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Featured Application: This study is mainly aimed at the difficulty of welding hidden welds of
the overlapped K-joints in engineering, and strengthening the grouting concrete in the chord
to compensate for this defect. Furthermore, it can provide a technical reference for optimizing
construction technology. The K-joints can be popularized and applied in civil engineering,
hydraulic engineering, and even the military field in steel structures, bridge structures and
airport terminals.

Abstract: Due to the insufficient radial stiffness of the steel tube, the cracking of the weld and the
plastic deformation of the string often occur under the cyclic loading of the hollow section pipe joint.
In order to avoid such a failure, the overlapped K-joints were strengthened by pouring different
concrete into the chords. Furthermore, to explore the detailed effect of filling different concrete in a
chord on the hysteretic behavior of the overlapped K-joints, six full-scale specimens were fabricated
by two forms, which included the circular chord and braces, the square chord and circular braces,
and the low cyclic loading tests, which were carried out. The failure modes, hysteretic curves and
skeleton curves of the joints were obtained, and the bearing capacity, ductility and energy dissipation
of the joints were evaluated quantitatively. The results showed that plastic failure occurs on the
surface of the chord of the joints without filling concrete, while the failure mode of the joints filled
with concrete in the chords was the tensile failure of the chords at the weld of the brace toe, and the
compressive braces had a certain buckling deformation; The strengthening measures of concrete filled
with chord can effectively improve the mechanical properties of the K-joints, the delay of the plastic
deformation of the chord, and improve the bearing capacity of the K-joints. Contrarily, the ductility
coefficient and the energy dissipation ratio of K-joints decreased with the concrete filled in the chord.
The hysteretic behavior of the K-joints with a circular chord and brace was slightly better than that
of the K-joints with a square chord and circular brace, and the hysteretic behavior of the K-joints
strengthened with fly ash concrete, which was better than that of the K-joints strengthened with
ordinary concrete. The results of ANSYS (a large general finite element analysis software developed
by ANSYS Company in the United States) analysis agreed well with the experimental results.

Keywords: strengthen overlapped K-joints; quasi-static test; hysteretic behavior; bearing capacity;
ductility; finite element analysis
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1. Introduction

Steel tube truss structure has become one of the most common building structures in large public
buildings at home and abroad due to its large torsional stiffness, excellent seismic performance [1–6],
easy installation and easily meets the requirements of modern buildings for the sense of view. The joints
do not need auxiliary components such as joint plates, which is beneficial to the improvement of the
overall performance of the structure. However, due to the intersection of the members in the truss
structure in the form of intersecting lines at the joints, the shape of the end section of the members
was complex, and the joints were the major energy-dissipating parts under seismic loads. The seismic
performance of the joints and the corresponding strengthening measures could not be ignored.

As one of the most widely used steel tubular truss joints in the field of building structure, the
overlapped K-joints are generated in the actual construction process of the steel tubular truss when two
braces (overlap brace and through brace) intersect on the surface of the chord. In overlapped K-joints,
part of the through brace is hidden within the overlap brace, and the hidden toe of the through brace
may or may not be welded to the chord [7]. Additionally, the bearing capacity of joints with hidden
welds that are welded is higher than the joints with hidden welds unwelded, but with a reduction
in ductility and hysteretic behavior [8–11]. What’s more, due to the insufficient radial stiffness of the
chord, the steel truss composed of circular hollow section (CHS) members often undergoes plastic
deformation or punching of the chord surface. Therefore, it is imperative to study the reinforcement
measures for the overlapped K-joints. In China, CFST (Concrete Filled Steel Tube) truss girder was first
applied in 1997 in the deck of the Zidong cable-stayed bridge in Nanhai City (Guangdong Province,
China) [12]. Usually, only concrete is grouted into the chords of CFST truss structures, while no
concrete was added to the braces [13]. Compared with the unstrengthened steel tube truss structure or
concrete counter parts, the mechanical properties of steel tubular members grouting concrete have
been effectively improved, such as the stiffness, the bearing capacity, buckling resistance [14–19],
and impact resistance [20–22]. Welded steel tubular joints are usually used to connect the brace and
chord of the Circular Hollow Section (CHS) structures and CFST structures, which includes K-joints,
KK-joints, KT-joints, T-joints, N-joints, Y-joints, X-joints and so on.

The International Institute of Welding (IIW) [23] proposed an ultimate strength formula for CHS
overlapped K-joints considering the local yielding failure of the braces. Zhao et al. [24] researched the
static behavior of overlapped CHS K-joints and the impact of the hidden weld. The results showed
that the influence of hidden welds on the static strength of overlapped K-joints was not obvious,
while it may have influenced the failure mode. Sakai et al. [25] carried out static and fatigue testing
on K-joints in truss girders strengthened with grouting concrete in the chord, and found that the
fatigue strength of CFST joints was higher than that of CHS joints. Xu et al. [26] investigated the
behavior of CFST trusses, obtaining the different failure modes of CFST trusses, and concluded that the
joints in tensile showed weld failure and chord punching shear failure. Additionally, Chen et al. [27]
presented the experimental and numerical research on double-skin circular CHS tubular X-joints under
axial compression, and new design equations were proposed according to the failure mechanism on
different joints. Hou et al. [28] studied the static behavior of concrete filled double skin steel tubular
(CFDST) chord and CHS brace composite K-joints, and the effects of important parameters on joint
strength were discussed based on experimental results. Feng et al. [29,30] investigated the performance
of CFST joints under static loading. What’s more, Lesani et al. [31], Ju and Wang [32], Lvet al. [33],
Rong et al. [34], Qian et al. [35] performed a series of experimental and analytical investigations on the
mechanical behaviour of tubular joints and developed different formulas for determining the ultimate
strength of the tubular joints. Yin et al. [36] conducted an experimental investigation on the hysteretic
behavior of tubular N-joints. Moreover, Xu et al. [37], Qian et al. [38] and Tong et al. [39] carried out
studies on the fatigue behavior of CFST joints.

In summary, the static and hysteretic behavior of tubular truss joints has been concerning for
a long time, and additional experimental investigation is required to understand the behavior and
propose a reliable design method of the joints of such types of tubular structures. For the overlapped
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K-joints, the welding of hidden welds brings forward some difficulties in construction, but research
shows that the hidden weld that does not weld will have a certain impact on the bearing capacity
of joints. Therefore, some studies have considered strengthening measures to improve the bearing
capacity of joints. Lee et al. [40], Xia et al. [41] and Shao et al. [42] adopted different methods to
strengthen the joints, and different strengthening effects were obtained. Based on the aforementioned
discussion, this study was aimed at the overlapped K-joints with hidden weld welding problems,
using the strengthening method of grouting concrete in the chords to explore the improvement of
their bearing capacity, and mainly involved studying the hysteretic performance of the overlapped
K-joints under cyclic loading, which could provide a certain theoretical basis and design reference for
improving the bearing capacity of joints and optimizing the energy dissipation of the K-joints.

2. Experimental Study

2.1. Test Specimens

According to the design guidelines given in the Chinese Standard for Design of Steel Structures
(GB50017-2017) [43], six K-joint specimens were designed. As shown in Figure 1, “K-RC” denotes the
overlapped K-joint with a square chord and circular brace, “K-CC” denotes the overlapped K-joint with
circular chord and brace. The geometric parameters of specimens are shown in Table 1. Geometrical
dimensions of the chord and brace cross-section were defined as D(B) × T and d × t, respectively. L
was the length of chord and brace, and Lb stood for the vertical length of the brace. θ was the angle
between the axis of the brace and chord. e was eccentricity, which was the distance between the axis
of the chord and the intersection point of the double braces’ axes. In addition to the unstrengthened
joints, the overlapped K-joints with chords grouted ordinary concrete (C1) and fly ash concrete (C2)
were compared and analyzed. Q345 steel was used in the chords and braces, and the concrete grade
was C30. Secondary fly ash was added into fly ash concrete, replacing 30% of the cement content.
Additionally, the welds between the brace and chord members were designed and fabricated based on
the Chinese national standard for the welding of a steel structure (JGJ81-2002) [44].
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Table 1. Geometric parameters of specimens.

Specimens L (mm) Lb
(mm)

E
(mm)

D(B)
(mm)

T
(mm)

D
(mm)

T
(mm) θ

Strengthened
Measures

K-CC 1200 450 35 159 6 89 5 45◦ unstrengthened
K-CCC1 1200 450 35 159 6 89 5 45◦ ordinary concrete
K-CCC2 1200 450 35 159 6 89 5 45◦ fly ash concrete

K-RC 1200 450 55 200 8 95 5 45◦ unstrengthened
K-RCC1 1200 450 55 200 8 95 5 45◦ ordinary concrete
K-RCC2 1200 450 55 200 8 95 5 45◦ fly ash concrete

K-CC: The K-joint with circular chord and brace; K-CCC1: The joint strengthened on the basis of K-CC by grouting
ordinary concrete in chord; K-CCC2: The joint strengthened on the basis of K-CC by grouting fly ash concrete in
chord; K-RC: the K-joint with a square chord and circular braces; K-RCC1: The joint strengthened on the basis of
K-RC by grouting ordinary concrete in chord; K-RCC2: The joint strengthened on the basis of K-RC by grouting fly
ash concrete in chord.

2.2. Material Properties

Tensile tests were carried out to determine the mechanical properties of the steel members.
The steel with different specifications was made into three standard samples in each group, and
then standard samples were tested in a 200 kN capacity testing machine (GL8205, Wuhan, China)
according to Chinese Metallic Materials Tensile Testing at Ambient Temperature (GB/T228-2002) [45].
Through the load and strain data recorded by the testing machine, the average values of the three
standard samples were calculated. Finally, the results as shown in Table 2 included the yield strength
(f y), tensile strength (f u), yield strain (εy), elongation (δ), and elasticity modulus (E). What’s more,
the material properties of the concrete cubes with a standard length of 150mm were tested based
on the recommendations of the Chinese Standard on Ordinary Concrete (GB/T 50081-2002) [46].
The compressive strength and elastic modulus of ordinary concrete standard cube specimens were
32.78 MPa and 30.12 GPa, respectively, and the compressive strength and elastic modulus of the fly ash
concrete standard cube specimens were 30.78 MPa and 29.24 GPa. Figure 2 shows photos of samples
that were used to obtain the mechanical properties of the experimental materials.

Table 2. Test result of steel tubular material properties.

Specification f y (MPa) f u (MPa) E (GPa) εy = f y/E f u/f y δ (%)

� 200 × 200 × 8 391.1 533.0 226.2 0.0017 1.36 45.3
ϕ95 × 5 377.6 515.6 214.6 0.0017 1.37 37.1
ϕ159 × 6 386.5 531.5 222.4 0.0017 1.38 41.9
ϕ89 × 5 373.1 510.1 210.2 0.0018 1.37 38.3

Appl. Sci. 2019, 9, x 4 of 16 

Table 1. Geometric parameters of specimens. 

Specimens  L 
(mm) 

Lb 

(mm) 
E 

(mm) 
D(B) 
(mm) 

T 
(mm) 

D 
(mm) 

T 
(mm) 

θ Strengthened 
Measures 

K-CC 1200 450 35 159 6 89 5 45° unstrengthened 
K-CCC1 1200 450 35 159 6 89 5 45° ordinary concrete 
K-CCC2 1200 450 35 159 6 89 5 45° fly ash concrete 

K-RC 1200 450 55 200 8 95 5 45° unstrengthened 
K-RCC1 1200 450 55 200 8 95 5 45° ordinary concrete 
K-RCC2 1200 450 55 200 8 95 5 45° fly ash concrete 

K-CC: The K-joint with circular chord and brace; K-CCC1: The joint strengthened on the basis of K-CC by 
grouting ordinary concrete in chord; K-CCC2: The joint strengthened on the basis of K-CC by grouting fly ash 
concrete in chord; K-RC: the K-joint with a square chord and circular braces; K-RCC1: The joint strengthened on 
the basis of K-RC by grouting ordinary concrete in chord; K-RCC2: The joint strengthened on the basis of K-RC 
by grouting fly ash concrete in chord.  

2.2. Material Properties 

Tensile tests were carried out to determine the mechanical properties of the steel members. The 
steel with different specifications was made into three standard samples in each group, and then 
standard samples were tested in a 200 kN capacity testing machine (GL8205, Wuhan, China) 
according to Chinese Metallic Materials Tensile Testing at Ambient Temperature (GB/T228-2002) 
[45]. Through the load and strain data recorded by the testing machine, the average values of the 
three standard samples were calculated. Finally, the results as shown in Table 2 included the yield 
strength (fy), tensile strength (fu), yield strain (εy), elongation (δ), and elasticity modulus (E). What’s 
more, the material properties of the concrete cubes with a standard length of 150mm were tested 
based on the recommendations of the Chinese Standard on Ordinary Concrete (GB/T 50081-2002) 
[46]. The compressive strength and elastic modulus of ordinary concrete standard cube specimens 
were 32.78 MPa and 30.12 GPa, respectively, and the compressive strength and elastic modulus of 
the fly ash concrete standard cube specimens were 30.78 MPa and 29.24 GPa. Figure 2 shows photos 
of samples that were used to obtain the mechanical properties of the experimental materials. 

  

(a) (b) 

Figure 2. Samples of experimental materials. (a) The standard specimens of Q345; (b) The standard 
specimens of concrete. 

Table 2. Test result of steel tubular material properties. 

Specification fy (MPa) fu (MPa) E (GPa) εy = fy/E fu/fy δ (%) 

 200 × 200 × 8 391.1 533.0 226.2 0.0017 1.36 45.3 

φ95 × 5 377.6 515.6 214.6 0.0017 1.37 37.1 

φ159 × 6 386.5 531.5 222.4 0.0017 1.38 41.9 

φ89 × 5 373.1 510.1 210.2 0.0018 1.37 38.3 

2.3. Loading Scheme and Test Program 

Figure 2. Samples of experimental materials. (a) The standard specimens of Q345; (b) The standard
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2.3. Loading Scheme and Test Program

The loading devices used in the test included the reaction frame, upright column, cross beam,
transfer beam, test system (DH3861N, DONGHUA, Jiang’su, China), and loading system, as shown in
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Figure 3. The K-joints were placed in a common plane with the reaction frame, and the left end-plate
of the chord was fixed with the transfer beam and the right end-plate was used as a sliding support.
Two braces were articulated along their axis with two hydraulic jacks (JSYZ-500, Xi’an Oriental
Metal Structure, Xi’an, China) which could provide tension and compression for 500 kN, respectively.
The reciprocating load was exerted on the end-plate of the braces by hydraulic jacks. That is, when the
through brace was subjected to a compressive load, the overlap brace was controlled to experience an
equal magnitude tensile force.
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In order to eliminate the installation gap and check whether the instrument was normal, 25% yield
load was applied to the joint before formal loading. The force-displacement hybrid loading mode
was adopted, and the loading scheme is shown in Figure 4. The formal test loading was divided into
two stages: The first stage was controlled by the load, which was divided into three levels, and the
increment of each stage was 25% of the yield load and each level load circulated two times. The second
stage was controlled by displacement. When the first stage was completed, the displacement 4y

corresponding to the yield load of the brace was taken as the increment. Each level load circulated
three times, until specimen failure.

Appl. Sci. 2019, 9, x 5 of 16 

The loading devices used in the test included the reaction frame, upright column, cross beam, 
transfer beam, test system (DH3861N, DONGHUA, Jiang’su, China), and loading system, as shown 
in Figure 3. The K-joints were placed in a common plane with the reaction frame, and the left 
end-plate of the chord was fixed with the transfer beam and the right end-plate was used as a sliding 
support. Two braces were articulated along their axis with two hydraulic jacks (JSYZ-500, Xi’an 
Oriental Metal Structure, Xi’an, China) which could provide tension and compression for 500 kN, 
respectively. The reciprocating load was exerted on the end-plate of the braces by hydraulic jacks. 
That is, when the through brace was subjected to a compressive load, the overlap brace was 
controlled to experience an equal magnitude tensile force. 

In order to eliminate the installation gap and check whether the instrument was normal, 25% 
yield load was applied to the joint before formal loading. The force-displacement hybrid loading 
mode was adopted, and the loading scheme is shown in Figure 4. The formal test loading was 
divided into two stages: The first stage was controlled by the load, which was divided into three 
levels, and the increment of each stage was 25% of the yield load and each level load circulated two 
times. The second stage was controlled by displacement. When the first stage was completed, the 
displacement △y corresponding to the yield load of the brace was taken as the increment. Each level 
load circulated three times, until specimen failure. 

  
(a) (b) 

Figure 3. Loading device. (a) Design drawing of test loading device; (b) The test site. 

1/4
1/2
3/4

4

P/Py △ /△ y

Force loading

n

2
3

5

-1/4

-2

-1/2
-3/4

1

-1

-3
-4
-5

Displacement loading
 

Figure 4. Loading device for cyclic loading. 

The measurement contents of the test included the reaction force, displacement, local 
deformation of the joint, stress distribution of the brace and strain distribution of the joint. Each 
experimental joint setup incorporated five displacement transducers (D050, Jing Ming Technology, 
Yang’zhou, China), 16 strain gauges and 16 strain rosettes. The layout of the strain gauge and 
displacement transducer is shown in Figure 5. Each joint was equipped with a strain gauge and 
T1–T16 strain rosettes to monitor the strain in the complex area of the joint, which was located 20 

Figure 4. Loading device for cyclic loading.

The measurement contents of the test included the reaction force, displacement, local deformation
of the joint, stress distribution of the brace and strain distribution of the joint. Each experimental joint
setup incorporated five displacement transducers (D050, Jing Ming Technology, Yang’zhou, China),
16 strain gauges and 16 strain rosettes. The layout of the strain gauge and displacement transducer is
shown in Figure 5. Each joint was equipped with a strain gauge and T1–T16 strain rosettes to monitor
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the strain in the complex area of the joint, which was located 20 mm away from the weld, and strain
rosettes parallel to the weld lines. S1–S8 strain gauges were attached on the circumferential direction
of the through brace and overlap brace and located on a line, 60 mm from parallel line1 and line2,
respectively. S9–S16 strain gauges were attached on the circumferential direction of the chord and
located on the line 150 mm from the parallel line3. The displacement transducers D1–D4 were used to
monitor the deformation of the braces relative to the chord, which was installed on the top surface
of the square chord, which was located on line, 50 mm from the parallel line3. The displacement
transducer D5 monitored the deformation of the chord’s bottom, which was located on the bottom
surface of the square chord or circular chord.
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3. Test Results

3.1. Failure Modes

The failure modes of the joints are shown in Figure 6. The joints were in the elastic status before
yielding, and there was no obvious deformation of the chords and braces. With the increase of load,
the failure modes of the joints were different after yielding. After the K-CC and K-RC joints yield,
micro-cracks appeared at the intersection of overlapped braces and the chords. With an increase in
the cyclic loading, the unreinforced joint entered the yielding stage. Due to the differing stress state
of the through support and the lap joint, the concave and convex deformation occurred on the chord
surface, and the plastic deformation of the K-RC joint was more obvious. For the strengthened joints
K-CCC1, K-CCC2, K-RCC1 and K-RCC2, the failure modes were similar. After yielding, micro-cracks
appeared in the heat-affected zone of the weld seam on the through braces. Then the cracks gradually
expanded with an increase in the load, but the plastic deformation of the chord surface was not obvious.
Ultimately, the toe weld of the brace was ruptured by tension, and the compressed brace had slight
local buckling.
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In summary, the main failure mode for the joints without grouting concrete was plastic failure
on the surface of the chords; the failure mode of the joints strengthened with concrete in the chord
was tension crack failure of the toe weld of the brace, and the compressive brace had slight buckling;
the strengthened joints with the different concrete (ordinary concrete and fly ash concrete) in chords
had the same failure modes. In general, great changes have taken place in the failure modes of the
strengthened joints with grouting concrete in chords. The strengthened measure of grouting concrete in
chords effectively improved the mechanical properties of the joints, restrained the plastic deformation
of the chord, and avoided the large stress concentration of the chord in the area where the braces and
chords intersected.

3.2. Load-Displacement Hysteretic Curve

In order to evaluate the seismic capacity of overlapped K-joints under collaborative cyclic loading,
the load-displacement curves are plotted in Figure 7, according to the experimental results. Among
them, the longitudinal axis was the load P exerted by the hydraulic jack, and the load of the through
brace was a positive number in tension and negative number in compression. The transverse axis was
the axial displacement δ of the through brace, whose direction was the same as that of P.
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The hysteretic curves of K-CC and K-RC joints were fuller than those of the strengthened joints
filled with concrete in the chord, and they had a stronger plastic deformation ability and better seismic
performance. The tensile and compressive bearing capacity of the unstrengthened joints were basically
symmetrical, and the size of the joints were not more than 300 kN. The stiffness of K-CCC1, K-CCC2,
K-RCC1 and K-RCC2 joints increased due to grouting concrete in the chord, which restrained the
plastic deformation of the chord and improved the bearing capacity. The hysteretic curve was a
“flat and thin” shuttle shape. Most of the hysteretic curves were in the elastic stage, and the plastic
performance was not obvious. Under the cyclic loading, the cohesive force between the chord and
concrete decreased with the cracking of concrete, and a slight deformation appeared on the surface
of the chord, and the restraint effect of the chord on the internal concrete was weakened, resulting
in the reduction of the joints stiffness. The hysteretic curves of the strengthened joints were a slight
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“S” type. The hysteretic curve of K-CCC2 was fuller than that of K-CCC1, and that of K-RCC2 was
fuller than that of K-RCC1, which showed that the plastic deformation capacity and energy dissipation
capacity of the joints strengthened with fly ash concrete filled in chord was slightly better than those
of the joints strengthened with ordinary concrete filled in chord. In addition, the hysteresis curve of
K-CC was more full than K-RC, and the plastic deformation ability of K-CC was better, but the bearing
capacity of the K-RC node was no more than 3% higher than that of the K-CC joint. Because the hoop
effect of the circular chord on concrete was more obvious than that of the square chord, the hoop force
at the corner of the square chord section was larger than that at the midpoint of the side length, and
the hoop force attenuated from the corner to the center of the section. Therefore, the symmetry of the
hysteretic loop curve of joints with a circular chord was better.

3.3. Skeleton Curve and Ductility Coefficient

By connecting the peak point of each hysteretic loop, the skeleton curves of the joints were
obtained and plotted in Figure 8. It can be seen that the skeleton curve development trend of each
joint was basically similar. The strengthening method of grouting concrete in the chord improved the
stiffness and bearing capacity of the joints. Compared with the K-CC joint, the ultimate capacity of
K-CCC1 and K-CCC2 increased by 71.6% and 67.5%, and the ultimate capacity of K-RCC1 and K-RCC2
was 73.6% and 71.8% higher than that of the corresponding K-RC joint. As far as the section form of
the chord was concerned, the bearing capacity of the joint with the circular chord was slightly smaller
than that of the joint with the square chord, but no more than 4%, under the same conditions.
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Ductility is an important mechanical property index of structure or component. The displacement
ductility ratio µ was introduced to assess the deformation capacity of the joints. The ductility coefficient
µ was defined as δu/δy, δu and δy and were the ultimate displacements and the yield displacement of
the joint appearing in the skeleton curve. The ductility coefficients of the joints are shown in Table 3.
It can be seen that the yield displacement of K-CCC1 and K-CCC2 were both about 2.2 times that of
the K-CC joint, and the yield displacement of K-RCC1 and K-RCC2 were both about 2.1 times that of
the K-RC joint. The ultimate displacement of the strengthened joints was obviously increased because
the chord was filled with concrete. On the whole, the ductility coefficients of the unstrengthened
joints were higher than those of strengthened joints, which showed that the ductility of the joint was
weakened to a certain extent, although the bearing capacity of the joint was effectively improved by
concrete filling in the chord. The ductility of the strengthened joint with fly ash concrete filled in the
chord was better than that of the reinforced joint with ordinary concrete filled in the chord.
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Table 3. Ductility coefficient of joints.

Specimens δu (mm) δy (mm) µ

K-CC 6.20 1.68 3.68
K-CCC1 11.89 3.56 3.34
K-CCC2 12.52 3.62 3.46

K-RC 6.73 1.74 3.87
K-RCC1 12.47 3.61 3.45
K-RCC2 13.06 3.66 3.57

3.4. Energy Dissipation Analysis

In order to quantitatively evaluate the energy dissipation capacity of the joints, the energy
dissipation ratio η, accumulative energy dissipation Usum and maximum hysteretic loop energy
dissipation U were introduced, which were defined in Equations (1)–(3). Among them, Ui represented
the area enveloped by each hysteretic loop of the joint. Usum indicated the total area of all hysteretic
loops. Energy dissipation ratio η was based on accumulative energy dissipation Usum and hysteretic
loop energy dissipation Ui, considered the elastic potential energy of each hysteretic loop, which could
more accurately reflect the energy dissipation capacity of the joints. Additionally, P+

y , δ+y , P−y and δ−y
represented the yield load and yield displacement of the joints under positive and negative loading,
respectively. The energy dissipation evaluation parameters for the joints are shown in Table 4.

Usum =
n

∑
i

Ui (1)

η =
n

∑
i

Ui
Uiy

(2)

Uiy =
1
2
(P+

y × δ+y + P−y × δ−y ) (3)

Table 4. Evaluation of energy dissipation.

Specimens U (kN·m) Usum (kN·m) η

K-CC 2.08 9.95 13.68
K-CCC1 2.22 15.54 5.89
K-CCC2 3.62 23.22 7.55

K-RC 2.24 9.66 13.46
K-RCC1 2.38 18.02 4.48
K-RCC2 3.46 26.71 6.58

As can be seen from Table 4, the maximum hysteretic loop energy dissipation of K-CCC1 and
K-CCC2 was 6.8% and 74.0% higher than that of the corresponding K-CC joint. Compared with the
K-RC joint, the maximum hysteretic loop energy dissipation of K-RCC1 and K-RCC2 increased by
6.3% and 54.5%. In terms of Usum, the accumulative energy dissipation of the strengthened joints
was obviously higher than those of unstrengthened joints. The strengthening measure of grouting
concrete in the chord could effectively improve the bearing capacity of joints, which contributes to the
increase of accumulative energy dissipation Usum and maximum hysteretic loop energy dissipation
U. On the contrary, the energy dissipation ratios of strengthened joints were obviously smaller than
those of unstrengthened joints. For example, the energy dissipation ratios of K-CCC1 and K-CCC2
was 132.3% and 81.2% smaller than that of the K-CC joint, and the energy dissipation ratio of K-RC
was approximately three times and two times that of K-RCC1 and K-RCC2. The changing trend of the
energy dissipation parameters of the above joints showed that grouting concrete in the chord improved
the radial stiffness of the chord, restrained the plastic deformation of the chord and weakened the
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plastic energy dissipation capacity of the joint to a certain extent, so that the energy dissipation ratio
of the unstrengthened joints relying on plastic deformation was larger than the strengthened joints.
What’s more, the energy dissipation ratio, accumulative energy dissipation and maximum hysteretic
loop energy dissipation of the joint strengthened with grouting fly ash concrete in a chord were all
higher than those of the joint strengthened with grouting ordinary concrete in the chord.

4. Finite Element Analysis

4.1. Establishment of a Finite Element Model

The hysteretic behavior of the overlapped K-joints was simulated by finite element software
ANSYS [47] (ANSYS 10.0, ANSYS-Inc., Pittsburgh, PA, USA, 2006). The load-displacement nonlinear
analysis was performed by using the full Newton-Raphson iteration method. In addition, the nonlinear
characteristics of materials and geometry were taken into consideration in the finite element models.
The three-dimensional four-node elastic-plastic Shell181 was used to simulate the steel tubes, and
the Solid65 element was applied concrete. What’s more, the encrypted area was divided freely in the
model, and the non-encrypted area was divided by mapping. The finite element model is shown in
Figure 9. As shown in Figure 10, the boundary conditions of the model were the same as those of the
test, that is, one end of the chord was a fixed constraint, the other end could be sliding in a specific
direction, and the two end-plate of the brace was hinged. As shown in Figure 11, a bilinear kinematic
hardening model (BKIN) was adopted for steel, which included an elastic stage and a strengthening
stage, and the modulus magnitude of the strengthening stage was 1% that of the elastic stage, in
accordance with Shao et al. [42]. Poisson’s ratio (ν) of the steel was 0.3. Elastic modulus (E) and yield
strength (f y) were measured with a material property test. A Multilinear isotropic hardening model
(MISO) was used for concrete. Poisson’s ratio was 0.2 and the elastic modulus of concrete came from
experimental values. Surface-to-Surface contact pairs were established between the chord and concrete.
The concrete surface was the target surface, the inner surface of the chord was the contact surface, and
the friction coefficient was 0.3.
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4.2. Weld Modeling

Weld modeling has seldom been taken into consideration in the finite element analysis. However,
it was found that if the effect of the weld was not considered, the numerical simulations of load
carrying capacity and joint rigidity were smaller than those of the experimental results [48]. In this
study, element Shell181 was used for weld modeling by way of adding a circle of Shell181 around the
intersection of the brace and chord members. It should be noted that the contact element was used for
simulating the case of hidden weld unwelded. The weld modeling is shown in Figure 12.Appl. Sci. 2019, 9, x 12 of 16 
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Figure 12. Weld modeling. (a) Detailed structure of weld; (b) Finite element model of weld.

4.3. The Result Analysis of test and finite element

As shown in Figure 13, the hysteresis curve of the finite element analysis was more full with a
“shuttle” shape and the plastic deformation ability was better than the experimental results, but the
overall fit was good. It can be seen from Table 5 that the difference between the finite element results
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and the test results was not more than 10%. The major reasons for the difference were that the finite
element model of the joint did not consider the initial defects and material damage, and the material
constitutive model used in the finite element model was idealized, which cannot completely reflect the
material state in the actual test. Although the above factors led to errors between the finite element
analysis results and the test results, the errors were within the allowable range, which showed that
the analysis applying finite element software ANSYS was accurate and reasonable for this kind of
overlapped K-joints.

Appl. Sci. 2019, 9, x 12 of 16 

ww = t
wh = 0.5T+t

t

T

Shell element
Brace member

Weld

ww

w
h Chord member

 
 

(a) (b) 

Figure 12. Weld modeling. (a) Detailed structure of weld; (b) Finite element model of weld. 

4.3. The Result Analysis of test and finite element 

As shown in Figure 13, the hysteresis curve of the finite element analysis was more full with a 
“shuttle” shape and the plastic deformation ability was better than the experimental results, but the 
overall fit was good. It can be seen from Table 5 that the difference between the finite element results 
and the test results was not more than 10%. The major reasons for the difference were that the finite 
element model of the joint did not consider the initial defects and material damage, and the material 
constitutive model used in the finite element model was idealized, which cannot completely reflect 
the material state in the actual test. Although the above factors led to errors between the finite 
element analysis results and the test results, the errors were within the allowable range, which 
showed that the analysis applying finite element software ANSYS was accurate and reasonable for 
this kind of overlapped K-joints. 
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Figure 13. Comparison of hysteretic curves between test and finite element analysis. (a) K-CC; (b) 
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brace, were designed to carry out a quasi-static test and numerical simulation. The failure modes, 
hysteretic curves, skeleton curves, ductility coefficient, and energy dissipation ratio of the joints 
were obtained. The hysteretic performance, ductility, and energy dissipation capacity of the joints 
were evaluated quantitatively. The following conclusions were drawn from this research: 

(1) Under the cyclic loading, the major failure mode of the overlapped K-joints without 
strengthening was plastic failure of the chord; while the failure mode of the joints strengthened with 
concrete in the chord was tension crack failure of the toe weld of the brace. The compressive brace 
had slight buckling, which could dissipate some energy. The failure modes of strengthened K-joints 
with ordinary concrete and fly ash concrete were basically the same. 

(2) Compared with the unstrengthened K-joints, the ductility and energy dissipation ratio of the 
strengthened K-joints were reduced to a certain extent, however the strengthening measure with 
concrete significantly enhanced the bearing capacity of the K-joints, delayed the plastic development 
of the chord and improved the mechanical properties of the K-joints.  
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K-joints strengthened with fly ash concrete was better than that of the K-joints strengthened with 
ordinary concrete. The ductility and energy dissipation ratio of the K-joints strengthened with fly 
ash concrete were superior to that of the K-joints strengthened with ordinary concrete. Based on the 
above conclusions, it was feasible to use fly ash instead of ordinary concrete to strengthen the 
K-joints partly. 

(4) The numerical simulation of six K-joints specimens under reciprocating loading was carried 
out by ANSYS, and the results were in good agreement with the test results, which showed that the 
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Table 5. The bearing capacity comparison of joints.

Specimens Test Result (kN) FEA Result (kN) Error

K-CC 232.38 228.65 1.61%
K-CCC1 398.72 405.93 1.82%
K-CCC2 389.36 424.73 9.08%

K-RC 235.36 230.28 2.16%
K-RCC1 408.69 412.27 0.88%
K-RCC2 404.37 413.48 2.25%

5. Conclusions and Future Work

The overlapped K-joints were strengthened by grouting concrete in the chord. Six K-joints
including the joint with a circular chord and brace and the joint with a square chord and circular brace,
were designed to carry out a quasi-static test and numerical simulation. The failure modes, hysteretic
curves, skeleton curves, ductility coefficient, and energy dissipation ratio of the joints were obtained.
The hysteretic performance, ductility, and energy dissipation capacity of the joints were evaluated
quantitatively. The following conclusions were drawn from this research:

(1) Under the cyclic loading, the major failure mode of the overlapped K-joints without
strengthening was plastic failure of the chord; while the failure mode of the joints strengthened
with concrete in the chord was tension crack failure of the toe weld of the brace. The compressive brace
had slight buckling, which could dissipate some energy. The failure modes of strengthened K-joints
with ordinary concrete and fly ash concrete were basically the same.

(2) Compared with the unstrengthened K-joints, the ductility and energy dissipation ratio of
the strengthened K-joints were reduced to a certain extent, however the strengthening measure with
concrete significantly enhanced the bearing capacity of the K-joints, delayed the plastic development
of the chord and improved the mechanical properties of the K-joints.

(3) The hysteretic behavior of the K-joints with the circular chord and brace was slightly better
than that of the K-joints with a square chord and circular brace. The hysteretic behavior of the
K-joints strengthened with fly ash concrete was better than that of the K-joints strengthened with
ordinary concrete. The ductility and energy dissipation ratio of the K-joints strengthened with fly ash
concrete were superior to that of the K-joints strengthened with ordinary concrete. Based on the above
conclusions, it was feasible to use fly ash instead of ordinary concrete to strengthen the K-joints partly.

(4) The numerical simulation of six K-joints specimens under reciprocating loading was carried
out by ANSYS, and the results were in good agreement with the test results, which showed that the
numerical simulation analysis model and method established in this paper was feasible.

In the current research, the effect of corrosion was not considered. It is well known that chloride
diffusion plays an import role in corrosion in both steel and concrete structures [49–51]. One area of
our future work is to consider corrosion in the study of hysteretic behavior of the overlapped K-joints
with the concrete filled in chord. Using piezoceramic transducers, scholars have conducted research on
damage detection of concrete structures [52,53], especially in concrete filled tubular structures [54–56].
In future work, the authors will explore the health monitoring of the K-joints with concrete filled in
chord by using piezoceramic transducers.
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