Shear Capacity of Textile-Reinforced Concrete Slabs without Shear Reinforcement
Abstract
:1. Introduction
2. Experimental Investigation on Shear Capacity
2.1. Test Setup and Instrumentation
2.2. Variation of Parameters
2.3. Reinforcement
2.4. Cementitious Matrix
3. Results
3.1. Failure Mechanisms
3.2. Crack Pattern and Critical Shear Crack
4. Discussion
4.1. Effect of Shear Span Length
4.2. Size Effect
4.3. Comparison to Existing Models and Current Design Provisions
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hegger, J.; Curbach, M.; Stark, A.; Wilhelm, S.; Farwig, K. Innovative design concepts: Application of textile reinforced concrete to shell structures. Struct. Concr. 2018, 19, 637–646. [Google Scholar] [CrossRef]
- Tysmans, T.; Adriaenssens, S.; Cuypers, H.; Wastiels, J. Structural analysis of small span textile reinforced concrete shells with double curvature. Compos. Sci. Technol. 2009, 69, 1790–1796. [Google Scholar] [CrossRef]
- Kromoser, B.; Preinstorfer, P.; Kollegger, J. Building lightweight structures with carbon-fiber-reinforced polymer-reinforced ultra-high-performance concrete: Research approach, construction materials, and conceptual design of three building components. Struct. Concr. 2018, 112, 106. [Google Scholar] [CrossRef]
- Hegger, J.; Voss, S. Investigations on the bearing behaviour and application potential of textile reinforced concrete. Eng. Struct. 2008, 30, 2050–2056. [Google Scholar] [CrossRef]
- Sharei, E.; Scholzen, A.; Hegger, J.; Chudoba, R. Structural behavior of a lightweight, textile-reinforced concrete barrel vault shell. Compos. Struct. 2017, 171, 505–514. [Google Scholar] [CrossRef]
- De Munck, M.; Tysmans, T.; Verbruggen, S.; Vervloet, J.; El Kadi, M.; Wastiels, J.; Remy, O. Influence of Weathering Conditions on TRC Sandwich Renovation Panels. In Strain-Hardening Cement-Based Composites, SHCC4; Mechtcherine, V., Slowik, V., Kabele, P., Eds.; Springer: Berlin/Heidelberg, Germany, 2017; pp. 659–667. ISBN 978-94-024-1193-5. [Google Scholar]
- Scheerer, S.; Chudoba, R.; Garibaldi, M.P.; Curbach, M. Shells Made of Textile Reinforced Concrete—Applications in Germany. J. IASS 2017, 58, 79–93. [Google Scholar] [CrossRef]
- De Sutter, S.; Remy, O.; Tysmans, T.; Wastiels, J. Development and experimental validation of a lightweight Stay-in-Place composite formwork for concrete beams. Constr. Build. Mater. 2014, 63, 33–39. [Google Scholar] [CrossRef]
- May, S.; Michler, H.; Schladitz, F.; Curbach, M. Lightweight ceiling system made of carbon reinforced concrete. Struct. Concr. 2018, 19, 1862–1872. [Google Scholar] [CrossRef]
- Bielak, J.; Hegger, J.; Chudoba, R. Towards Standardization: Testing and Design of Carbon Concrete Composites. In High Tech Concrete: Where Technology and Engineering Meet, Proceedings of the 2017 fib Symposium, Maastricht, The Netherlands, 12–14 June 2017; Hordijk, D.A., Luković, M., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 313–320. ISBN 3319594710. [Google Scholar]
- Hegger, J.; Kulas, C.; Horstmann, M. Realization of TRC Façades with Impregnated AR-Glass Textiles. KEM 2011, 466, 121–130. [Google Scholar] [CrossRef]
- Kulas, C.; Schneider, M.; Will, N.; Grebe, R. Hinterlüftete Vorhangfassaden aus Textilbeton. Bautechnik 2011, 88, 271–280. [Google Scholar] [CrossRef]
- Hegger, J.; Horstmann, M.; Shams, A. Load-carrying behavior of sandwich panels at ultimate limite state. In Proceedings of the fib Symposium Prague 2011, Praha, Czech Republic, 8–10 June 2011. [Google Scholar]
- Shams, A.; Horstmann, M.; Hegger, J. Experimental investigations on Textile-Reinforced Concrete (TRC) sandwich sections. Compos. Struct. 2014, 118, 643–653. [Google Scholar] [CrossRef]
- Hering Bau GmbH & Co. KG. Hering Architectural Concrete: betoshell®. Available online: https://www.heringinternational.com/en/products-services/architectural-concrete/material-concepts/textile-reinforced-concrete/ (accessed on 15 February 2019).
- Rempel, S.; Kulas, C.; Will, N.; Bielak, J. Extremely Light and Slender Precast Pedestrian-Bridge Made Out of Textile-Reinforced Concrete (TRC). In High Tech Concrete: Where Technology and Engineering Meet, Proceedings of the 2017 fib Symposium, Maastricht, The Netherlands, 12–14 June 2017; Hordijk, D.A., Luković, M., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 2530–2537. ISBN 3319594710. [Google Scholar]
- Helbig, T.; Unterer, K.; Kulas, C.; Rempel, S.; Hegger, J. Fuß- und Radwegbrücke aus Carbonbeton in Albstadt-Ebingen. Beton- und Stahlbetonbau 2016, 111, 676–685. [Google Scholar] [CrossRef]
- Hegger, J.; Goralski, C.; Kulas, C. Schlanke Fußgängerbrücke aus Textilbeton. Beton- und Stahlbetonbau 2011, 106, 64–71. [Google Scholar] [CrossRef]
- Hegger, J.; Kulas, C.; Raupach, M.; Büttner, T. Tragverhalten und Dauerhaftigkeit einer schlanken Textilbetonbrücke. Beton- und Stahlbetonbau 2011, 106, 72–80. [Google Scholar] [CrossRef]
- Rempel, S. Erste Straßenbrücke aus Carbonbeton. In Tagungsband der 9. Carbon- und Textilbetontage; Tudalit e.V. und C3—Carbon Concrete Composite e.V.: Dresden, Germany, 2017; pp. 40–41. [Google Scholar]
- Schumann, A.; Michler, H.; Schladitz, F.; Curbach, M. Parking slabs made of carbon reinforced concrete. Struct. Concr. 2018, 19, 647–655. [Google Scholar] [CrossRef]
- Cavagnis, F.; Fernández Ruiz, M.; Muttoni, A. A mechanical model for failures in shear of members without transverse reinforcement based on development of a critical shear crack. Eng. Struct. 2018, 157, 300–315. [Google Scholar] [CrossRef]
- Cavagnis, F.; Fernández Ruiz, M.; Muttoni, A. Shear failures in reinforced concrete members without transverse reinforcement: An analysis of the critical shear crack development on the basis of test results. Eng. Struct. 2015, 103, 157–173. [Google Scholar] [CrossRef]
- Herbrand, M.; Kueres, D.; Claßen, M.; Hegger, J. Einheitliches Querkraftmodell zur Bemessung von Stahl- und Spannbetonbrücken im Bestand. Beton- und Stahlbetonbau 2016, 111, 58–67. [Google Scholar] [CrossRef]
- Tue, N.V.; Theiler, W.; Tung, N.D. Schubverhalten von Biegebauteilen ohne Querkraftbewehrung. Beton- und Stahlbetonbau 2014, 109, 666–677. [Google Scholar] [CrossRef]
- Herbrand, M. Shear Strength Models for Reinforced and Prestressed Concrete Members. Ph.D. Thesis, RWTH Aachen University, Aachen, Germany, 2017. [Google Scholar]
- Cladera, A.; Marí, A.; Bairán, J.M.; Ribas, C.; Oller, E.; Duarte, N. The compression chord capacity model for the shear design and assessment of reinforced and prestressed concrete beams. Struct. Concr. 2016, 17, 1017–1032. [Google Scholar] [CrossRef]
- Adam, V.; Herbrand, M.; Claßen, M. Experimentelle Untersuchungen zum Einfluss der Bauteilbreite und der Schubschlankheit auf die Querkrafttragfähigkeit von Stahlbetonplatten ohne Querkraftbewehrung. Bauingenieur 2018, 93, 37–45. [Google Scholar]
- Herbrand, M.; Classen, M. Shear tests on continuous prestressed concrete beams with external prestressing. Struct. Concr. 2015, 16, 428–437. [Google Scholar] [CrossRef]
- Herbrand, M.; Classen, M.; Adam, V. Querkraftversuche an Spannbetondurchlaufträgern mit Rechteck- und I-Querschnitt. Bauingenieur 2017, 92, 465–473. [Google Scholar]
- Fischer, O.; Schramm, N.; Gehrlein, S. Labor- und Feldversuche zur realitätsnahen Beurteilung der Querkrafttragfähigkeit von bestehenden Spannbetonbrücken. Bauingenieur 2017, 92, 465–473. [Google Scholar]
- Rombach, G.; Henze, L. Querkrafttragfähigkeit von Stahlbetonplatten ohne Querkraftbewehrung unter konzentrierten Einzellasten. Beton- und Stahlbetonbau 2017, 112, 568–578. [Google Scholar] [CrossRef]
- Gleich, P.; Maurer, R. Querkraftversuche an Spannbetondurchlaufträgern mit Plattenbalkenquerschnitt. Bauingenieur 2018, 93, 68–72. [Google Scholar]
- Reissen, K.; Classen, M.; Hegger, J. Shear in reinforced concrete slabs—Experimental investigations in the effective shear width of one-way slabs under concentrated loads and with different degrees of rotational restraint. Struct. Concr. 2018, 19, 36–48. [Google Scholar] [CrossRef]
- Huber, P.; Kromoser, B.; Huber, T.; Kollegger, J. Experimentelle Untersuchung zum Querkrafttragverhalten von Spannbetonträgern mit geringer Schubbewehrung. Bauingenieur 2016, 91, 238–247. [Google Scholar]
- Huber, P.; Kromoser, B.; Huber, T.; Kollegger, J. Berechnungsansatz zur Ermittlung der Schubtragfähigkeit bestehender Spannbetonbrückenträger mit geringem Querkraftbewehrungsgrad. Bauingenieur 2016, 91, 227–237. [Google Scholar]
- Javidmehr, S.; Oettel, V.; Empelmann, M. Schrägrissbildung von Stahlbetonbalken unter Querkraftbeanspruchung. Bauingenieur 2018, 93, 248–254. [Google Scholar]
- Alam, M.; Hussein, A. Shear Strength of concrete beams reinforced with Glass Fibre Reinforced Polymer (GFRP) Bars. In Fibre-Reinforced Polymer Reinforcement for Concrete Structures, Proceedings of the 9th International Conference (FRPRCS-9), Sydney, Australia, 13–15 July 2009; Oehlers, D.J., Griffith, M.C., Seracino, R., Eds.; University of Adelaide: Adelaide, Australia, 2009; ISBN 9780980675504. [Google Scholar]
- Olivito, R.S.; Zuccarello, F.A. On the Shear Behaviour of Concrete Beams Reinforced by Carbon Fibre-Reinforced Polymer Bars: An Experimental Investigation by Means of Acoustic Emission Technique. Strain 2010, 46, 470–481. [Google Scholar] [CrossRef]
- El-Sayed, A.K.; El-Salakawy, E.F.; Benmokrane, B. Shear strength of fibre-reinforced polymer reinforced concrete deep beams without web reinforcement. Can. J. Civ. Eng. 2012, 39, 546–555. [Google Scholar] [CrossRef]
- Razaqpur, A.G.; Isgor, B.O. Proposed Shear Design Method for FRP-Reinforced Concrete Members without Stirrups. ACI Struct. J. 2006, 103, 93–102. [Google Scholar] [CrossRef]
- Kilpatrick, A.; Easden, L. shear capacity of GFRP reinforced high strength concrete slabs. In Developments in Mechanics of Structures and Materials, Proceedings of the 18th Australasian Conference on the Mechanics Structures and Materials (ACMSM-18), Perth, Australien, Dezember 2004; Deeks, A.J., Hao, H., Eds.; CRC Press: Boca Raton, FL, USA, 2004; ISBN 9058096599. [Google Scholar]
- Tariq, M. Effects of Flexural Reinforcement Properties on shear Strength of Concrete Beams. Master’s Thesis, Dalhousie University, Halifax, NS, Canada, 2003. [Google Scholar]
- Alam, M.S. Influence of Different Parameters on Shear Strength of FRP Reinforced Concrete Beams without Web Reinforcement. Ph.D. Thesis, Memorial University of Newfoundland, St. John’s, NL, Canada, 2010. [Google Scholar]
- Matta, F.; Nanni, A.; Hernandez, T.; Benmokrane, B. Scaling of strength of FRP reinforced concrete beams without shear reinforcement. In FRP Composites in Civil Engineering, Proceedings of the 4th International Conference (CICE 2008), Zürich, Switzerland, 22–24 July 2008; Motavalli, M., Ed.; Structural Engineering Research Laboratory EMPA: Dübendorf, Switzerland, 2008; ISBN 9783905594508. [Google Scholar]
- Marí, A.; Cladera, A.; Oller, E.; Bairán, J. Shear design of FRP reinforced concrete beams without transverse reinforcement. Compos. Part B Eng. 2014, 57, 228–241. [Google Scholar] [CrossRef]
- Kurth, M.; Hegger, J. Zur Querkrafttragfähigkeit von Betonbauteilen mit Faserverbundkunststoff-Bewehrung—Ableitung eines Bemessungsansatzes. Bauingenieur 2013, 88, 403–411. [Google Scholar]
- Yost, J.R.; Gross, S.P.; Dinehart, D.W. Shear Strength of Normal Strength Concrete Beams Reinforced with Deformed GFRP Bars. J. Compos. Constr. 2001, 5, 268–275. [Google Scholar] [CrossRef]
- Ahmed, E.A.; El-Salakawy, E.; Benmokrane, B. Behavior of concrete beams reinforced with carbon FRP stirrups. In FRP Composites in Civil Engineering, Proceedings of the 4th International Conference (CICE 2008), Zürich, Switzerland, 22–24 July 2008; Motavalli, M., Ed.; Structural Engineering Research Laboratory EMPA: Dübendorf, Switzerland, 2008; ISBN 9783905594508. [Google Scholar]
- Okamoto, T.; Nagasaka, T.; Tanigaki, M. Shear Capacity of Concrete Beams Using FRP Reinforcement. Trans. AIJ 1994, 59, 127–136. [Google Scholar] [CrossRef]
- Tottori, S.; Wakui, H. Shear Capacity of RC and PC Beams Using FRP Reinforcement. ACI Spec. Publ. 1993, 138, 615–632. [Google Scholar]
- FIB. Fib Model Code for Concrete Structures 2010, 1st ed.; Ernst und Sohn: Berlin, Germany, 2013; ISBN 9783433604083. [Google Scholar]
- Canadian Standards Association. S806-12 (R2017): Design and Construction of Building Structures with Fibre-Reinforced Polymers; Canadian Standards Association: Mississauga, ON, Canada, 2012. [Google Scholar]
- American Concrete Institute. ACI 440.1R-15 Guide for the Design and Constuction of Structural Concrete Reinforced with Fiber-Reinforced Polymer (FRP) Bars; American Concrete Institute: Farmington Hills, MI, USA, 2015. [Google Scholar]
- Kani, G. The Riddle of Shear Failure and its Solution. ACI Struct. J. 1964, 61, 441–468. [Google Scholar]
- Lieboldt, M.; Tietze, M.; Schladitz, F. C3-Projekt—Erfolgreiche Partnerschaft für Innovation im Bauwesen. Bauingenieur 2018, 93, 265–273. [Google Scholar]
- RWTH Aachen, Lehrstuhl und Institut für Massivbau; Hegger, J.; Chudoba, R.; Scholzen, A.; Bielak, J. Carbon Conrete composite—C3. Schlussbericht C3-B3 TP9: Standardisierte Prüfkonzepte zur Bauteilprüfung unter zyklischer Belastung: Laufzeit des Vorhabens: 01.01.2015 bis 30.06.2016; RWTH Aachen University, Lehrstuhl und Institut für Massivbau: Aachen, Germany, 2016. [Google Scholar]
- Kromoser, B.; Huber, P.; Preinstorfer, P. Experimental study of the shear behaviour of thin walled CFRP reinforced UHPC structures. In Better, Smarter, Stronger. Proceedings for the 2018 fib Congress, Melbourne, Australia, 7–11 October 2018; Foster, S., Gilbert, I.R., Mendis, P., Al-Mahaidi, R., Millar, D., Eds.; Fédération Internationale du Béton (FIB): Lausanne, Switzerland, 2018; pp. 1744–1750. [Google Scholar]
- El Kadi, M. Experimental Characterization, Benchmarking and Modelling of 3D Textile Reinforced Cement Composites. Ph.D. Thesis, Vrije Universiteit Brussel, Brussels, Belgium, 2019. [Google Scholar]
- Scholzen, A.; Chudoba, R.; Hegger, J. Thin-walled shell structures made of textile-reinforced concrete: Part I. Struct. Concr. 2015, 16, 106–114. [Google Scholar] [CrossRef]
- Hegger, J.; Will, N. Textile-reinforced concrete: Design models. In Textile Fibre Composites in Civil Engineering; Triantafillou, T., Ed.; Woodhead Publishing: Oxford, UK, 2016; pp. 189–207. ISBN 1782424466. [Google Scholar]
- Schütze, E.; Bielak, J.; Scheerer, S.; Hegger, J.; Curbach, M. Einaxialer Zugversuch für Carbonbeton mit textiler Bewehrung. Beton- und Stahlbetonbau 2018, 113, 33–47. [Google Scholar] [CrossRef]
- Meßerer, D.; Heiden, B.; Bielak, J.; Holschemacher, K. Prüfverfahren zur Ermittlung des Krümmungseinflusses auf die Zugfestigkeit von Textilbeton. Bauingenieur 2018, 93, 454–462. [Google Scholar]
- Rempel, S. Zur Zuverlässigkeit der Bemessung von Biegebeanspruchten Betonbauteilen mit Textiler Bewehrung. Ph.D. Thesis, RWTH Aachen University, Aachen, Germany, 2018. [Google Scholar]
- Hinzen, M. Prüfmethode zur Ermittlung des Zugtragverhaltens von textiler Bewehrung für Beton. Bauingenieur 2017, 92, 289–291. [Google Scholar]
- Vorechovský, M.; Chudoba, R. Stochastic modeling of multi-filament yarns: II. Random properties over the length and size effect. Int. J. Solids Struct. 2006, 43, 435–458. [Google Scholar] [CrossRef]
- Vorechovsky, M.; Rypl, R.; Chudoba, R. Probabilistic crack bridge model reflecting random bond properties and elastic matrix deformation. Compos. Part B Eng. 2018, 139, 130–145. [Google Scholar] [CrossRef]
- Rempel, S.; Ricker, M. Ermittlung der Materialkennwerte der Bewehrung für die Bemessung von textilbewehrten Bauteilen. Bauingenieur 2017, 92, 280–288. [Google Scholar]
- Bielak, J.; Spelter, A.; Will, N.; Claßen, M. Verankerungsverhalten textiler Bewehrungen in dünnen Betonbauteilen. Beton- und Stahlbetonbau 2018, 113, 515–524. [Google Scholar] [CrossRef]
- Schneider, K.; Butler, M.; Mechtcherine, V. Carbon Concrete Composites C3—Nachhaltige Bindemittel und Betone für die Zukunft. Beton- und Stahlbetonbau 2017, 112, 784–794. [Google Scholar] [CrossRef]
- DIN Deutsches Institut für Normung e.V. DIN EN 206 Beton—Festlegung, Eigenschaften, Herstellung und Konformität; Deutsche Fassung EN 206:2013+A1:2016; ICS 91.100.30; Beuth Verlag GmbH: Berlin, Germany, 2017. [Google Scholar]
- DIN Deutsches Institut für Normung e.V. Prüfverfahren für Zement—Teil 1: Bestimmung der Festigkeit; 91.100.10 (DIN EN 196-1); Beuth Verlag GmbH: Berlin, Germany, 2005. [Google Scholar]
- DIN Deutsches Institut für Normung e.V. DIN EN 12390-13:2014-06: Prüfung von Festbeton—Bestimmung des Elastitzitätsmoduls unter Druckbelastung (Sekantenmodul). Deutsche Fassung EN 12390-13:2013; 91.100.30; Beuth Verlag GmbH: Berlin, Germany, 2014. [Google Scholar]
- DIN Deutsches Institut für Normung e.V. Prüfung von Festbeton—Teil 3: Druckfestigkeit von Probeköpern; 91.100.30 (DIN EN 12390-3); Beuth Verlag GmbH: Berlin, Germany, 2009. [Google Scholar]
- Leonhardt, F.; Walther, R. Schubversuche an Einfeldrigen Stahlbetonbalken mit und ohne Schubbewehrung zur Ermittlung der Schubtragfähigkeit und der oberen Schubspannungsgrenze; Schriftenreihe des Deutschen Ausschusses für Stahlbeton No. 151; Ernst: Berlin, Germany, 1962. [Google Scholar]
- Kurth, M.C. Zum Querkrafttragverhalten von Betonbauteilen mit Faserverbundkunststoff-Bewehrung. Ph.D. Thesis, RWTH Aachen University, Aachen, Germany, 2012. [Google Scholar]
- Niewels, J. Zum Tragverhalten von Betonbauteilen mit Faserverbundkunststoff-Bewehrung. Ph.D. Thesis, RWTH Aachen University, Aachen, Germany, 2008. [Google Scholar]
- Bazant, Z.P.; Chen, E.-P. Scaling of Structural Failure. Appl. Mech. Rev. 1997, 50, 593–627. [Google Scholar] [CrossRef]
- Deutsches Institut für Normung e.V. DIN EN 1992-1-1:2011-01: Eurocode 2: Bemessung und Konstruktion von Stahlbeton- und Spannbetontragwerken—Teil 1-1: Allgemeine Bemessungsregeln und Regeln für den Hochbau. Deutsche Fassung EN 1992-1-1:2004 + AC:2010; 91.010.30; 91.080.40; Beuth Verlag GmbH: Berlin, Germany, 2011. [Google Scholar]
- Bentz, E.C.; Veccio, F.J.; Collins, M.P. Simplified Modified Compression Field Theory for calculating shear strength of reinforced concrete members. ACI Struct. J. 2006, 103, 614–624. [Google Scholar]
- Bazant, Z.P.; Kim, J.-K. Size Effect in Shear Failure of Longitudinally Reinforced Beams. ACI J. 1984, 81, 456–468. [Google Scholar]
- Herbrand, M.; Kueres, D.; Stark, A.; Claßen, M. Numerische Simulation von balken- und plattenförmigen Bauteilen aus Stahlbeton und UHPC mit einem plastischen Schädigungsmodell. Bauingenieur 2016, 91, 46–56. [Google Scholar]
- Muttoni, A.; Fernández Ruiz, M.; Cavagnis, F. From detailed test observations to mechanical models and simple shear design equations. In Towards a Rational Understanding of Shear in Beams and Slabs: Fib Bulletin 85: Workshop in Zürich, Switzerland September 2016; Bayrak, O., Fernández Ruiz, M., Kaufmann, W., Muttoni, A., Eds.; Fédération Internationale du Béton (FIB): Lausanne, Switzerland, 2018; pp. 17–32. ISBN 2883941254. [Google Scholar]
- Cavagnis, F. Shear in Reinforced Concrete without Transverse Reinforcement: from Refined Experimental Measurements to Mechanical Models. Ph.D. Thesis, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland, 2017. [Google Scholar]
- CEN European Committee for Standardization. prEN 1992-1-1:2018: Eurocode 2: Design of Concrete Structures—Part 1-1: General Rules, Rules for Buildings, Bridges and Civil Engineering Structures. Draft 3; CEN: Brussels, Belgium, 2018. [Google Scholar]
- ACI Committee. Building Code Requirements for Structural Concrete (ACI 318-14); American Concrete Institute (ACI): Farmington Hills, MI, USA, 2014. [Google Scholar]
Shear Slenderness a/d | Effective Depth |
---|---|
4 | 4 cm |
5 | 8 cm |
6 | 12 cm |
Characteristic | Unit | Warp Direction (0°) | Weft Direction (90°) |
---|---|---|---|
Modulus of elasticity | [MPa] | 244,835 | 243,828 |
Mean ultimate stress | [MPa] | 3221 (n = 204 tests) | 3334 (n = 218 tests) |
5% quantile ultimate stress | [MPa] | 2737 | 2762 |
Mean ultimate strain | [‰] | 13.2 | 13.7 |
Axial spacing of yarns | [mm] | 38 | 38 |
Cross-sectional area per yarn 1 | [mm2] | 3.62 1 | 3.62 1 |
Cross-sectional area per meter 1 | [mm2/m] | 95 1 | 95 1 |
Substance | Density | Content |
---|---|---|
kg/m3 | kg/m3 | |
Cementitious binder compound CEM II/C-M Deuna | 2962 | 707 |
Fine quartz sand F38 S | 2650 | 294 |
Quartz sand 0.1–0.5 mm | 2630 | 243.2 |
Quartz sand 0.5–1.0 mm | 2630 | 201.4 |
Quartz sand 1.0–2.0 mm | 2630 | 148.9 |
Quartz sand 2.0–4.0 mm | 2630 | 593.5 |
Superplasticizer (polycarboxylatether-basis) MC-VP-16-0205-02 | 1070 | 15 |
Water | 1000 | 165 |
Specimen | Total Length | Span Length | Width | Height | Effective Depth | Shear Span | Shear Slenderness | No. Layers | No. Yarns | Reinforcement | Concrete Characteristics | Initial Crack Load | Ultimate Shear Load | Ultimate Bending Moment | Failure Mode | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Area | Ratio | ||||||||||||||||||||
ltot | l | b | h | d | a | a/d | nlayer | nyarn | Anm | ρl | age | fcm,cube | fcm,cyl | fcm,pris | fctm,fl | Ecm | Vcrack | Vu | Mu | ||
[mm] | [mm] | [mm] | [mm] | [mm] | [mm] | [-] | [-] | [-] | [mm2] | [%] | [d] | [MPa] | [MPa] | [MPa] | [MPa] | [MPa] | [kN] | [kN] | [kNm] | ||
C3-1-12-1 | 1540 | 1440 | 198 | 145 | 121 | 720 | 5.93 | 3 | 15 | 54.3 | 0.226 | 28 | 127.1 | 106.2 | 119.1 | 16.4 | 44,010 | 10.03 | 21.91 | 15.77 | Shear compression |
C3-1-12-2 | 1540 | 1440 | 200 | 145 | 118 | 720 | 6.12 | 3 | 15 | 54.3 | 0.231 | 28 | 127.1 | 106.2 | 119.1 | 16.4 | 44,010 | 10.85 | 21.03 | 15.13 | Shear compression |
C3-1-12-3 | 1540 | 1440 | 199 | 144 | 120 | 720 | 6.02 | 3 | 15 | 54.3 | 0.228 | 28 | 127.1 | 106.2 | 119.1 | 16.4 | 44,010 | 10.32 | 14.55 | 10.47 | Shear compression |
C3-2-12-1 | 1060 | 960 | 199 | 145 | 121 | 480 | 3.96 | 3 | 15 | 54.3 | 0.225 | 28 | 126.1 | 101.1 | 120.3 | 18.1 | 45,346 | 16.07 | 27.30 | 12.98 | Shear compression |
C3-2-12-2 | 1060 | 960 | 200 | 145 | 121 | 480 | 3.96 | 3 | 15 | 54.3 | 0.224 | 28 | 126.1 | 101.1 | 120.3 | 18.1 | 45,346 | 17.50 | 35.19 | 16.89 | Shear compression |
C3-2-12-3 | 1060 | 960 | 200 | 146 | 122 | 480 | 3.95 | 3 | 15 | 54.3 | 0.223 | 28 | 126.1 | 101.1 | 120.3 | 18.1 | 45,346 | 17.15 | 20.59 | 9.88 | Shear compression |
C3-3-12-1 | 1300 | 1200 | 199 | 147 | 126 | 600 | 4.77 | 3 | 15 | 54.3 | 0.217 | 28 | 129.6 | 108.9 | 126.6 | 15.5 | 44,429 | 12.70 | 20.73 | 12.43 | Shear compression |
C3-3-12-2 | 1300 | 1200 | 200 | 143 | 121 | 600 | 4.96 | 3 | 15 | 54.3 | 0.224 | 28 | 129.6 | 108.9 | 126.6 | 15.5 | 44,429 | 12.74 | 16.56 | 9.93 | Shear compression |
C3-3-12-3 | 1300 | 1200 | 200 | 145 | 116 | 600 | 5.16 | 3 | 15 | 54.3 | 0.234 | 28 | 129.6 | 108.9 | 126.6 | 15.5 | 44,429 | 13.75 | 21.43 | 12.85 | Shear compression |
C3-1-8-1 | 1060 | 960 | 200 | 99 | 76 | 480 | 6.30 | 2 | 10 | 36.2 | 0.238 | 29 | 127.1 | 106.2 | 116.9 | 15.7 | 44,010 | 8.75 | 16.86 | 8.09 | Shear compression |
C3-1-8-2 | 1060 | 960 | 200 | 100 | 79 | 480 | 6.08 | 2 | 10 | 36.2 | 0.229 | 29 | 127.1 | 106.2 | 116.9 | 15.7 | 44,010 | 8.78 | 14.80 | 7.10 | Shear compression |
C3-1-8-3 | 1060 | 960 | 201 | 100 | 77 | 480 | 6.20 | 2 | 10 | 36.2 | 0.233 | 29 | 127.1 | 106.2 | 116.9 | 15.7 | 44,010 | 8.32 | 15.87 | 7.62 | Shear compression |
C3-2-8-1 | 900 | 800 | 200 | 99 | 77 | 400 | 5.22 | 2 | 10 | 36.2 | 0.236 | 29 | 126.1 | 101.1 | 113.0 | 15.1 | 45,346 | 10.42 | 14.43 | 5.77 | Shear compression |
C3-2-8-2 | 900 | 800 | 199 | 100 | 79 | 400 | 5.04 | 2 | 10 | 36.2 | 0.229 | 29 | 126.1 | 101.1 | 113.0 | 15.1 | 45,346 | 11.01 | 15.89 | 6.35 | Shear compression |
C3-2-8-3 | 900 | 800 | 199 | 100 | 71 | 400 | 5.62 | 2 | 10 | 36.2 | 0.256 | 29 | 126.1 | 101.1 | 113.0 | 15.1 | 45,346 | 10.38 | 14.60 | 5.84 | Shear compression |
C3-3-8-1 | 740 | 640 | 200 | 100 | 77 | 320 | 4.14 | 2 | 10 | 36.2 | 0.234 | 27 | 129.6 | 108.9 | 126.7 | 11.9 | 44,429 | 13.33 | 17.60 | 5.63 | Shear compression |
C3-3-8-2 | 740 | 640 | 200 | 99 | 77 | 320 | 4.13 | 2 | 10 | 36.2 | 0.234 | 27 | 129.6 | 108.9 | 126.7 | 11.9 | 44,429 | 13.29 | 20.04 | 6.41 | Shear compression |
C3-3-8-3 | 740 | 640 | 198 | 99 | 77 | 320 | 4.15 | 2 | 10 | 36.2 | 0.237 | 27 | 129.6 | 108.9 | 126.7 | 11.9 | 44,429 | 12.42 | 20.38 | 6.52 | Shear compression |
C3-1-4-1 | 580 | 480 | 198 | 60 | 35 | 240 | 6.92 | 1 | 5 | 18.1 | 0.264 | 30 | 127.1 | 106.2 | 106.7 | 15.7 | 44,010 | 7.58 | 7.15 | 1.71 | Bending (subseq. shear) |
C3-1-4-2 | 580 | 480 | 198 | 62 | 41 | 240 | 5.79 | 1 | 5 | 18.1 | 0.220 | 30 | 127.1 | 106.2 | 106.7 | 15.7 | 44,010 | 7.98 | 8.89 | 2.13 | Bending (yarn rupture) |
C3-1-4-3 | 580 | 480 | 198 | 59 | 34 | 240 | 6.99 | 1 | 5 | 18.1 | 0.267 | 30 | 127.1 | 106.2 | 106.7 | 15.7 | 44,010 | 6.87 | 7.67 | 1.84 | Bending (yarn rupture) |
C3-2-4-1 | 500 | 400 | 198 | 60 | 39 | 200 | 5.12 | 1 | 5 | 18.1 | 0.234 | 32 | 126.1 | 101.1 | 127.6 | 17.2 | 45,346 | 9.57 | 9.73 | 1.94 | Bending (yarn rupture) |
C3-2-4-2 | 500 | 400 | 198 | 61 | 36 | 200 | 5.57 | 1 | 5 | 18.1 | 0.254 | 32 | 126.1 | 101.1 | 127.6 | 17.2 | 45,346 | 10.41 | 8.56 | 1.71 | Bending (yarn rupture) |
C3-2-4-3 | 500 | 400 | 198 | 61 | 41 | 200 | 4.91 | 1 | 5 | 18.1 | 0.224 | 32 | 126.1 | 101.1 | 127.6 | 17.2 | 45,346 | 10.01 | 9.27 | 1.85 | Bending (yarn rupture) |
C3-3-4-1 | 420 | 320 | 197 | 61 | 41 | 160 | 3.93 | 1 | 5 | 18.1 | 0.226 | 29 | 129.6 | 108.9 | 124.2 | 10.8 | 44,429 | 9.48 | 12.72 | 2.03 | Bending (subseq. shear) |
C3-3-4-2 | 420 | 320 | 198 | 61 | 36 | 160 | 4.44 | 1 | 5 | 18.1 | 0.254 | 29 | 129.6 | 108.9 | 124.2 | 10.8 | 44,429 | 10.09 | 9.93 | 1.59 | Bending (yarn rupture) |
C3-3-4-3 | 420 | 320 | 198 | 60 | 36 | 160 | 4.45 | 1 | 5 | 18.1 | 0.255 | 29 | 129.6 | 108.9 | 124.2 | 10.8 | 44,429 | 9.99 | 11.69 | 1.87 | Bending (subseq. shear) |
Code/Model | Shear Strength Prediction | Comments |
---|---|---|
CSCT/EC2 D3 [83,84,85] | ||
fc taken as fcm,cyl | ||
fc taken as fcm,cyl | ||
Here, Dlower is taken as 4 mm | ||
Here, av = d/2. For 3-point loaded single span beams, |MEd/VEd |= a | ||
Here, fy is taken as mean ultimate reinforcement stress (3221 MPa, Table 2). | ||
fy: Yield strength or strength that has been assumed for the flexural design of the cross-section | ||
Mari et al. [46] | ||
Calculation of fct,m according to EC2, fc taken as fcm,cyl | ||
a and d in m | ||
Er, Ec taken from experimental data (see Table 4). | ||
b and d: Web width and effective depth, respectively | ||
CSA S806-12 [53] | ||
For 3-point loaded single span beams, Vf/Mf = 1/a | ||
d in mm | ||
f′c taken as fcm,cyl < 60 = 60 MPa | ||
bw, d, h: Web width, effective depth and member height, respectively | ||
ACI 440.1R-15 [54] | Limitation of f′c to 10,000 Psi according to [86] | |
bw and d: Web width and effective depth, respectively |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bielak, J.; Adam, V.; Hegger, J.; Classen, M. Shear Capacity of Textile-Reinforced Concrete Slabs without Shear Reinforcement. Appl. Sci. 2019, 9, 1382. https://doi.org/10.3390/app9071382
Bielak J, Adam V, Hegger J, Classen M. Shear Capacity of Textile-Reinforced Concrete Slabs without Shear Reinforcement. Applied Sciences. 2019; 9(7):1382. https://doi.org/10.3390/app9071382
Chicago/Turabian StyleBielak, Jan, Viviane Adam, Josef Hegger, and Martin Classen. 2019. "Shear Capacity of Textile-Reinforced Concrete Slabs without Shear Reinforcement" Applied Sciences 9, no. 7: 1382. https://doi.org/10.3390/app9071382
APA StyleBielak, J., Adam, V., Hegger, J., & Classen, M. (2019). Shear Capacity of Textile-Reinforced Concrete Slabs without Shear Reinforcement. Applied Sciences, 9(7), 1382. https://doi.org/10.3390/app9071382