A Calibration Method for System Parameters in Direct Phase Measuring Deflectometry
Abstract
:Featured Application
Abstract
1. Introduction
2. Direct Phase Measuring Deflectometry
3. Calibration of System Parameters
3.1. Calibration of Internal Parameters
3.2. Orientation of the Mirror
3.3. Orientations of the Two Screens
3.4. Calculation of the two system parameters
4. Experiments and Results
4.1. System Hardware
4.2. Calibration experiments
4.3. Evaluation of Results
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ding, Y.; Xi, J.T.; Yu, Y.G.; Chicharo, J. Recovering the absolute phase maps of two fringe patterns with selected frequencies. Opt. Lett. 2011, 36, 2518–2520. [Google Scholar] [CrossRef]
- Zuo, C.; Chen, Q.; Gu, G.H.; Feng, S.J.; Feng, F.X.Y. High-speed three-dimensional profilometry for multiple objects with complex shapes. Opt. Express 2012, 20, 19493–19510. [Google Scholar] [CrossRef]
- Li, D.; Kofman, J. Adaptive fringe-pattern projection for image saturation avoidance in 3D surface-shape measurement. Opt. Express 2014, 22, 9887–9901. [Google Scholar] [CrossRef]
- Xu, J.; Xi, N.; Zhang, C.; Zhao, J.G.; Gao, B.T.; Shi, Q. Rapid 3D surface profile measurement of industrial parts using two-level structured light patterns. Opt. Lasers Eng. 2011, 49, 907–914. [Google Scholar] [CrossRef]
- Chatterjee, A.; Bhatia, V.; Pracash, S. Anti-spoof touchless 3D fingerprint recognition using deflectometry and biospeckle analysis. Opt. Lasers Eng. 2017, 95, 1–7. [Google Scholar] [CrossRef]
- Huang, S.J.; Zhang, Z.H.; Zhao, Y.; Dai, J.; Chen, C.; Xu, Y.J.; Zhang, E.; Xie, L.L. 3D fingerprint imaging system based on full-field fringe projection profilometry. Opt. Lasers Eng. 2014, 52, 123–130. [Google Scholar] [CrossRef]
- Agarwal, S.; Kumal, V.; Shakher, C. Analysis of red blood cell parameters by Talbot projected fringes. J. Biomed. Opt. 2017, 10, 106009. [Google Scholar] [CrossRef]
- Wang, Z.Y.; Zhang, Z.H.; Gao, N.; Xiao, Y.J.; Gao, F.; Jiang, X.Q. Single-shot 3D shape measurement of discontinuous objects based on coaxial fringe projection system. Appl. Opt. 2019, 58, A169–A178. [Google Scholar] [CrossRef]
- Singh, P.; Chatterjee, A.; Bhatia, V.; Prakash, S. Fringe projection profilometry based secured fingerprint sensor. In Proceedings of the 2018 3rd International Conference on Microwave and Photonics (ICMAP), Dhanbad, India, 9–11 February 2018; pp. 8–11. [Google Scholar]
- Jeffrey Kuo, C.F.; Chang, A.; Joseph Kuo, P.C.; Lee, C.L.; Wu, H.C. Applying innovative stripes adaptive detection to three-dimensional measurement of color fringe profilometry. Opt. Commun. 2016, 381, 116–126. [Google Scholar] [CrossRef]
- Liu, X.L.; Xiang, P.; Chen, H.L.; He, D.; Gao, B.Z. Strategy for automatic and complete three-dimensional optical digitization. Opt. Lett. 2012, 37, 3126–3128. [Google Scholar]
- Chen, C.; Gao, N.; Wang, X.J.; Zhang, Z.H.; Gao, F.; Jiang, X.Q. Generic exponential fringe model for alleviating phase error in phase measuring profilometry. Opt. Laser Eng. 2018, 110, 179–185. [Google Scholar] [CrossRef]
- Xiao, Y.L.; Su, X.Y.; You, Z.S. Pose transfer geometrical calibration for fringe-reflection optical three-dimensional measurement. Opt. Commun. 2013, 305, 143–146. [Google Scholar] [CrossRef]
- Sun, X.M.; Liu, Y.; Yu, X.Y.; Wu, H.B.; Zhang, N. Three-dimentional measurement for specular reflection surface based on reflection component separation and priority region filling theory. Sensors 2017, 17, 215. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.K.; Lehtonen, P.; Su, X.Y. High-accuracy measurement for small scale specular objects based on PMD with illuminated film. Opt. Laser Technol. 2012, 44, 459–462. [Google Scholar] [CrossRef]
- Tang, Y.; Su, X.Y.; Liu, Y.K.; Jing, H.L. 3D shape measurement of the aspheric mirror by advanced phase measuring deflectometry. Opt. Express 2008, 16, 15090–15096. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Xue, J.; Gao, B.; Zuo, C.; Idir, M. Zonal wavefront reconstruction in quadrilateral geometry for phase measuring deflectometry. Appl. Opt. 2017, 56, 5139–5144. [Google Scholar] [CrossRef]
- Niu, Z.Q.; Gao, N.; Zhang, Z.H.; Gao, F.; Jiang, X.Q. 3D shape measurement of discontinuous specular objects based on advanced PMD with bi-telecentric lens. Opt. Express 2018, 26, 1615–1632. [Google Scholar] [CrossRef]
- Knauer, M.C.; Kaminski, J.; Hausler, G. Phase measuring deflectometry: A new approach to measure specular free-form surfaces. Proc. SPIE 2004, 5457, 366–376. [Google Scholar]
- Häusler, G.; Faber, C.; Olesch, E.; Ettl, S. Deflectometry vs. interferometry. Proc. SPIE 2013, 8788. [Google Scholar] [CrossRef]
- Huang, L.; Idir, M.; Zuo, C.; Kaznatcheev, K.; Zhou, L.; Asundi, A. Comparison of two-dimensional integration methods for shape reconstruction from gradient data. Opt. Lasers Eng. 2015, 64, 1–11. [Google Scholar] [CrossRef]
- Huang, L.; Asundi, A. Framework for gradient integration by combining radial basis functions method and least-squares method. Appl. Opt. 2013, 52, 6016–6021. [Google Scholar] [CrossRef]
- Huang, L.; Xue, J.; Gao, B.; Zuo, C.; Idir, M. Spline based least squares integration for two-dimensional shape or wavefront reconstruction. Opt. Laser Eng. 2017, 91, 221–226. [Google Scholar] [CrossRef]
- Huang, L.; Xue, J.; Gao, B.; Mcpherson, C.; Beverage, J.; Idir, M. Model mismatch analysis and compensation for modal phase measuring deflectometry. Opt. Express 2017, 25, 881–887. [Google Scholar] [CrossRef]
- Wu, Y.; Yue, H.; Yi, J.; Li, M.; Liu, Y. Dynamic specular surface measurement based on color-encoded fringe reflection technique. Opt. Eng. 2016, 55, 024104. [Google Scholar] [CrossRef]
- Zhang, X.; Jiang, L.; Zhang, G. Novel method of positioning optical freeform surfaces based on fringe deflectometry. CIRP Ann.-Manuf. Technol. 2017, 66, 507–510. [Google Scholar] [CrossRef]
- Liu, Z.; Yin, Y.; Wu, Q.; Li, X.J.; Zhang, G.J. On-site calibration method for outdoor binocular stereo vision sensors. Opt. Lasers Eng. 2016, 86, 75–82. [Google Scholar] [CrossRef]
- Huang, L.; Ng, C.S.; Asundi, A.K. Dynamic three-dimensional sensing for specular surface with monoscopic fringe reflectometry. Opt. Express 2011, 19, 12809–12814. [Google Scholar] [CrossRef]
- Jing, H.L.; Su, X.Y.; Liu, Y.K.; Wu, F. Specular surface measurement based on fringe reflection and analysis of 3D shape reconstruction technique. Opto-Electron. Eng. 2008, 35, 37–41. [Google Scholar]
- Huang, L.; Idir, M.; Zuo, C.; Kaznatcheev, K.; Zhou, L.; Asundi, A. Shape reconstruction from gradient data in an arbitrarily-shaped aperture by iterative discrete cosine transforms in Southwell configuration. Opt. Lasers Eng. 2015, 67, 176–181. [Google Scholar] [CrossRef]
- Yuan, T.; Zhang, F.; Tao, X.P.; Fu, J.J. Three-dimensional shape measuring for specular surface based on phase measuring deflectometry. Acta Opt. Sin. 2016, 36, 0212004. [Google Scholar] [CrossRef]
- Song, Z.; Jiang, H.L.; Lin, H.B.; Tang, S.M. A high dynamic range structured light means for the 3D measurements of specular surface. Opt. Lasers Eng. 2017, 95, 8–16. [Google Scholar] [CrossRef]
- Huang, L.; Xue, J.; Gao, B.; McPherson, C.; Beverage, J.; Idir, M. Modal phase measuring deflectometry. Opt. Express 2016, 24, 24649–24664. [Google Scholar] [CrossRef]
- Ren, H.Y.; Gao, F.; Jiang, X.Q. Iterative optimization calibration method for stereo deflectometry. Opt. Express 2015, 23, 22060–22068. [Google Scholar] [CrossRef]
- Xiao, Y.L.; Su, X.Y.; Chen, W.J. Flexible geometrical calibration for fringe-reflection 3D measurement. Opt. Lett. 2012, 37, 620–622. [Google Scholar] [CrossRef]
- Zhang, Z.H.; Liu, Y.; Huang, S.J.; Niu, Z.Q.; Guo, J.; Gao, N.; Gao, F.; Jiang, X.Q. Full-field 3D shape measurement of specular surfaces by direct phase to depth relationship. In Proceedings of the SPIE of Optical Metrology and Inspection for Industrial Applications IV, Photonics Asia 2016, Beijing, China, 12–14 October 2016; pp. 12–14. [Google Scholar]
- Liu, Y.; Huang, S.J.; Zhang, Z.H.; Gao, N.; Gao, F.; Jiang, X.Q. Full-field 3D shape measurement of discontinuous specular objects by direct phase measuring deflectometry. Sci. Rep. 2017, 7, 10293. [Google Scholar] [CrossRef]
- Zhao, P.; Gao, N.; Zhang, Z.H.; Gao, F.; Jiang, X.Q. Performance analysis and evaluation of direct phase measuring deflectometry. Opt. Laser Eng. 2018, 103, 24–33. [Google Scholar] [CrossRef]
- Zhang, Z.H.; Guo, J.; Wang, Y.M.; Huang, S.J. Parallel-alignment and correction of two displays in three-dimensional measuring system of specular surfaces. Opt. Precis. Eng. 2017, 2, 289–296. [Google Scholar] [CrossRef]
- Zhang, Z.Y. A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. 2000, 11, 1330–1334. [Google Scholar] [CrossRef]
- Chen, X.Y.; Ma, Z.; Hu, Y.; Chen, Y.Q.; Bi, F.L. A new method for accurate location of concentric circles in visual measurement. J. Optoelectron.·Laser 2013, 24, 1524–1528. [Google Scholar]
- Zhang, Z.H.; Huang, S.J.; Meng, S.S.; Gao, F.; Jiang, X.Q. A simple, flexible and automatic 3D calibration method for a phase calculation-based fringe projection imaging system. Opt. Express 2013, 21, 12218–12227. [Google Scholar] [CrossRef]
- Hoang, T.; Pan, B.; Nguyen, D.; Wang, Z.Y. Generic gamma correction for accuracy enhancement in fringe projection profilometry. Opt. Lett. 2010, 35, 1992–1994. [Google Scholar] [CrossRef]
- Wang, Z.Y.; Nguyen, D.A.; Barnes, J.C. Some practical considerations in fringe projection profilometry. Opt. Lasers Eng. 2010, 48, 218–225. [Google Scholar] [CrossRef]
- Bouguet, J.V. Camera Calibration Toolbox for Matlab. Available online: http://www.vision.caltech.edu/bouguetj/calib_doc/ (accessed on 8 February 2019).
- Creath, K. Phase-measurement interferometry techniques. Prog. Opt. 1998, 26, 349–393. [Google Scholar]
- Zhang, Z.H.; Towers, C.E.; Towers, D.P. Time efficient color fringe projection system for 3-D shape and colour using optimum 3-frequency selection. Opt. Express 2006, 14, 6444–6455. [Google Scholar] [CrossRef]
Coefficients | Focal Length (pixel) | Principal Point (pixel) | Radial Distortion | Tangential Distortion | ||||
---|---|---|---|---|---|---|---|---|
Fu | Fv | Pu | Pv | K1 | K2 | K3 | K4 | |
Data | 10137.452 | 10137.811 | 1204.783 | 1011.174 | −0.2712 | −1.8758 | −0.0002 | 0.0003 |
Calibration Distance | Measured Distance | Absolute Error | Root Mean Square Error |
---|---|---|---|
3.987 | 3.965 | 0.018 | 0.022 |
7.025 | 7.044 | 0.015 | 0.019 |
5.006 | 5.030 | 0.022 | 0.024 |
6.099 | 6.079 | 0.021 | 0.020 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, X.; Gao, N.; Zhang, Z. A Calibration Method for System Parameters in Direct Phase Measuring Deflectometry. Appl. Sci. 2019, 9, 1444. https://doi.org/10.3390/app9071444
Deng X, Gao N, Zhang Z. A Calibration Method for System Parameters in Direct Phase Measuring Deflectometry. Applied Sciences. 2019; 9(7):1444. https://doi.org/10.3390/app9071444
Chicago/Turabian StyleDeng, Xiaoting, Nan Gao, and Zonghua Zhang. 2019. "A Calibration Method for System Parameters in Direct Phase Measuring Deflectometry" Applied Sciences 9, no. 7: 1444. https://doi.org/10.3390/app9071444
APA StyleDeng, X., Gao, N., & Zhang, Z. (2019). A Calibration Method for System Parameters in Direct Phase Measuring Deflectometry. Applied Sciences, 9(7), 1444. https://doi.org/10.3390/app9071444