System Configurations and Operational Concepts for Highly Efficient Utilization of Power-to-Heat in A-CAES
Abstract
:1. Introduction
2. Methodology
- TES—volumetric thermal storage density: Q/V [kWh/m3]
- HTX—heat exchanger size: kO [kW/K]
- Cavern—cyclic stored air mass: mF [t]
- Compressor power: ΣPCompressor [MW]
3. Modelling
3.1. Low-Pressure (LP)-TES: Regenerator
3.2. Hihg-Pressure (HP)-TES: Two-Tank Thermal Energy Storage
4. Results
4.1. Reference Concept
4.2. Extended Concept
4.3. Alternative Concept
4.4. Concept Comparison
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Vazques, S.; Lukic, S.; Galvan, E.; Franquelo, L. Energy Storage Systems for Transport and Grid Applications. IEEE Trans. Ind. Electron. 2010, 57, 3881–3895. [Google Scholar] [CrossRef] [Green Version]
- Rehman, S.; Al-Hadhrami, L.M.; Alam, M.M. Pumped hydro energy storage system: A technological review. Renew. Sustain. Energy Rev. 2015, 44, 586–598. [Google Scholar] [CrossRef]
- Barbour, E.; Wilson, I.G.; Radcliffe, J.; Ding, Y.; Li, Y.A. review of pumped hydro energy storage development in significant international electricity markets. Renew. Sustain. Energy Rev. 2016, 61, 421–432. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, K.; Li, X.; Xu, J. The thermodynamic effect of thermal energy storage on compressed air energy storage system. Renew. Energy 2013, 50, 227–235. [Google Scholar] [CrossRef]
- Lund, H.; Salgi, G. The role of compressed air energy storage (CAES) in future sustainable energy systems. Energy Convers. Manag. 2009, 50, 1172–1179. [Google Scholar] [CrossRef]
- Najjar, Y.S.; Zaamout, M.S. Performance analysis of compressed air energy storage (CAES) plant for dry regions. Energy Convers. Manag. 1998, 39, 1503–1511. [Google Scholar] [CrossRef]
- Liu, J.L.; Wang, J.H. A comparative research of two adiabatic compressed air energy storage systems. Energy Convers. Manag. 2016, 108, 566–578. [Google Scholar] [CrossRef]
- Crotogino, F.; Mohmeyer, K.U.; Scharf, R. Huntorf CAES: More than 20 Years of Successful Operation. In Proceedings of the SMRI Spring Meeting, Orlando, FL, USA, 15–18 April 2001. [Google Scholar]
- Holden, P.; Moen, D.; DeCorso, M.; Howard, J. Alabama Electric Cooperative Compressed Air Energy Storage (CAES) Plant Improvements. In Proceedings of the ASME Turbo Expo 2000: Power for Land, Sea, and Air, Munich, Germany, 8–11 May 2000. [Google Scholar] [CrossRef]
- Benato, A.; Stoppato, A. Pumped Thermal Electricity Storage: A technology overview. Therm. Sci. Eng. Prog. 2018, 6, 301–315. [Google Scholar] [CrossRef]
- De Sisternes, F.J.; Jenkins, J.D.; Botterud, A. The Value of Energy Storage in Decarbonizing the Electricity Sector. Appl. Energy 2016, 175, 368–379. [Google Scholar] [CrossRef]
- Dunn, B.; Kamath, H.; Tarascon, J.M. Electrical energy storage for the grid: A battery of choices. Science 2011, 334, 928–935. [Google Scholar] [CrossRef]
- Benato, A.; Stoppato, A. Energy and cost analysis of a new packed bed pumped thermal electricity unit. J. Energy Resour. Technol. 2017, 140, 020904. [Google Scholar] [CrossRef]
- Klumpp, F. Comparison of pumped hydro, hydrogen storage and compressed air energy storage for integrating high shares of renewable energies-potential, cost-comparison and ranking. J. Energy Storage 2016, 8, 119–128. [Google Scholar] [CrossRef]
- Desrues, T.; Ruer, J.; Marty, P.; Fourmigué, J. A thermal energy storage process for large scale electric applications. Appl. Therm. Eng. 2010, 30, 425–432. [Google Scholar] [CrossRef] [Green Version]
- Budt, M.; Wolf, D.; Span, R.; Yan, J.A. review on compressed air energy storage: Basic principles, past milestones and recent developments. Appl. Energy 2016, 170, 250–268. [Google Scholar] [CrossRef]
- Zunft, S.; Dreissigacker, V.; Bieber, M.; Banach, A.; Klabunde, C.; Warweg, O. Electricity storage with adiabatic compressed air energy storage: Results of the BMWi-project ADELE-ING. In Proceedings of the International ETG Congress, Bonn, Germany, 28–29 November 2017; pp. 1–5. [Google Scholar]
- Stöver, B.; Rehfeldt, S.; Alekseev, A.; Stiller, C. Fluessigluftenergiespeicherung: Konzept und Analyse eines Systems fuer großtechnische Anwendungen. In Proceedings of the 45th Kraftwerkstechnisches Kolloquium, Dresden, Germany, 15–16 October 2013; pp. 315–320. [Google Scholar]
- Benato, A. Performance and cost evaluation of an innovative pumped thermal electricity storage power system. Energy 2017, 138, 419–436. [Google Scholar] [CrossRef]
- Thess, A. Thermodynamic efficiency of pumped heat electricity storage. Phys. Rev. Lett. 2013, 111, 110602. [Google Scholar] [CrossRef]
- Houssainy, S.; Janbozorgi, M.; Ip, P.; Kavehpour, P. Thermodynamic analysis of a high temperature hybrid compressed air energy storage (HTH-CAES) system. Renew. Energy 2018, 115, 1043–1054. [Google Scholar] [CrossRef]
- Abarr, M.; Geels, B.; Hertzberg, J.; Montoya, L.D. Pumped thermal energy storage and bottoming system part A: Concept and model. Energy 2017, 120, 320–331. [Google Scholar] [CrossRef]
- Ni, F.; Caram, H.S. Analysis of pumped heat electricity storage process using exponential matrix solutions. Appl. Therm. Eng. 2015, 84, 34–44. [Google Scholar] [CrossRef]
- Turner, R.H. High Temperature Thermal Energy Storage; Franklin: Philadelphia, PA, USA, 1978. [Google Scholar]
- Tessier, M.J.; Floros, M.C.; Bouzidi, L.; Narine, S.S. Exergy analysis of an adiabatic compressed air energy storage system using a cascade of phase change materials. Energy 2016, 106, 528–534. [Google Scholar] [CrossRef]
- Zhao, P.; Dai, Y.; Wang, J. Performance assessment and optimization of a combined heat and power system based on compressed air energy storage system and humid air turbine cycle. Energy Convers. Manag. 2015, 103, 562–572. [Google Scholar] [CrossRef]
- Lv, S.; He, W.; Zhang, A.; Li, G.; Luo, B.; Liu, X. Modelling and analysis of a novel compressed air energy storage system for trigeneration based on electrical energy peak load shifting. Energy Convers. Manag. 2017, 135, 394–401. [Google Scholar] [CrossRef]
- Sustainx. Isothermal CAES Technology. Available online: http://www.sustainx.com/technologyisothermal-caes.htm (accessed on 14 March 2015).
- Castellani, B.; Presciutti, A.; Filipponi, M.; Nicolini, A.; Rossi, F. Experimental investigation on the effect of phase change materials on compressed air expansion in CAES plants. Sustainability 2015, 7, 9773–9786. [Google Scholar] [CrossRef]
- Kim, Y.M.; Lee, J.H.; Kim, S.J.; Favrat, D. Potential and evolution of compressed air energy storage: Energy and exergy analyses. Entropy 2012, 14, 1501–1521. [Google Scholar] [CrossRef]
- Grazzini, G.; Milazzo, A. Thermodynamic analysis of CAES/TES systems for renewable energy plants. Renew. Energy 2008, 33, 1998–2006. [Google Scholar] [CrossRef] [Green Version]
- Grazzini, G.; Milazzo, A. A thermodynamic analysis of multistage adiabatic CAES. Proc. IEEE 2012, 100, 461–472. [Google Scholar] [CrossRef]
- Wolf, D.; Budt, M. LTA-CAES—A low-temperature approach to adiabatic compressed air energy storage. Appl. Energy 2014, 125, 158–164. [Google Scholar] [CrossRef]
- Zunft, S.; Krüger, M.; Dreißigacker, V.; Belik, S.; Hahn, J.; Knödler, P. ADELE-ING: Engineering-Vorhaben fuer die Errichtung der Ersten Demonstrationsanlage zur Adiabaten Druckluftspeichertechnik: Oeffentlicher Schlussbericht; Ed. Züblin AG: Stuttgart, Germany, 2017. [Google Scholar] [CrossRef]
- Dreißigacker, V. Power-to-heat in adiabatic compressed air energy storage power plants for cost reduction and increased flexibility. Heat Mass Transf. 2018, 54, 955–962. [Google Scholar] [CrossRef]
- Lucía, O.; Maussion, P.; Dede, E.J.; Burdío, J.M. Induction Heating Technology and Its Applications: Past Developments, Current Technology, and Future Challenges. IEEE Trans. Ind. Electron. 2014, 61, 2509–2520. [Google Scholar] [CrossRef] [Green Version]
- Sterner, M.; Stadler, I. Energiespeicher. Bedarf, Technologien, Integration; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Belik, S. Numerical modelling of an induction heating process for packed rods with adjacent airflow. In Proceedings of the International Congress on Electrotechnologies for Material Processing, Hannover, Germany, 6–9 June 2017. [Google Scholar]
- Ismail, K.A.R.; Stuginsky, R. A parametric study on possible fixed bed models for pcm and sensible heat storage. Appl. Therm. Eng. 1999, 19, 757–788. [Google Scholar] [CrossRef]
- Hausen, H. Wärmeübertragung im Gegenstrom, Gleichstrom und Kreuzstrom; Springer: Berlin/Heidelberg, Germany, 1950. [Google Scholar]
- Schmidt, F.W.; Willmott, A.J. Thermal Energy Storage and Regeneration; McGraw-Hill Book Company: Washington, DC, USA, 1981. [Google Scholar]
- Gnielinski, V. Berechnung des Waerme- und Stoffaustauschs in durchstroemten ruhenden Schuettungen. Verfahrenstechnik 1982, 16, 36–39. [Google Scholar]
- Martin, H. Wärmeübertrager; Thieme: Stuttgart, Germany; New York, NY, USA, 1988. [Google Scholar]
- Shah, K.R.; Sekulic, D.P. Fundamentals of Heat Exchanger Design; John Wiley & Sons: Hoboken, NJ, USA, 2003; ISBN 0-471-32171-0. [Google Scholar]
- RWE. ADELE—Adiabatic Compressed-Air Energy Storage (CAES) for Electricity Supply. Available online: http://www.rwe.com (accessed on 14 March 2015).
Temperature Cavern. | Pressure Loss Cavern | HP-Pressure | Isentropic Coefficients Turbomach. | Outlet Temperature Safety Coolers | Charging–Discharging Duration | Turbine Power |
---|---|---|---|---|---|---|
10 °C | 4 bar | 65 bar | 0.86 | 10 °C | 6 h/6 h | 65 MW |
η0 | kOTES-HTX,0 | mF,0 | ΣPCompressor,0 | ||
---|---|---|---|---|---|
73.7 [%] | 66.2 [kWh/m3] | 63 [kWh/m3] | 3100 [kW/K] | 3450 [t] | 88.2 [MW] |
η0 | PP2H,min | ||||
---|---|---|---|---|---|
58 [%] | 24.7 [MW] | 129.7 [kWh/m3] | 1480 [kW/K] | 3420 [t] | 87.3 [MW] |
−0.114 [%/MWP2H] | 3.4 [kWh/m3/MWP2H] | 0.003 [kW/K/MWP2H] | −29.5 [t/MWP2H] | −0.75 [MW/MWP2H] |
Reference Concept | Extended Concept | Alternative Concept | ||
---|---|---|---|---|
P2H Location | xLP,P2H = 100% | xLP,P2H = 0% | xLP,P2H = 100% | |
ηTES [%] | 90 | 90 | 90 | 90 |
pLP [bar] | 8.1 | 12.4 | 5.3 | 12.4 |
η0 [%] | 73.7 | 73.7 | 73.7 | 58 |
(Q/V)LP-TES,0 [kWh/m3] | 66.2 | 96.3 | 48.4 | 129.7 |
(Q/V)HP-TES,0 [kWh/m3] | 63 | 46.8 | 79.9 | - |
(kO)TES-HTX,0 [kW/K] | 3100 | 3100 | 3100 | 1480 |
mF,0 [t] | 3450 | 3450 | 3450 | 3420 |
ΣPCompressor,0 [MW] | 88.2 | 88.2 | 88.2 | 87.3 |
PP2H,min [MW] | - | 0 | 0 | 24.7 |
PP2H,max [MW] | - | unbounded | 11.3 | unbounded |
Reference Concept | Extended Concept | Alternative Concept | ||
---|---|---|---|---|
P2H Location | xLP,P2H = 100% | xLP,P2H = 0% | xLP,P2H = 100% | |
Δη/ΔPP2H [%/MWP2H] | - | −0.34 | −0.34 | −0.114 |
Δ(Q/V)LP-TES/ΔPP2H [kWh/m3/MWP2H] | - | 2.3 | −1.3 | 3.4 |
Δ(Q/V)HP-TES/ΔPP2H [kWh/m3/MWP2H] | - | 0 | 1.65 | - |
Δ(kO)TES-HTX/ΔPP2H [kW/K/MWP2H] | - | −18 | −18 | 0.003 |
ΔmF/ΔPP2H [t/MWP2H] | - | −20.4 | −20.4 | −29.5 |
ΔPCompressor/ΔPP2H [MW/MWP2H] | - | −0.5 | −0.5 | −0.75 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dreißigacker, V.; Belik, S. System Configurations and Operational Concepts for Highly Efficient Utilization of Power-to-Heat in A-CAES. Appl. Sci. 2019, 9, 1317. https://doi.org/10.3390/app9071317
Dreißigacker V, Belik S. System Configurations and Operational Concepts for Highly Efficient Utilization of Power-to-Heat in A-CAES. Applied Sciences. 2019; 9(7):1317. https://doi.org/10.3390/app9071317
Chicago/Turabian StyleDreißigacker, Volker, and Sergej Belik. 2019. "System Configurations and Operational Concepts for Highly Efficient Utilization of Power-to-Heat in A-CAES" Applied Sciences 9, no. 7: 1317. https://doi.org/10.3390/app9071317
APA StyleDreißigacker, V., & Belik, S. (2019). System Configurations and Operational Concepts for Highly Efficient Utilization of Power-to-Heat in A-CAES. Applied Sciences, 9(7), 1317. https://doi.org/10.3390/app9071317