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Abstract: The artificial potential field approach provides a simple and effective motion planner for
robot navigation. However, the traditional artificial potential field approach in practice can have a
local minimum problem, i.e., the attractive force from the target position is in the balance with the
repulsive force from the obstacle, such that the robot cannot escape from this situation and reach
the target. Moreover, the moving object detection and avoidance is still a challenging problem with
the current artificial potential field method. In this paper, we present an improved version of the
artificial potential field method, which uses a dynamic window approach to solve the local minimum
problem and define a danger index in the speed field for moving object avoidance. The new danger
index considers not only the relative distance between the robot and the obstacle, but also the relative
velocity according to the motion of the moving objects. In this way, the robot can find an optimized
path to avoid local minimum and moving obstacles, which is proved by our experimental results.
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1. Introduction

Moving in free space while avoiding collisions within the dynamic environment is known as
obstacle avoidance or path planning, which is the backbone of mobile robots. Many well-known
path planning algorithms have been proposed in robotics research literature. The reward-based
planning algorithms [1–3] propose to give the robot a positive reward when it reaches the target,
and give the robot a negative reward when it collides with the obstacle. The path is then obtained by
maximizing the cumulative future reward. However, due to the discretization of the state and control
space, their trajectories are mostly not smooth [4]. The sampling-base planning algorithms, such as the
Rapidly exploring Random Tree (RRT) [5] and the Probabilistic Road Maps (PRM) [6], generally connect
a series of randomly sampled points from a barrier-free space, and attempt to establish a path from the
initial position to the target position. Although their time cost is less, the random sampling introduces
the randomness of the planned path. Therefore, we cannot predict the result of the path planner,
which is not optimal in general. The grid-based planning algorithms, such as the A* [7] and the
Dijkstra’s [8] algorithm, which have been used in the robotic operating systems (ROS), can find the
optimal trajectory, but their time cost and memory usage grow exponentially with the dimension of
the state space [4]. The novel artificial potential field (APF) developed by Khatib [9–11] is a simple
and effective path planning method. The theory behind APF is simple and straightforward: it has
an attractive potential field for attracting the robot to the target point, and a repulsive potential field
for pushing the robot away from obstacles. The APF approach can be used for global and local
path planning.
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However, there are some inherent problems in traditional artificial potential field approaches:
(1) oscillations in the presence of obstacles due to the large move step of the robot; (2) goal nonreachable
with obstacles nearby (GNRON); (3) trapped in a local minimum region; and (4) moving obstacles
avoidance. Solving these problems has become an interesting topic in the field of APF based path
planning [12,13]. Park et al. [14] deal with the local minimum region by filling it with the virtual
obstacle. Zhu et al. [15] introduce simulated annealing to look for the global minimum and escape
the local minimum region. Doria et al. [16] use the Deterministic Annealing (DA) approach to avoid
local minima in APF by adding a temperature parameter into the cost function of the APF approach.
The value of the temperature parameter starts to increase until the robot goes away from the local
minimum region. Lee et al. [17] propose to use two modes to control the APF, i.e., one mode is to go
directly to the target using traditional APF and the other mode uses a new point APF algorithm to
avoid collisions with the static obstacle. Mode 1 can be switched to mode 2 when the robot is trapped
in a local minimum region or blocked in front of the obstacle. A new direction is synthesized using the
robot motion information and direction between the robot and the goal point, which can guide the
robot to escape the local minimum region. Weerakoon et al. [18] propose an improved repulsive force
for overcoming a local minima problem, which generates a new repulsive force to the primary force
when the robot detects an obstacle within its sensory range. The new repulsive force component turns
the robot smoothly away from the obstacles. Kim et al. [19] modify the APF approach with the collision
cone approach, which adds an artificial force to the existing attractive and repulsive forces when the
relative velocity vector between the robot and obstacle is included in a collision cone. The improved
resultant force can guide the robot to reach the goal. These algorithms may help the robot to escape
the local minimum region in a simple statistic environment, but require to detect whether the robot is
trapped in the local minimum region.

For the dynamic environment, the moving objects can affect the performance of the APF.
Ge et al. [20] define a virtual force which is the negative gradient of the potential with respect to
both relative position and velocity between the robot and the target or obstacles. The motion of
the mobile robot is then determined by the total virtual force through the Newtons Law or steering
control depending on the driving type of the robot. Cao et al. [21] propose a simultaneous target
tracking and moving obstacle avoidance method using a threat coefficient based force function by
taking into account the relative velocities of the target with respect to the robot and the relative
velocities of the robot with respect to the obstacles. Montiel et al. [22] introduce a parallel evolutionary
artificial potential field for the dynamic environment, which makes possible controllability in complex
real-world sceneries with dynamic obstacles if a reachable configuration set exists. These methods
make decisions according to the relative position and velocity direction between robot and obstacle,
but the magnitude of the obstacle speed is not fully considered.

In this paper, we propose a dynamic APF approach (DAPF). The contributions of our work are
the following: first, to predict and avoid the local minimum region, we combine the APF with the
dynamic window approach [23], which employs a cost function to evaluate simulated trajectories,
such that the local minimum region can be found in the prior step, and the robot can avoid the obstacle
in a short path without any oscillations. Second, we propose an evolutionary potential field function
based on an improved minimum danger index (DI) [24,25], which can plan an optimal path using not
only the relative distance and velocity direction information, but also the magnitude information of
the robot and obstacle speeds. The robot can make a smart decision to avoid moving obstacles, e.g.,
if the obstacle moves fast, the robot goes behind the obstacle. We demonstrate the proposed ideas
using a real mobile robot system in static and dynamic environment, respectively, which shows the
improved performance using our idea.

2. The Proposed Method

In this section, we analyze the problems of the traditional APF approaches and further introduce
the proposed idea in detail.
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2.1. Dynamic Window Based Artificial Potential Field (DAPF)

In the artificial potential field, the robot motion is controlled by the attractive force and the
repulsive force, i.e., the attractive force is generated by the distance and direction to the target point,
whereas the repulsive force is generated by the distance and direction to obstacles. The forces of the
robot in the artificial potential field are shown in Figure 1, where F2 is the repulsive force between the
obstacle and the robot F1 is the attractive force between the target point and the robot, and F is the
resultant force for controlling the robot.

Figure 1. Definition of attractive force and repulsive force in artificial potential field.

The attractive potential field function is defined as:

Uatt(φ) =
1
2

ka(φ− φg)
2, (1)

where φ = (x, y)T is the coordinate of the robot, ka is the coefficient constant of the attractive field,
and φg is the coordinate of the target point. The negative gradient of the attractive potential field
function is defined as the attractive force function, which is:

Fatt(φ) = −∇(Uatt(φ)) = ka(φg − φ), (2)

where Fatt(φ) is a vector directed toward to φg, which is a linear correlation with the distance from φ to
φg. Obstacles provide repulsive force and repel the robot. When the robot is far enough from obstacles,
obstacles will not affect the motion of the robot. As shown in Equation (3), the repulsion potential field
function can be defined as:

Ureq(φ) =

 1
2 kr(

1
d(φ) −

1
dmax

)2, d(φ) ≤ dmax,

0, d(φ) > dmax,
(3)

where kr is the coefficient constant of the repulsion field, dmax is the maximum impact extent of the
single obstacle, and d(φ) is the current distance between the robot and the obstacle. The repulsive
force is the negative gradient of the repulsive potential function, which is

Freq(φ) = −∇(Ureq(φ)), (4)

Freq(φ) =

kr(
1

d(φ) −
1

dmax
) 1

d(φ)2 ·
∂d(φ)

∂φ , d(φ) ≤ dmax,

0, d(φ) > dmax.
(5)

The total repulsive potential field is the summation of the repulsive potential fields from all obstacles.
The final artificial potential field function is as follows:
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U(φ) = Uatt(φ) + ∑ Ureq(φ). (6)

The resultant force on the robot is F(x) = Fatt(x) + ∑ Freq(x).
In some situations, the goal can be unreachable and the robot can be trapped in a local minimum

region using the traditional APF approach as shown in Figure 2. For instance, the robot can not reach
the target point when the target point is very close to the obstacle. In addition, the resultant force
on the robot can be reduced gradually until the target point is reached. However, the resultant force
of the robot is also likely to be zero or minimized, when the attractive force and repulsive force are
almost equal and collinear but in the opposite direction. The robot in this situation is trapped in a local
minimum region.

(a) (b)

Figure 2. Problems of a traditional artificial potential field (APF): (a) unreachable goals with obstacles
nearby (GNRON) and (b) trapped in a local minimum region.

To solve the GNRON problem, the distance between the current position and the target position
can be added to the repulsion field function, such that the repulsive force can be relatively reduced
when the robot closes to the target point. The improved repulsive potential field function is defined as

Ureq(φ) =

 1
2 kr(

1
d(φ) −

1
dmax

)2(φ− φg)n, d(φ) ≤ dmax,

0, d(φ) > dmax,
(7)

where kr is the repulsion field coefficient constant and n is an arbitrary real number which is greater
than zero. The improved repulsive force function is defined as

Freq(φ) =

{
Freq1(φ) + Freq2(φ), d(φ) ≤ dmax,

0, d(φ) > dmax,
(8)

where Freq1(φ) and Freq2(φ) are two components of the Freq(φ), which are defined in Equation (9)
and (10):

Freq1(φ) = kr(
1

d(φ)
− 1

dmax
)

1
d(φ)2 (φ− φg)

n · ∂d(φ)
∂φ

, (9)

Freq2(φ) =
1
2

krn(
1

d(φ)
− 1

dmax
)2(φ− φg)

n−1 ·
∂(φ− φg)

∂φ
. (10)

The direction of Freq1(φ) is from the obstacle to the mobile robot, and Freq2(φ) is from the robot to the
target point.
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For solving the local minima problem, we propose a dynamic APF approach (DAPF),
which employs the dynamic window approach (DWA) to predict the local minimum region and solve
the oscillations. The key idea of the DWA is to sample a number of predicted trajectories according to
the current position (xt, yt), direction θt and velocity vr as shown in Figure 3. The sampled directions
θω are the following:

θω = θt + (ω− t)4θ, ω = (1, ..., t, ..., n), (11)

where θt is the current direction of the robot, 4θ is the angular step between samples and n is the
number of samples. Using these sampled directions, we simulate a number of positions that the robot
might go as 

x′1 y′1
... ...
x′t y′t
... ...
x′n y′n

 =


xt yt

... ...
xt yt

... ...
xt yt

+


vr4t cos(θ1) vr4t sin(θ1)

... ...
vr4t cos(θt) vr4t sin(θt)

... ...
vr4t cos(θn) vr4t sin(θn)

 , (12)

where x′1, ..., x′n and y′1, ..., y′n are coordinates of simulated positions, and vr is the velocity of the robot.
The final choice of the position can be defined as the one whose APF cost function is minimum:

[
x y

]
= min(APF(


x′1 y′1
... ...
x′t y′t
... ...
x′n y′n

)), (13)

where x, y is the coordinate of the position whose resultant force value is minimum.

Figure 3. Robot trajectories simulated by a dynamic window approach (DWA).

Based on the improved APF function, the closer the robot is to the target, the smaller the resultant
force value is. Before the robot enters the obstacle’s influence range, it applies the DWA approach
to simulate positions and calculate the resultant force for every simulated position. If the simulated
position is in the obstacle range, the resultant force value is less than 0. If the simulated position
is outside of the obstacle range, the resultant force of the simulated position that is closer to the
target point is less than the positions that are far from the target point. Finally, the robot can obtain
a simulated position that is close to the target point but not in the obstacle area, such that the local
minimum region can be avoided using the DAPF approach. If the target point is within the obstacle
range, the DWA method will be stopped when the distance of the robot from the target point is less
than the distance from the obstacle.
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2.2. Danger Index Based Artificial Potential Field (DIAPF) for a Dynamic Environment

To avoid the moving obstacles, the APF must consider not only the position information of the
obstacles, but also the motion information of the obstacles, e.g., the direction and magnitude of the
velocity. In the paper, we define the motion model of the dynamic obstacle as:

δ(t + 1) = δ(t) + vo(t)×4t, (14)

vo(t + 1) = vo(t) + a
′
o(t)×4t, (15)

which can be written in matrix form:

p(t + 1) = Ap(t) + ao, (16)

where δ(t) = (xo, yo)T is the coordinate of the dynamic obstacle, p(t + 1) = (δ(t), vo(t))T is the state

vector, A =

[
1 4t
0 1

]
is the state transition matrix, and ao = (0, a

′
o)

T is the acceleration of the dynamic

obstacle. In this paper, a uniform motion model is adopted and the ao is a zero vector.
The APF should not only consider the spatial location of the dynamic obstacle, but also consider

the motion state of the dynamic obstacle. Therefore, the velocity repulsive potential field is added to
the dynamic window based artificial potential field function (DVAPF) to avoid dynamic obstacles,
which is defined as

Uv(vro) =

{
1
2 krov2

ro, 0 ≤ ρcm ≤ ρcmax ∩ α ∈ (−π
2 , π

2 ),

0, otherwise,
(17)

where kro is a proportionality constant, vro = vr − vo is the relative velocity between the robot and
the dynamic obstacle, α is the angle between the vro and the vector from the robot to the obstacle,
ρcmax is the maximum range of the local map, and ρcm is the current distance between the robot and
the dynamic obstacle. The velocity repulsive potential field starts to work when the dynamic obstacle
enters the local map whose range is defined by the distance parameter ρcmax, which can be chosen
according to the sensor range. The velocity repulsive force is the negative gradient of the velocity
repulsive potential function:

Fv(vro) = −∇(Uv(vro)), (18)

Fv(vro) =

{
krovro, 0 ≤ ρcm ≤ ρcmax ∩ α ∈ (−π

2 , π
2 )

0, otherwise
. (19)

The DVAPF approach can handle dynamic obstacle avoidance problem when the velocity
difference between the robot and the dynamic obstacle is large. The effectiveness of the velocity
repulsive force can be decreased if the relative velocity is small. We here propose an improved method
using a novel danger index considering relative distance and velocity between the robot and the
dynamic obstacle, which includes three factors:

(1) Distance influence factor:

fcm(ρcm) =

{
η( 1

ρcm
− 1

ρcmax
), ρcm ≤ ρcmax,

0, ρcm > ρcmax,
(20)

where η = ( ρcminρcmax
ρcmax−ρcmin

) is the distance scale factor, and ρcmin is the minimum allowed distance between
the robot and the dynamic obstacle.

Distance influence factor is influenced by the distance relationship between the robot and the
dynamic obstacle. The closer the distance between the robot and the dynamic obstacle, the larger the
distance influence factor.



Appl. Sci. 2019, 9, 1589 7 of 14

(2) Speed influence factor:
ko = sgn(ε× |vo| − |vr|), (21)

where ε is the speed scale factor, |vo| and |vr| are the magnitudes of the dynamic obstacle velocity and
robot velocity, respectively, and sgn() is the sign function.

Speed influence factor is influenced by the speed relationship between the robot and the dynamic
obstacle. If the speed of the dynamic obstacle is ε times the speed of the robot, the speed influence
factor is an integer and vice versa.

(3) Danger index:

DI =


kro(vr − fcmvo), ko > 0∩ α ∈ (−π

2 , π
2 ) ∩ fcm > 0,

kro(vr + fcmvo), ko ≤ 0∩ β ∈ (−π
2 , π

2 ) ∩ fcm > 0,

0, otherwise,

(22)

where kro is a proportionality constant, fcm is the distance influence factor, α is the angle between the
(vr − fcmvo) and the vector from the robot to the obstacle. β is the angle between the (vr + fcmvo) and
the vector from the obstacle to the robot.

The novel danger index includes distance influence factor and speed influence factor. The robot
can make smarter avoidance decisions according to the speed influence factor, i.e., the robot can move
in front of the moving obstacle if the speed of the robot is not larger than ε times that of the dynamic
obstacle, whereas the robot can move behind the moving obstacle for other situations.

If the distance between the robot and the dynamic obstacle is very close, the distance influence
factor will be large, such that the robot will move parallel with the dynamic obstacle, which is to ensure
the safety of the path. If the distance between the robot and the dynamic obstacle is far, the distance
factor will be small, such that the robot will not over-react to the obstacle motion, which can increase
the efficiency of the robot motion. Furthermore, if the moving obstacle is outside of the local map, i.e.,
ρcm > ρcmax, the danger index is 0, so the robot will not react to such a situation.

The danger index combines the distance influence factor and the speed influence factor to optimize
the planned path to avoid dynamic obstacles. The danger index based APF (DIAPF) function is defined as

U
′
(φ) = U(φ) +

1
2

DI2, (23)

where U(φ) is the value returned from the DAPF function. To summarize, the whole algorithm of our
proposed DIAPF approach in the dynamical environment is shown in Figure 4.

Figure 4. Danger Index Based Artificial Potential Field (DIAPF) based moving obstacle avoidance algorithm.
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3. Experiment and Analysis

To evaluate the performance of the proposed idea, we use a Turtlebot robot to demonstrate the
algorithm in the real environment where we have built a known map. The nurse robot plays as a
moving obstacle in the map. To simplify the problem, the map of the environment and the motion
status of the obstacle (nurse robot) are known for the Turtlebot. The Turtlebot robot and experimental
environment are shown in Figure 5. We first compare the DAPF to the standard APF approach in the
static environment to show how the dynamic window approach can improve the performance of the
APF, and then compare the DIAPF with the DAPF, the DVAPF and ROS (robot operating system) path
planning algorithm to show how the danger index can help the robot avoid the moving obstacle.

(a) (b)

Figure 5. (a) Turtlebot robot and (b) experimental environment.

3.1. Static Environment

For a static environment, we place several obstacles randomly in the room. The DAPF and the
standard APF algorithms are carried out using the experimental parameters defined in Table 1.

Table 1. The experimental parameters in a static environment.

dmax 4θ kr ka m n Target Point

0.2 m 10◦ 1 1 1 2 (2.5, 2.5)

The robot has the oscillation problem and can not avoid the local minimum region using the
standard APF algorithm as shown in Figure 6a,c, respectively. In contrast to the APF, the proposed
DAPF approach has a smooth planned path along the edge of the influence range of obstacles as shown
in Figure 6b,d. For the local minimum problem, the DAPF has no need to detect whether the robot has
entered a local minimum region, since the DWA can predict and avoid such a situation in advance.
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(a) APF (b) DAPF

(c) APF (d) DAPF

Figure 6. Experimental results using APF (a,c) and proposed DAPF (b,d) in the static environment
where the gray solid circles are obstacles, the circles that around obstacles means the influence range,
the small green circle is the robot position, and the red curve is the planned path. The APF has the
oscillation problem that occurs in the (a) and local minimum problem that occurs in the (c), whereas
the DAPF solves such problems and achieves better results as shown in (b,d), respectively.

3.2. Moving Obstacle

For dynamic environment, we compare three methods to avoid the moving obstacle, i.e., DAPF,
DVAPF and DIAPF. We show that these methods have different performance for faster and slow
moving obstacles. The experimental parameters are shown in Table 2.

The performance using the DAPF for avoiding the slow and fast obstacles are shown in Figures 7
and 8 respectively. For the slow obstacle, the DAPF has a period of oscillation when the obstacle is in
front of the robot. For the fast obstacle, the situation is worse, i.e., the collision between the robot and
the obstacle occurs.

Table 2. The experimental parameters for moving obstacle avoidance

kro ε ρmax ρmin vr vo (fast) vo (slow)

1 2 1.2m 0.3m 0.2m/s 0.3m/s 0.1m/s

The DVAPF is better than the DAPF as shown in Figures 9 and 10, where we can see that the
DVAPF prefers a path behind the moving obstacle. Using such a strategy, the robot and the dynamic
obstacle will move in opposite directions when the obstacle enters the robot’s local map if the dynamic
obstacle is faster than the robot, and the robot will continue to move towards the target point when
α ∈ (−π,−π

2 ) ∩ (π
2 , π) or the obstacle leaves the robot’s local map. If the moving obstacle is slower

than the robot or their velocity is similar, the planned path can be inefficiency and dangerous as shown
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in Figure 10, i.e., the robot enters the influence area of the obstacle since the robot’s deflection angle is
too small to avoid the obstacle.

(a) (b) (c)

(d) (e) (f)

Figure 7. The robot uses the DAPF approach to avoid the slow moving obstacle: (a) shows the robot is
before obstacle avoidance; (b–e) show that the robot is avoiding the obstacle, and (f) shows that the
robot finishes obstacle avoidance.

(a) (b)

Figure 8. The robot uses the DAPF approach to avoid a fast moving obstacle: (a) shows that the robot
is before obstacle avoidance, and (b) shows that the robot collides with an obstacle.

In contrast to the DVAPF and DAPF, the DIAPF has the best performance according to the
experiment results as shown in Figures 11 and 12. From the experimental results, it can be seen that the
DIAPF approach can make a prediction according to the state of the moving obstacle: if the obstacle
velocity is similar or faster, the robot can plan a path behind the obstacle. If the obstacle velocity
is slower, the robot can plan a path in front of the obstacle. This strategy makes the planned path
more efficient. In addition, the distance influence factor plays a key role to increase the safety and
effectiveness of the planned path, e.g., the distance influence factor can reduce the robot’s deviation
angle if the moving obstacle is far away, and can increase this angle if the moving obstacle is closer.
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(a) (b) (c)

Figure 9. The robot uses the dynamic window based artificial potential field (DVAPF) approach to
avoid a fast moving obstacle: (a) before avoiding; (b) avoiding the obstacle; and (c) finish avoiding.

(a) (b) (c)

Figure 10. The robot uses the DVAPF approach to avoid a slow moving obstacle: (a) before avoiding;
(b) avoiding the obstacle; (c) finish avoiding.

(a) (b) (c)

Figure 11. The robot uses the DIAPF approach to avoid a fast moving obstacle: (a) before avoiding;
(b) avoiding the obstacle; and (c) finish avoiding.

(a) (b) (c)

Figure 12. The robot uses the DIAPF approach to avoid a slow moving obstacle: (a) before avoiding;
(b) avoiding the obstacle; and (c) finish avoiding.
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3.3. Dynamic Environment

In this section, we compare the proposed DIAPF method to the ROS [26] path plan package which
employs the DWA and A* algorithm. The experimental environment includes four static obstacles
and a moving obstacle. As can be seen from Figure 13, the ROS uses A* algorithm to plan a global
path and uses the DWA algorithm to handle nearby obstacles in the local map. If the speed of the
moving obstacle is slow, the robot can avoid the obstacle directly as shown in Figure 13a. However,
if the obstacle moves fast, the robot needs to re-plan the path according to the position of the obstacle.
The global path also needs to replan according to the local path changes as shown in Figure 13b.
In contrast to the ROS method, the proposed DIAPF can make decisions in advance according to the
relative velocity between the moving obstacle and robot as shown in Figures 14 and 15. The planned
path using the DIAPF is more efficient than the one using the ROS module as seen in Figure 16,
which shows the changes of the distance between the robot and the target point. The DIAPF shows a
linear decrease of the distance while the ROS shows a curve that decreases first and then increases due
to a re-planned path.

(a) (b)

Figure 13. The robot uses path planner in robot operating system (ROS) to avoid a (a) slow and (b) fast
moving obstacle in the dynamic environment.

(a) (b) (c)

Figure 14. The robot uses the DIAPF approach to avoid a fast moving obstacle in the dynamic
environment: (a) before avoiding; (b) avoiding the dynamic obstacle; and (c) finish avoiding.

(a) (b) (c)

Figure 15. The robot uses the DIAPF approach to avoid a slow moving obstacle in the dynamic
environment: (a) before avoiding, (b) avoiding the dynamic obstacle; and (c) finish avoiding.
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Figure 16. The changes of the distance between the robot and the target point using the proposed
DIAPF method (blue) and ROS path plan module (red).

4. Conclusions

In this paper, we introduce a dynamic window approach (DWA) and danger index (DI) based
artificial potential field (APF) for static and moving obstacle avoidance. The dynamic window approach
based APF (DAPF) can overcome the local minimum problem since the DWA can predict the local
minima region and avoid in advance. For moving obstacles, we propose a novel danger index based
APF (DIAPF) that considers not only the relative distance, but also the relative velocity between the
robot and the moving obstacle. In this way, an optimized strategy can be made according to the
motion status of the moving obstacle, which leads to a safer and efficient planned path compared to the
state-of-the-art works, e.g., ROS path plan module. Finally, we demonstrate the proposed idea in the
real environment using the Turtlebot robot, and the experiment results prove our claims. Future work
will be extending current work to the environment with an unknown map and multiple randomly
moving obstacles.
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