Design and Analysis of Cloud Upper Limb Rehabilitation System Based on Motion Tracking for Post-Stroke Patients
Abstract
:1. Introduction
2. Methods
2.1. Platform
2.2. The Cloud System Architecture
2.3. The 3-Dimensional Rehabilitation Training Virtual Game
2.4. Rehabilitation Assessment Module Data Analyses
2.5. Preprocessing
2.6. Reachable Workspace Relative Surface Area (RSA)
2.7. Smoothness Analysis
2.8. Convolutional Neural Network Assessment
2.9. Experiments
3. Results
3.1. Subjects
3.2. Reachable Workspace Results
3.3. Smoothness Analysis Results
3.4. Convolutional Neural Network Assessment Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Song, A.; Pan, L.; Xu, G.; Li, H. Adaptive motion control of arm rehabilitation robot based on impedance identification. Robotica 2015, 33, 1795–1812. [Google Scholar] [CrossRef]
- Shin, J.H.; Bog, P.S.; Ho, J.S. Effects of game-based virtual reality on health-related quality of life in chronic stroke patients: A randomized; controlled study. Comput. Biol. Med. 2015, 63, 92–98. [Google Scholar] [CrossRef] [PubMed]
- Proffitt, R.; Lange, B. Considerations in the efficacy and effectiveness of virtual reality interventions for stroke rehabilitation: Moving the field forward. Phys. Ther. 2015, 95, 441–448. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.H.; Ryu, H.; Jang, S.H. A task-specific interactive game-based virtual reality rehabilitation system for patients with stroke: A usability test and two clinical experiments. J. Neuroeng. Rehabil. 2014, 11, 1–10. [Google Scholar] [CrossRef]
- Bai, J.; Song, A.; Li, H.; Xu, B. Upper extremity rehabilitation training and assessment system for home stroke patients based on workplace measurement. Chin. J. Sci. Instrum. 2018, 39, 74–81. [Google Scholar]
- Taylor, M.J.; McCormick, D.; Shawis, T.; Impson, R.; Griffin, M. Activity-promoting gaming systems in exercise and rehabilitation. J. Rehabil. Res. Dev. 2011, 48, 1171–1186. [Google Scholar] [CrossRef]
- Ustinova, K.I.; Leonard, W.A.; Cassavaugh, N.D.; Ingersoll, C.D. Development of a 3D immersive videogame to improve arm-postural coordination in patients with TBI. J. Neuroeeng. Rehabil. 2011, 8, 61. [Google Scholar] [CrossRef] [PubMed]
- Mobini, A.; Behzadipour, S.; Saadat, M. Test–retest reliability of Kinect’s measurements for the evaluation of upper body recovery of stroke patients. BioMed. Eng. OnLine 2015, 14, 1–13. [Google Scholar] [CrossRef]
- Adams, R.J.; Lichter, M.D.; Krepkovich, E.T.; Ellington, A.; White, M.; Diamond, P.T. Assessing upper extremity motor function in practice of virtual activities of daily living. IEEE Trans. Neural Syst. Rehabil. Eng. 2015, 23, 287–296. [Google Scholar] [CrossRef]
- Vieira, A.; Gabriel, J.; Melo, C.; Machado, J. Kinect system in home-based cardiovascular rehabilitation. J. Eng. Med. 2017, 231, 40–47. [Google Scholar] [CrossRef] [PubMed]
- Gladstone, D.J.; Danells, C.J.; Black, S.E. The fugl-meyer assessment of motor recovery after stroke: A critical review of its measurement properties. Neurorehabil. Neural Repair 2002, 16, 232–240. [Google Scholar] [CrossRef]
- Wolf, S.L.; Catlin, P.A.; Ellis, M.; Archer, A.L.; Morgan, B.; Piacentino, A. Assessing wolf motor function test as outcome measure for research in patients after stroke. Stroke 2001, 32, 1635–1639. [Google Scholar] [CrossRef]
- Macedo, L.G.; Magee, D.J. Differences in range of motion between dominant and nondominant sides of upper and lower extremities. J. Manip. Physiol. Ther. 2008, 31, 577–582. [Google Scholar] [CrossRef]
- Chino, N.; Sonoda, S.; Domen, K.; Saitoh, E.; Kimura, A. Stroke impairment assessment set (SIAS): A new evaluation instrument for stroke patients. Jpn. J. Rehabil. Med. 1994, 31, 119–125. [Google Scholar] [CrossRef]
- Lang, C.E.; Bland, M.D.; Bailey, R.R.; Schaefer, S.Y.; Birkenmeier, R.L. Birkenmeier. Assessment of upper extremity impairment; function; and activity after stroke: Foundations for clinical decision making. J. Hand Ther. 2013, 26, 104–115. [Google Scholar] [CrossRef]
- Nordin, N.; Xie, S.Q.; Wunsche, B. Assessment of movement quality in robot- assisted upper limb rehabilitation after stroke: A review. J. Neuroeng. Rehabil. 2014, 11, 137. [Google Scholar] [CrossRef]
- Hondori, H.M.; Khademi, M. A review on technical and clinical impact of microsoft kinect on physical therapy and rehabilitation. J. Med. Eng. 2014, 16. [Google Scholar] [CrossRef]
- Bai, J.; Song, A.; Xu, B.; Nie, J.; Li, H. A novel human-robot cooperative method for upper extremity rehabilitation. Int. J. Soc. Robot. 2017, 9, 265–275. [Google Scholar] [CrossRef]
- Su, C.J.; Chiang, C.Y.; Huang, J.Y. Kinect-enabled home-based rehabilitation system using dynamic time warping and fuzzy logic. Appl. Soft Comput. 2014, 22, 652–666. [Google Scholar] [CrossRef]
- Chang, Y.J.; Chen, S.F.; Huang, J.D. A Kinect-based system for physical rehabilitation: A pilot study for young adults with motor disabilities. Res. Dev. Disabil. 2011, 32, 2566–2570. [Google Scholar] [CrossRef]
- Han, J.J.; Kurillo, G.; Abresch, R.T.; De Bie, E.; Nicorici Lewis, A.; Bajcsy, R. Upper extremity 3D reachable workspace analysis in dystrophinopathy using Kinect. Muscle Nerve 2015, 52, 344–355. [Google Scholar] [CrossRef]
- Han, J.J.; Bie, E.D.; Nicorici, A.; Abresch, R.T.; Anthonisen, C.; Bajcsy, R.; Kurillo, G.; Mcdonald, C.M. Reachable workspace and performance of upper limb (PUL) in duchenne muscular dystrophy. Muscle Nerve 2016, 53, 545–554. [Google Scholar] [CrossRef]
- Oskarsson, B.; Joyce, N.C.; Bie, E.D.; Bie, E.D.; Nicorici, A.; Bajcsy, R.; Kurillo, G.; Han, J.J. Upper extremity 3D reachable workspace assessment in ALS by Kinect sensor. Muscle Nerve 2016, 53, 234–241. [Google Scholar] [CrossRef]
- Balasubramanian, S.; Melendez-Calderon, A.; Roby-Brami, A.; Burdet, E. On the analysis of movement smoothness. J. Neuroeng. Rehabil. 2015, 12, 112. [Google Scholar] [CrossRef]
- Osu, R.; Ota, K.; Fujiwara, T.; Otaka, Y.; Kawato, M.; Liu, M. Quantifying the quality of hand movement in stroke patients through three-dimensional curvature. J. Neuroeng. Rehabil. 2011, 8, 14. [Google Scholar] [CrossRef]
- Longhi, M.; Giannotti, M.; Prati, P.; Giacobbi, M.; Ruscelli, E.; Mancini, A.; Ottaviani, M.; Montanari, L.; Mazzoli, D. Upper limb evaluation with robotic exoskeleton. Normative values for;indices of accuracy, speed and smoothness. Neurorehabilitation 2013, 33, 523–530. [Google Scholar]
- Yu, T. Kinect Application and Development: Natural Human-Machine Interactive; China Machine Press: Beijing, China, 2014; Volume 3. [Google Scholar]
- Kurillo, G.; Chen, A.; Bajcsy, R.; Han, J.J. Evaluation of upper extremity reachable workspace using Kinect camera. Technol. Health Care 2013, 21, 641–656. [Google Scholar]
- Kurillo, G.; Han, J.J.; Abresch, R.T.; Nicorici, A.; Yan, P.; Bajcsy, R. Development and application of stereo camera-based upper extremity workspace evaluation in patients with neuromuscular diseases. PLoS ONE 2012, 7, e45341. [Google Scholar] [CrossRef]
- Olesh, E.V.; Yakovenko, S.; Gritsenko, V. Automated assessment of upper extremity movement impairment due to stroke. PLoS ONE 2014, 9. [Google Scholar] [CrossRef]
- Balasubramanian, S.; Melendez-Calderon, A.; Burdet, E. A robust and sensitive metric for quantifying movement smoothness. IEEE Trans. Biomed. Eng. 2012, 59, 2126–2136. [Google Scholar] [CrossRef]
- Hogan, N.; Sternad, D. Sensitivity of smoothness measures to movement duration; amplitude; and arrests. J. Mot. Behav. 2009, 41, 529–534. [Google Scholar] [CrossRef] [PubMed]
- Lo Presti, L.; La Cascia, M. 3D Skeleton-Based Human Action Classification: A Survey; Elsevier Science Inc.: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Cho, H.; Yoon, S. Divide and conquer-based 1D CNN human activity recognition using test data sharpening. Sensors 2018, 18, 1055. [Google Scholar]
- Ijjina, E.P.; Mohan, C.K. Human action recognition based on MOCAP information using convolution neural networks. In Proceedings of the Eighth International Conference on Advances in Pattern Recognition, Kolkata, India, 4–7 January 2015. [Google Scholar]
- Wu, D.; Shao, L. Leveraging hierarchical parametric networks for skeletal joints based action segmentation and recognition. In Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Columbus, OH, USA, 23–28 June 2014. [Google Scholar]
- Kim, W.S.; Cho, S.; Baek, D.; Bang, H.; Paik, N.J. Upper extremity functional evaluation by Fugl-Meyer assessment scoring using depth sensing camera in hemiplegic stroke patients. PLoS ONE 2016, 11, e0158640. [Google Scholar] [CrossRef] [PubMed]
Variables | Results |
---|---|
Age, years a | 61.3 (12.9) |
Male: Female | 19:16 |
Time since stroke, weeks | 8.3 (0.8–24.7) |
Infarct: Haemorrhage | 15:20 |
Left: Right side | 14:21 |
FMA score in the affected arm a | 32.3 (14.7) |
Item | Mean | SD |
---|---|---|
Practicality | 4.57 | 0.09 |
Motivation | 4.74 | 0.07 |
Convenience | 4.88 | 0.05 |
Operability | 4.54 | 0.08 |
Interest | 4.91 | 0.05 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, J.; Song, A.; Li, H. Design and Analysis of Cloud Upper Limb Rehabilitation System Based on Motion Tracking for Post-Stroke Patients. Appl. Sci. 2019, 9, 1620. https://doi.org/10.3390/app9081620
Bai J, Song A, Li H. Design and Analysis of Cloud Upper Limb Rehabilitation System Based on Motion Tracking for Post-Stroke Patients. Applied Sciences. 2019; 9(8):1620. https://doi.org/10.3390/app9081620
Chicago/Turabian StyleBai, Jing, Aiguo Song, and Huijun Li. 2019. "Design and Analysis of Cloud Upper Limb Rehabilitation System Based on Motion Tracking for Post-Stroke Patients" Applied Sciences 9, no. 8: 1620. https://doi.org/10.3390/app9081620
APA StyleBai, J., Song, A., & Li, H. (2019). Design and Analysis of Cloud Upper Limb Rehabilitation System Based on Motion Tracking for Post-Stroke Patients. Applied Sciences, 9(8), 1620. https://doi.org/10.3390/app9081620