and depth of mining, mechanical characteristics of the rock mass rating (RMR), and flow of
groundwater are considered the main factor [11,25,27,28]. Spatial data for all of these factors may be
difficult to collect and may not be available. The available spatial databases used in this study were
constructed using ArcGIS 10.5.
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The surface geology with cross section lines was constructed using a digital geological map with
1:50,000 scale [29] published by the Korea Institute of Geoscience and Mineral Resources (KIGAM).
The geological formations include the Manhan, Jangseong, Hambaegsan, Dosagog, and Alluvium
horizons (Figure 2a, Figure 3). Most of the coal was mined from the Jangseong Formation with a
thickness of 80–15 m [22,30]. This formation includes four to five cyclothems consisting of dark-gray
sandstone, black shale, and coal seam (Table 2). The land use was constructed from a digital land
characteristics map with 1:5,000 scale [31] supplied by the National Geographic Information Institute
(NGII). Land use for the study area was classified into 10 categories: wood land, railroad, river, field,
plot, road, school, hybrid land, brook and unclassified area (Figure 2b). The rate of land subsidence
compared to the area of each category was higher in the railroad and school classes [21]. The surface
slope was calculated from a digital elevation model (DEM) constructed from a digital elevation contour
line with 1:5000 scale [32] published by NGII (Figure 2c). Surface slope was considered an affecting
factor because land subsidence can change surface slope, differential horizontal strain, and vertical
displacement [33]. Distance from drift was calculated from a digital drift map provided by the Mine
Reclamation Corporation (MIRECO) [26] (Figure 2d). The map is important because it identifies
the areas of mining activity in this region. Geological discontinuities are considered to be factors
affecting land subsidence, but no geological lineaments appear in the study area on the available
1:50,000 geological map. Therefore, geomorphological lineament was visually extracted from an
IKONOS satellite image by a field geologist (Figure 2e). If the location is near a lineament, the value of
distance from lineament is low.

The borehole data in the study area, provided by the Mine Reclamation Organization (MIRECO)
in 1996 [26], were collected from 29 boreholes (Figure 1 and Table 3). The depths of the boreholes
ranged from a minimum of 19.5 m to a maximum of 200 m. The data included hydrologic properties
and rock mass information [34]. The depth of groundwater, rock mass rating (RMR), and permeability
were obtained from 16, 19, and 6 boreholes, respectively (Table 3 and Figure 2f,g,h). The maximum
depth of groundwater was 42.5 m. On the railroad, the upper part of the railroad had a deeper
groundwater depth and lower elevation than the lower part of the railway. The RMR was classified
as classes 1–5, representing very good, good, fair, poor, and very poor, respectively. In this study,
the RMR ranged from 2–4.5. The lowest RMRs appeared in the northwest and southeast portions
of the railroad. Permeability was classified as classes 1–6, representing very highly (>1 cm/s),
highly (1–10−2 cm/s), moderately (10−2–10−3 cm/s), slightly (10−3–10−5 cm/s), and very slightly
(10−5–10−7 cm/s) permeable and practically impermeable (<10−7 cm/s), respectively. In this study,
the permeability grade ranged from 4–4.5 (slightly permeable). The groundwater data were collected
from a report published in May 1996 by the Coal Industry Promotion Board. Borehole point data
should be converted into raster data for spatial analysis, and the accuracy of a raster map depends on
the number of data points. However, the available borehole data were limited in this study. Therefore,
raster maps from the limited borehole data were constructed using an inverse distance weighting
(IDW) interpolation method, which is useful for predicting values at unmeasured locations where data
are insufficient [11].

Eight control factors influencing land subsidence were constructed with 2 m × 2 m grid data,
resulting in 775 columns and 860 rows, for a total of 666,500 cells within the study area. In total, 24 land
subsidence areas as 24 vector-type polygons were converted to 2 m × 2 m grid data for a total of
3863 cells with a value of 1. The 3863 cells of land subsidence were randomly classified into training
and validation sets, with a 50% (1931 cells) and 50% (1932 cells) distribution, respectively, to evaluate
model performance.
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depth, (g) rock mass rating (RMR), and (h) permeability.
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Geumcheon 
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- Mainly dark-gray–black shale and dark-gray fine 
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Manhang 
(Cm) 

250–300 

- Mainly purple, greenish-gray, or light-green shale and 
light-green–green or light-gray medium–very coarse 
sandstone intercalated with three–four limestone lenses. 
Conglomerates with a thickness of a few meters occur at the 
base in some places. 
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 - In the upper part, gray–dark gray limestone intercalated 
with dolomite 



Appl. Sci. 2019, 9, 1248 7 of 17

Appl. Sci. 2018, 8, x FOR PEER REVIEW  7 of 16 

 
Figure 3. Geological cross sections in the study area. 

Table 3. Borehole data in the study area. 

ID Depth of 
borehole 

Depth of 
groundwater 

(m) 

RMR 
(grade) 

Permeability 
(grade) Geology 

B1 
B2 
B3 
B4 
B5 
B6 
B7 
B8 
B9 
B10 
B11 
B12 
B13 
B14 
B15 
B16 
B17 
B18 
B19 
B20 
B21 
B22 
B23 
B24 
B25 
B26 
B27 
B28 
B29 

50.0 
50.0 
30.0 
60.2 
86.3 
80.0 
33.0 
20.5 
40.0 
35.5 
30.0 
40.5 
41.1 
22.0 
35.7 
40.8 
50.5 
58.0 
54.0 
60.0 

115.0 
80.0 
80.0 
84.0 
80.4 
19.5 

200.0 
40.0 
35.0 

32.0 
27.2 

- 
- 
- 
- 

27.5 
27.7 
26.1 

- 
15.7 
21.6 
29.4 

- 
20.0 
20.0 
14.7 

- 
42.5 

- 
- 
- 
- 
- 

18.0 
5.0 
- 

5.0 
5.5 

3.4 
3.4 
3.4 
3.4 
2.0 
2.0 
- 
- 
- 

4.4 
- 
- 
- 

3.2 
- 
- 
- 

3.2 
2.5 
3.0 
3.0 
3.0 
4.5 
4.3 
- 

3.3 
4.3 
3.3 
3.3 

- 
4.5 
- 
4 
- 
4 
- 
- 
- 
- 
4 
4 
- 
- 
- 
- 
- 
- 
4 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 

Alluvium-Hambaegsan 
Alluvium-Hambaegsan 
Alluvium-Hambaegsan 
Alluvium-Hambaegsan 
Alluvium-Hambaegsan 
Alluvium-Hambaegsan 

Jangseong 
Jangseong 
Jangseong 
Jangseong 
Jangseong 
Jangseong 
Jangseong 
Jangseong 
Jangseong 
Jangseong 
Jangseong 
Jangseong 

Hambaegsan-Jangseong 
Hambaegsan-Jangseong 
Hambaegsan-Jangseong 
Hambaegsan-Jangseong 
Hambaegsan-Jangseong 

Jangseong 
Jangseong 

Hambaegsan 
Hambaegsan-Jangseong 
Hambaegsan-Jangseong 
Hambaegsan-Jangseong 

 

Figure 3. Geological cross sections in the study area.

Table 3. Borehole data in the study area.

ID Depth of
Borehole

Depth of
Groundwater (m)

RMR
(grade)

Permeability
(grade) Geology

B1 50.0 32.0 3.4 - Alluvium-Hambaegsan
B2 50.0 27.2 3.4 4.5 Alluvium-Hambaegsan
B3 30.0 - 3.4 - Alluvium-Hambaegsan
B4 60.2 - 3.4 4 Alluvium-Hambaegsan
B5 86.3 - 2.0 - Alluvium-Hambaegsan
B6 80.0 - 2.0 4 Alluvium-Hambaegsan
B7 33.0 27.5 - - Jangseong
B8 20.5 27.7 - - Jangseong
B9 40.0 26.1 - - Jangseong
B10 35.5 - 4.4 - Jangseong
B11 30.0 15.7 - 4 Jangseong
B12 40.5 21.6 - 4 Jangseong
B13 41.1 29.4 - - Jangseong
B14 22.0 - 3.2 - Jangseong
B15 35.7 20.0 - - Jangseong
B16 40.8 20.0 - - Jangseong
B17 50.5 14.7 - - Jangseong
B18 58.0 - 3.2 - Jangseong
B19 54.0 42.5 2.5 4 Hambaegsan-Jangseong
B20 60.0 - 3.0 - Hambaegsan-Jangseong
B21 115.0 - 3.0 - Hambaegsan-Jangseong
B22 80.0 - 3.0 - Hambaegsan-Jangseong
B23 80.0 - 4.5 - Hambaegsan-Jangseong
B24 84.0 - 4.3 - Jangseong
B25 80.4 18.0 - - Jangseong
B26 19.5 5.0 3.3 - Hambaegsan
B27 200.0 - 4.3 - Hambaegsan-Jangseong
B28 40.0 5.0 3.3 - Hambaegsan-Jangseong
B29 35.0 5.5 3.3 - Hambaegsan-Jangseong

4. Methods

As shown in Figure 4, the mapping process consisted of five steps: (a) Spatial database
construction, (b) random categorization of land subsidence locations into training and validation
datasets at a ratio of 1:1, (c) selection of land subsidence conditioning factors, (d) application of
machine learning methods to map LSS, and (d) validation and comparison of the five models.
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4.1. Models

4.1.1. Bayes Net (BN)

The BN algorithm applies Bayes’ theorem to produce graphical representations of the probability
distribution [35]. BN is commonly used to model complex systems [36]. BN has not yet been used to
model land subsidence; however, Pham et al. (2016) [37] applied this algorithm to evaluate landslide
risk. The distinct universal probability of a subsidence event for a set of input factors can be estimated
as follows:

PB(X1, X2, . . . , Xn) = Πn
i=1 = PB

(
X1 |Π xi

)
= Πn

i=1θxi|Πxi
(1)

where X = (X1, X2, . . . , Xn) represents the subsidence input factors, PB

(
X1 |Π xi

)
= θxi |Πxi

is a
common probability distribution for input factors Xi, and n is the number of subsidence input
factors [37].

4.1.2. Naïve Bayes (NB)

The NB algorithm is a classification system that applies Bayes’ theorem under the assumption
of conditional independence for all attributes [10,38]. The NB classifier is easy to build, without any
need for complicated iterative parameter-estimation schemes [38]. The NB algorithm estimates the
probability P(yj/xi) for all possible output classes as shown in Equation (2). The class with the largest
posterior probability is predicted as follows:

y = argmax P
(

yj

) n

∏
i=1

P(xi/yj) (2)

{subsidence, no subsidence}
where xi is the input factor, yj is the output class, P(yj) is the prior probability, and P(yj/xi) is the

conditional probability.
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The conditional probability is calculated as

P

(
xi

yj

)
=

1√
2πσ

e−(xi−µ)2/2σ2
(3)

where µ is the mean and σ is the standard deviation of xi.

4.1.3. Logistic Regression (LR)

LR is a statistical technique that allows the predictor to analyze several types of variables [39–41].
LR does not require the normality assumption, which is an advantage over linear and log-linear
regression. The inclusion of multiple parameters offers the user the ability to select the best predictors
for use in the model [39]. The LR model is formulated as follows [42]:

f(x) = logit (P) = ln
[

P
1− P

]
== c0 + c1x1 + · · ·+ cnxn (4)

P =
1

1 + e−f(x)
=

1
1 + e−(c0+ c1x1 +···+cnxn )

(5)

where x1, x2, . . . , xn are the input factors, c0 is the model intercept, and c1, . . . , cn are the regression
coefficients to be approximated. In this study, P is the probability of subsidence occurrence and 1 − P
is probability that subsidence will not occur. The function f(x) is represented as logit (P).

4.1.4. Multilayer Perceptron (MLP)

MLP is an artificial neural network classifier that is widely used in various fields [12,43]. MLP
neural nets consist of three structures: Input, hidden, and output layers. In this study, the input layers
represent factors that affect land subsidence, and the inputs are processed to become outputs within
the hidden layers. The classification results, dividing land subsidence and non-subsidence, are shown
in the output layers [12,44]. Two processes are required to train data from MLP neural nets: 1) Forward
propagation of the inputs through the hidden layers to obtain output and compare output values
to initial values, and 2) adjustment of the connection weights using differences between subsequent
values to generate the best results [44,45]. In this study, t = ti, i = 1, 2, . . . , 8 is a vector containing
eight land-subsidence conditioning factors, and φ = φj, j = 1, 2 represents the land subsidence and
non-subsidence classes. The MLP neural net function is then determined as follows:

φ = f(t) (6)

where f(t) is an unknown function that is improved during the training process by adjustable network
weights for a given network architecture.

An advantage of MLP is that the user is not required to decide the relative importance of the
various input measurements; most inputs can be selected during the training process, based on
weight adjustment [46]. Additionally, MLP does not require assumptions about the distribution of the
training dataset.

4.1.5. Logit Boost (LB)

LB is a famous machine-learning algorithm introduced by Friedman et al., 2000 [47] that effectively
reduces bias and variance; it is a slight modification of the most popular boosting method (AdaBoost)
for handling noisy data [48], which reduces training errors and improves classification accuracy [49].
LB has been widely applied in binary classification problems [50], medical science [51], and computer
science [52]; however, it has not yet been applied to land-subsidence problems [53].
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In the current study, we create a vector xi = x1, x2, . . . , xn, where n is the number of input factors;
y = [1, 0] represents two output classes (subsidence or non-subsidence). The LB algorithm is trained in
the following steps [47]:

1. Assign weightsωi =
1
n , i = 1, 2, . . . , n, f(x) = 0 and probability estimates pe(xi) = 1/2.

2. For m = 1, 2, ..., m, repeat the following steps:

a. Compute the working response and weights:

ri =

[
y∗i − pe(xi)

]
[pe(xi)(1− p(xi)]

ωi = pe(xi)(1− p(xi)

b. Fit the function by weighted least-squares regression of ri to xi using weightsωi.
c. Update the function as:

f(x) ← f(x) +
1
2

fm(x)

p(x)← ef(x)

ef(x) + e−f(x)

3. Output the classifier.

sign[f(x)] = sign

[
M

∑
m=1

fm(x)

]

=

{
1 (subsidence) if f(x) < 0

−1 (non subsidence)if f(x) ≥ 0

4.2. Model Evaluation and Comparison

During the modeling and validation phases, model efficiency should be evaluated and
compared [44]. We quantitatively evaluated and compared the efficiency of the models according
to the area under the ROC curve (%). This technique has been applied to assess risk models of
various hazards including subsidence [9], landslides [54], and sinkholes [55]; it is a standard method
to quantitatively evaluate the quality of probabilistic and statistical models [56]. The x and y axes of
the curve are sensitivity and specificity, respectively [56], and the area under the curve ranges from
0.5–1, with higher values indicating higher model accuracy and prediction capability.

5. Results

5.1. LSS Mapping

Figure 5 shows the LSS maps produced by the five algorithms: Bayes net (Figure 5a), NB
(Figure 5b), logistic (Figure 5c), multilayer perceptron (Figure 5d), and logit boost (Figure 5e). To
generate the LSS maps, we used the LSS index (LSSI) to classify susceptibility events into four
classes: Very high (5% of total area), high (5%), moderate (5%), and low (85%). The probability of
land subsidence was predicted for each class, and subsidence hazard was predicted for residential
areas. The susceptibility indexes from the five algorithms were similar. The region with very high
susceptibility appeared from the western part of the region to the eastern part as railroad area, which
is marked by the red color. In the Bayes net result, the very high susceptibility area did not appear
as often as in the other models. In the middle of the region, the Bayes net result has a low index,
whereas the rest of the models have a very high or high index. Some very high indexes also appear
in the northeastern part of the region, as elementary school area, but most of the region has a low
susceptibility index rank for subsidence.
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However, there are some differences for the medium-susceptibility index rank, marked by the
green color. The area with medium susceptibility of land subsidence is spreading and has a different
pattern in each model result. For example, the NB and logit boost results show the northern part
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of the region is mostly covered by the medium susceptibility index. In contrast, the multilayer
perceptron shows the medium index in the southern part of the region. Meanwhile, in the Bayes net
and logistic models, the medium index is diffusely distributed from the northern to the middle part of
the study area.

5.2. Validation

The land subsidence susceptibility (LSS) analysis results were validated by comparison with
1932 land subsidence cells (i.e., 50% of the total subsidence data) that had not been used in the analysis.
A quantitative comparison among all models of the receiver operating characteristic (ROC) curves
for model performance is shown in Figure 6. The land subsidence susceptibility index (LSSI) values
of all cells were sorted in descending order, divided into 100 classes [57], and associated with the
cumulative number of subsidence events for each class (Figure 6). The model with the highest area
under the ROC curve was considered to be the model with the best predictive performance. The area
under the curve values for the Bayes net, naïve Bayes (NB), logistic, multilayer perceptron, and logit
boost models were 0.8640, 0.8539, 0.8892, 0.8676, and 0.9144, respectively; thus, the respective LSS
mapping accuracy rates were 86.42, 85.39, 88.92, 86.76, and 91.44%. Although all models had sufficient
performance, the different applied models had different prediction performances using same training
data. In particular, the logit boost model had a higher predictive accuracy (by about 2.52, 4.68, 5.02,
and 6.05%, respectively) than the logistic, multilayer perceptron, Bayes net, and NB. Therefore, model
reliability followed the order logit boost > logistic > multilayer perceptron > Bayes net > NB. The
percentage differences of the validation result are discussed in Section 6.
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6. Discussion

Recently, there has been great interest within the hazard prediction community toward improving
the performance of hazard susceptibility models. In various fields, machine learning techniques have
been shown to be effective in terms of performance [58–62]. In particular, ensemble learning has
improved machine learning results by combining several models [17,63,64]. The results of different
applied models under the same conditions (i.e., study area, input data, ratio of training, and validation
datasets) can be compared to the quantitative accuracy values of the area under the ROC to present
the predictive power of the model. Models with similar (different) accuracy values can be said to have
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similar (differing) performances. Therefore, the reliabilities of the models can be ordered according to
the accuracies of the models.

In this study, the logit boost model, based on ensemble machine learning, had a 91.44% accuracy
and a predictive accuracy that was higher (by 2.52–6.05%) than those of the logistic, multilayer
perceptron, Bayes net, and NB based on machine learning. Similarly, a previous study [2] found that a
decision tree model (the CHAID algorithm) produced LSS maps with higher accuracy (94.01%) than
the QUEST decision tree (90.37%) and frequency ratio (86.70%). The other algorithms examined in the
current study also exhibited high accuracy. Thus, the Bayes net, NB, logistic, and multilayer perceptron
models can also be used as alternative models for mapping land subsidence hazard risk. Even though
the logit boost model, as an ensemble model, had not been used to predict land subsidence in previous
research, the results of the current study indicate that it can achieve high accuracy.

However, some limitations of the models might be a consideration for future studies. For example,
the Bayes net model assumes no missing values, and this model also needs to be updated, especially
for estimating the conditional probabilities [65]. The benefits and drawbacks of the machine learning
models are influenced by several factors, such as the availability of datasets, characteristics of the
study area, and condition of the region [18]. The use of Bayesian algorithms, such as the Bayes
net and Naïve Bayes, has not been fully verified in natural hazard assessments [18]. According to
Mezaal [66], the multilayer perceptron algorithm also has limitations, such as overlearning and high
computational complexity.

It has been reported that the sinkhole subsidence attributable to underground mining is caused by
shallow depth, weak overburden, geological discontinuities, solution of rocks, rainfall, groundwater,
and earthquakes [25]. However, this study used a spatial database obtained from previous studies
due to the limitation of available data. No further surveys or new surveys on land subsidence have
been conducted in the study area for 14 years. If real-time monitoring data and additional data are
obtained in the study area, a 4D underground subsidence model [67] with 3D geological modeling
could be constructed to predict land subsidence hazard areas accurately. Thus, continuous monitoring
and detailed new surveying for causative factors are essential in the study area. The maps produced
in this study can be used as basic data for policymakers and further research. Future studies should
develop alternative models and methods to determine the relative influence of factors affecting LSS, so
that these methods can be applied in other regions.

7. Conclusions

Land subsidence is a hazardous effect of coal mine abandonment, including that in Korea. To
prevent damage and loss of life in the Taebaek region, it is necessary to predict areas with high
subsidence risk effectively. In this study, we used Bayesian (i.e., Bayes net and NB), functional
(i.e., logistic, multilayer perceptron), and meta-ensemble (i.e., logit boost) machine learning models
to perform LSS assessments. Although all models had sufficient performance, the logit boost
meta-ensemble machine learning model had the highest accuracy (91.44%) among the five models.
The logit boost model also had higher predictive accuracy (by 2.52%, 4.68%, 5.02%, and 6.05%,
respectively) than the logistic, multilayer perceptron, Bayes net, and NB models. According to previous
studies [11,57] in the same study area, the fuzzy operator with 84.40–88.98% accuracy, frequency ratio
with 86.70% accuracy, CHAID decision tree with 94.01% accuracy, and QUEST decision tree with
90.37% accuracy have been applied to the subsidence hazard assessment, but the five models used in
this study had been rarely applied. Based on these case studies, the land subsidence hazard rating can
be applied to future policy decisions using additional data.
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