Superfluids, Fluctuations and Disorder
Abstract
:1. Introduction
2. Disorder in Field Theories
3. Perturbative Approach to Quenched Disorder
3.1. Thermodynamic Picture and Disorder-Driven Condensate Depletion
3.2. Superfluid Response and Quenched Disorder
- within the Landau two-fluid model, we assume that the normal part of the system is in motion with velocity , so ;
- as a consequence of the previous points, we can redefine the chemical potential as
4. The Replicated Action for Superfluid Bosons
- We assume that , establishing a proper normalization and implying that Equation (14) has no dependence on in the denominator;
- it holds ;
- for , the partition function retains its algebraic properties.
5. Correlation Functions in the Replicated Formalism
6. Conclusions and Future Perspectives
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Diagonalization of a Block Circulant Matrix
References
- Anderson, M.H.; Ensher, J.R.; Matthews, M.R.; Wieman, C.E.; Cornell, E.A. Observation of Bose–Einstein Condensation in a Dilute Atomic Vapor. Science 1995, 269, 5221. [Google Scholar] [CrossRef]
- Davis, K.B.; Mewes, M.O.; Andrews, M.R.; van Druten, N.J.; Durfee, D.S.; Kurn, D.M.; Ketterle, W. Bose–Einstein Condensation in a Gas of Sodium Atoms. Phys. Rev. Lett. 1995, 75, 3969. [Google Scholar] [CrossRef] [PubMed]
- Pethick, C.J.; Smith, H. Bose–Einstein Condensation in Dilute Gases; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar]
- Langen, T.; Geiger, R.; Schmiedmayer, J. Ultracold atoms out of equilibrium. Annu. Rev. Condens. Matt. Phys. 2015, 6, 201–217. [Google Scholar] [CrossRef]
- Fisher, M.P.A.; Weichman, P.B.; Grinstein, G.; Fisher, D.S. Boson localization and the superfluid–insulator transition. Phys. Rev. B 1989, 40, 546. [Google Scholar] [CrossRef]
- Greiner, M.; Mandel, O.; Esslinger, T.; Hänsch, T.W.; Bloch, I. Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms. Nature 2002, 415, 39–44. [Google Scholar] [CrossRef] [PubMed]
- Giamarchi, T. Quantum Physics in One Dimensions; Clarendon Press: Oxford, UK, 2003. [Google Scholar]
- Hadzibabic, Z.; Dalibard, J. Two-Dimensional Bose Fluids: An Atomic Physics Perspective. Rivista del Nuovo Cimento 2011, 34, 389. [Google Scholar] [CrossRef]
- Paredes, B.; Widera, A.; Murg, V.; Mandel, O.; Folling, S.; Cirac, I.; Shlyapnikov, G.V.; Hänsch, T.W.; Bloch, I. Tonks–Girardeau gas of ultracold atoms in an optical lattice. Nature 2004, 429, 277. [Google Scholar] [CrossRef]
- Kinoshita, T.; Wenger, T.; Weiss, D.S. Observation of a One-Dimensional Tonks–Girardeau Gas. Science 2004, 305, 1125. [Google Scholar] [CrossRef] [PubMed]
- Hadzibabic, Z.; Krüger, P.; Cheneau, M.; Battelier, B.; Dalibard, J. Berezinskii-Kosterlitz- ouless crossover in a trapped atomic gas. Nature 2006, 441, 1118. [Google Scholar] [CrossRef]
- Schweikhard, V.; Tung, S.; Cornell, E.A. Vortex proliferation in the Berezinskii-Kosterlitz- ouless regime on a two-dimensional lattice of Bose–Einstein condensates. Phys. Rev. Lett. 2007, 99, 030401. [Google Scholar] [CrossRef] [PubMed]
- Neuenhahn, C.; Marquardt, F. Quantum simulation of expanding space–time with tunnel-coupled condensates. New J. Phys. 2015, 17, 125007. [Google Scholar] [CrossRef]
- Fialko, O.; Opanchuk, B.; Sidorov, A.I.; Drummond, P.D.; Brand, J. The universe on a table top: Engineering quantum decay of a relativistic scalar field from a metastable vacuum. J. Phys. B At. Mol. Opt. Phys. 2017, 50, 024003. [Google Scholar] [CrossRef]
- Braden, J.; Johnson, M.C.; Peiris, H.V.; Weinfurtner, S. Towards the cold atoms analog of the false vacuum. J. High Energy Phys. 2018, 2018, 14. [Google Scholar] [CrossRef]
- Liberati, S.; Visser, M.; Weinfurtner, S. Analogue quantum gravity phenomenology from a two-component Bose–Einstein condensate. Class. Quant. Grav. 2006, 23, 3129. [Google Scholar] [CrossRef]
- Kurkcuoglu, D.M.; de Melo, C.S. Unconventional color superfluidity in ultra-cold fermions: Quintuplet pairing, quintuple point and pentacriticality. arXiv, 2018; arXiv:1811.07272. [Google Scholar]
- Kamenev, A. Many-body theory of non-equilibrium systems. In Nanophysics: Coherence and Transport; Elsevier: Amsterdam, The Netherlands, 2005; pp. 177–246. [Google Scholar]
- Ma, M.; Lee, P.A. Localized superconductors. Phys. Rev. B 1985, 32, 5658. [Google Scholar] [CrossRef]
- Ma, M.; Halpering, B.I.; Lee, P.A. Strongly disordered superfluids: Quantum fluctuations and critical behavior. Phys. Rev. B 1986, 34, 3136. [Google Scholar] [CrossRef]
- Anderson, P.W. Absence of diffusion in certain random lattices. Phys. Rev. 1959, 109, 1492. [Google Scholar] [CrossRef]
- Damski, B.; Zakrzewski, J.; Santos, L.; Zoller, P.; Lewenstein, M. Atomic Bose and Anderson Glasses in Optical Lattices. Phys. Rev. Lett. 2003, 91, 080403. [Google Scholar] [CrossRef]
- Schulte, T.; Drenkelforth, S.; Kruse, J.; Ertmer, W.; Arlt, J.; Sacha, K.; Zakrzewski, J.; Lewenstein, M. Routes Towards Anderson-Like Localization of Bose–Einstein Condensates in Disordered Optical Lattices. Phys. Rev. Lett. 2005, 95, 170411. [Google Scholar] [CrossRef]
- Billy, J.; Josse, V.; Zuo, Z.; Bernard, A.; Hambrecht, B.; Lugan, P.; Clement, D.; Sanchez-Palencia, L.; Bouyer, P.; Aspect, A. Direct Observation of Anderson Localization of Matter-Waves in a Controlled Disorder. Nature 2008, 453, 891. [Google Scholar] [CrossRef]
- Roati, G.; D’Errico, C.; Fallani, L.; Fattori, M.; Fort, C.; Zaccanti, M.; Modugno, G.; Modugno, M.; Inguscio, M. Anderson Localization of a Non-Interacting Bose–Einstein Condensate. Nature 2008, 453, 895. [Google Scholar] [CrossRef]
- Dainty, J.C. An introduction to Gaussian speckle. Proc. SPIE 1980, 243, 2–8. [Google Scholar]
- Goodman, J.W. Speckle Phenomena in Optics: Theory and Applications; Roberts & Company: Englewood, CO, USA, 2010. [Google Scholar]
- Lye, J.E.; Fallani, L.; Modugno, M.; Wiersma, D.S.; Fort, C.; Inguscio, M. A Bose–Einstein condensate in a random potential. Phys. Rev. Lett. 2005, 95, 070401. [Google Scholar] [CrossRef]
- Clément, D.; Varón, A.F.; Hugbart, M.; Retter, J.A.; Bouyer, P.; Sanchez-Palencia, L.; Gangardt, D.M.; Shlyapnikov, G.V.; Aspect, A. Suppression of Transport of an Interacting Elongated Bose–Einstein Condensate in a Random Potential. Phys. Rev. Lett. 2005, 95, 170409. [Google Scholar] [CrossRef]
- Ghabour, M.; Pelster, A. Bogoliubov theory of dipolar Bose gas in a weak random potential. Phys. Rev. A 2014, 90, 063636. [Google Scholar] [CrossRef]
- Stoof, H.T.C.; Dickerscheid, D.B.M.; Gubbels, K. Ultracold Quantum Fields; Springer: Dordrecht, The Netherlands, 2009. [Google Scholar]
- Salasnich, L.; Toigo, F. Zero-point energy of ultracold atoms. Phys. Rep. 2016, 640, 1–29. [Google Scholar] [CrossRef]
- Huang, K.; Meng, H.-F. Hard-Sphere Bose Gas in Random External Potential. Phys. Rev. Lett. 1992, 69, 644. [Google Scholar] [CrossRef]
- Giorgini, S.; Pitaevskii, L.; Stringari, S. Effects of disorder in a dilute Bose gas. Phys. Rev. B 1994, 49, 18. [Google Scholar] [CrossRef]
- Taüber, U.; Nelson, D.R. Superfluid bosons and flux liquids: Disorder, thermal fluctuations, and finite-size effects. Phys. Rep. 1997, 289, 157. [Google Scholar] [CrossRef]
- Lopatin, A.V.; Vinokur, V.M. Thermodynamics of the Superfluid Dilute Bose Gas with Disorder. Phys. Rev. Lett. 2002, 88, 235503. [Google Scholar] [CrossRef] [PubMed]
- Falco, G.M.; Pelster, A.; Graham, R. Thermodynamics of a Bose–Einstein condensate with weak disorder. Phys. Rev. A 2007, 75, 063619. [Google Scholar] [CrossRef]
- Giamarchi, T.; Schulz, H.J. Anderson localization and interactions in one-dimensional metals. Phys. Rev. B 1988, 37, 325. [Google Scholar] [CrossRef]
- Navez, P.; Pelster, A.; Graham, R. Bose condensed gas in strong disorder potential with arbitrary correlation length. Appl. Phys. B 2007, 86, 395–398. [Google Scholar] [CrossRef]
- Yukalov, V.I.; Graham, R. Bose–Einstein condensed systems in random potentials. Phys. Rev. A 2007, 75, 023619. [Google Scholar] [CrossRef]
- Falco, G.M.; Nattermann, T.; Pokrovsky, V.L. Weakly interacting Bose gas in a random environment. Phys. Rev. B 2009, 80, 104515. [Google Scholar] [CrossRef]
- Khellil, T.; Balaz, A.; Pelster, A. Analytical and numerical study of dirty bosons in a quasi-one-dimensional harmonic trap. New J. Phys. 2016, 18, 063003. [Google Scholar] [CrossRef]
- Khellil, T.; Pelster, A. Hartree-Fock Mean-Field Theory for Trapped Dirty Bosons. J. Stat. Mech. 2016, 2016, 063301. [Google Scholar] [CrossRef]
- Altland, A.; Simons, B. Condensed Matter Field Theory; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Hertz, J. Disordered Systems. Phys. Scr. 1985, 1985, 1. [Google Scholar] [CrossRef]
- Nelson, D.R.; le Doussal, P. Correlations in flux liquids with weak disorder. Phys. Rev. B 1990, 42, 16. [Google Scholar] [CrossRef]
- Schakel, A.M.J. Quantum critical behavior of disordered superfluids. Phys. Lett. A 1997, 224, 287. [Google Scholar] [CrossRef]
- Lubensky, T.C. Critical properties of the random-spin model from the ϵ-expansion. Phys. Rev. B 1975, 11, 9. [Google Scholar] [CrossRef]
- Grinstein, G.; Luther, A. Applications of the renormalization group to phase transition in disordered systems. Phys. Rev. B 1976, 13, 3. [Google Scholar] [CrossRef]
- Schakel, A.M.J. Boulevard of Broken Symmetries: Effective Field Theories of Condensed Matter; World Scientific: Singapore, 2008. [Google Scholar]
- Astrakharchik, G.E.; Boronat, J.; Casulleras, J.; Kurbakov, I.L.; Lozovik, Y.E. Equation of state of a weakly interacting two-dimensional Bose gas studied at zero temperature by means of quantum Monte Carlo methods. Phys. Rev. A 2009, 79, 051602. [Google Scholar] [CrossRef]
- Tononi, A.; Cappellaro, A.; Salasnich, L. Condensation and superfluidity of dilute Bose gases with finite-range interaction. New J. Phys. 2018, 20, 125007. [Google Scholar] [CrossRef]
- Salasnich, L. Nonuniversal Equation of State of the Two-Dimensional Bose Gas. Phys. Rev. Lett. 2017, 118, 130402. [Google Scholar] [CrossRef]
- Tononi, A. Zero-temperature equation of state of a two-dimensional bosonic quantum fluid with finite-range interaction. Condens. Matter 2019, 4, 20. [Google Scholar] [CrossRef]
- Wehr, J.; Niederberger, A.; Sanchez-Palencia, L.; Lewenstein, M. Disorder versus the Mermin-Wagner-Hohenberg effect: From classical spin systems to ultracold atomic gases. Phys. Rev. B 2006, 74, 224448. [Google Scholar] [CrossRef]
- Boudjemaa, A.; Shlyapnikov, G.V. Two-dimensional dipolar Bose gas with the roton-maxon excitation spectrum. Phys. Rev. A 2013, 87, 025601. [Google Scholar] [CrossRef]
- Boudjemaa, A. Two-dimensional dipolar bosons with weak disorder. Phys. Lett. A 2015, 379, 2484–2487. [Google Scholar] [CrossRef]
- Landau, L.D.; Lifshitz, E.M. Statistical Physics 2; Pergamon Press: Oxford, UK, 1987. [Google Scholar]
- Khalatnikov, I.M. An Introduction to the Theory of Superfluidity; Westwiew Press: Oxford, UK, 2000. [Google Scholar]
- Fisher, M.E.; Barber, M.N.; Jasnow, D. Helicity, Modulus, Superfluidity and Scaling in Isotropic Systems. Phys. Rev. A 1973, 8, 1111. [Google Scholar] [CrossRef]
- Taylor, E.; Griffin, A.; Fukushima, N.; Ohashi, Y. Pairing fluctuations and the superfluid density through the BCS-BEC crossover. Phys. Rev. A 2006, 74, 063626. [Google Scholar] [CrossRef]
- Edwards, S.F.; Anderson, P.W. Theory of spin glasses. J. Phys. F 1975, 5, 965–974. [Google Scholar] [CrossRef]
- Mezard, M.; Parisi, G.; Virasoro, M. Spin Glass Theory and Beyond: An Introduction to the Replica Method and Its Applications; World Scientific: Singapore, 1987. [Google Scholar]
- Parisi, G. Glasses, replicas and all that. In Les Houches—Ecole d’ été de Physique Théorique; Elsevier: Amsterdam, The Netherlands, 2004; Volume 77. [Google Scholar]
- Mermin, N.D.; Wagner, H. Absence of Ferromagnetism or antiferromagnetism in one- or two- dimensional isotropic heisenberg models. Phys. Rev. Lett. 1966, 17, 1133. [Google Scholar] [CrossRef]
- Hohenberg, P.C. Existence of Long-Range Order in One and Two Dimensions. Phys. Rev. 1967, 158, 383. [Google Scholar] [CrossRef]
- Villain, J. Theory of one- and two-dimensional magnets with an easy magnetization plane. II. The planar, classical, two-dimensional magnet. J. Phys. 1975, 36, 581. [Google Scholar] [CrossRef]
- José, J.V.; Kadanoff, L.P.; Kirkpatrick, S.; Nelson, D.R. Renormalization, vortices and symmetry-breaking perturbations in the two-dimensional planar model. Phys. Rev. B 1977, 16, 1217. [Google Scholar] [CrossRef]
- Andersen, J.O. Theory of the weakly interacting Bose gas. Rev. Mod. Phys. 2004, 76, 599. [Google Scholar] [CrossRef]
- Fetter, A.L.; Walecka, J.D. Quantum Theory of Many-Particle Systems; Dover Publications: New York, NY, USA, 2003. [Google Scholar]
- Baym, G. Microscopic Description of Superfluidity. In Mathematical Methods in Solid State and Superfluid Theory; Springer: Berlin/Heidelberg, Germany, 1967. [Google Scholar]
- Ueda, M. Fundamentals and New Frontiers in Bose–Einstein Condensations; World Scientific: Singapore, 2010. [Google Scholar]
- Astrakharchik, G.E.; Boronat, J.; Casulleras, J.; Giorgini, S. Superfluidity versus Bose–Einstein condensation in a Bose gas with disorder. Phys. Rev. A 2002, 66, 023603. [Google Scholar] [CrossRef]
- Ng, R.; Sorensen, E.S. Quantum Critical Scaling of Dirty Bosons in Two Dimensions. Phys. Rev. Lett. 2015, 114, 255701. [Google Scholar] [CrossRef]
- Pruisken, A.M.M. Field theory, scaling and the localization problem. In The Quantum Hall Effect; Springer-Verlag: Berlin/Heidelberg, Germany, 1987. [Google Scholar]
- Viciani, S.; Lima, M.; Bellini, M.; Caruso, F. Observation of noise-assisted transport in an all-optical cavity-based network. Phys. Rev. Lett. 2015, 115, 083601. [Google Scholar] [CrossRef]
- Potocnik, A.; Bargerbos, A.; Schröder, F.A.; Khan, S.A.; Collodo, M.C.; Gasparinetti, S.; Salathé, Y.; Creatore, C.; Eichler, C.; Türeci, H.E.; et al. Studying light-harvesting models with superconducting circuits. Nat. Commun. 2018, 9, 904. [Google Scholar] [CrossRef]
- Maier, C.; Brydges, T.; Jurcevic, P.; Trautmann, N.; Hempel, C.; Lanyon, B.P.; Hauke, P.; Blatt, R.; Roos, C.F. Environment-Assisted Quantum Transport in a 10-qubit Network. Phys. Rev. Lett. 2019, 122, 050501. [Google Scholar] [CrossRef]
- Davis, P.J. Circulant Matrices, 2nd ed.; American Mathematical Society: New York, NY, USA, 1979. [Google Scholar]
- Olson, B.; Shaw, S.; Shi, C.; Pierre, C.; Parker, R. Circulant Matrices and Their Application to Vibration Analysis. Appl. Mech. Rev. 2014, 66, 040803. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cappellaro, A.; Salasnich, L. Superfluids, Fluctuations and Disorder. Appl. Sci. 2019, 9, 1498. https://doi.org/10.3390/app9071498
Cappellaro A, Salasnich L. Superfluids, Fluctuations and Disorder. Applied Sciences. 2019; 9(7):1498. https://doi.org/10.3390/app9071498
Chicago/Turabian StyleCappellaro, Alberto, and Luca Salasnich. 2019. "Superfluids, Fluctuations and Disorder" Applied Sciences 9, no. 7: 1498. https://doi.org/10.3390/app9071498
APA StyleCappellaro, A., & Salasnich, L. (2019). Superfluids, Fluctuations and Disorder. Applied Sciences, 9(7), 1498. https://doi.org/10.3390/app9071498