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Abstract: Accurate measurements of displacements around opening or interfacial shear cracks (shear
ruptures) are challenging when digital image correlation (DIC) is used to quantify strain and stress
fields around such cracks. This study presents an algorithm to locally adjust the displacements
computed by DIC near frictional interfaces of shear ruptures, in order for the local stress fields
to satisfy the continuity of tractions across the interface. In the algorithm, the stresses near the
interface are extrapolated by local polynomials that are constructed using a constrained inversion.
This inversion is such that the traction continuity (TC) conditions are satisfied at the interface while
simultaneously matching the displacements produced by the DIC solution at the pixels closest to the
center of the subset, where the DIC fields are more accurate. We apply the algorithm to displacement
fields of experimental shear ruptures obtained using a local DIC approach and show that the algorithm
produces the desired continuous traction field across the interface. The experimental data are also
used to examine the sensitivity of the algorithm against different geometrical parameters related to
construction of the polynomials in order to avoid artifacts in the stress field.

Keywords: digital image correlation; dynamic interfacial rupture; traction continuity across interfaces

1. Introduction

Understanding the dynamics of shear rupture of interfaces is important for fields ranging from
failure of composites and bimaterial structures, to earthquakes, car brakes, and even to pistons of
internal combustion engines. Recent advances in high-speed camera technologies have enabled the
development of an experimental setup that combines ultra-high-speed photography with digital image
correlation (DIC) to quantify the behavior of propagating dynamic ruptures in the laboratory [1–3],
including full-field measurements of displacements, velocities, strains, and stresses (Figure 1).
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Figure 1. Schematics of the laboratory rupture experiment. Dynamic shear ruptures evolved 
spontaneously along the frictional interface, inclined at an angle α, of two Homalite plates under a 
compressional load P. Ruptures were initiated by the small burst of a NiCr wire placed across the 
interface and connected to a capacitor bank. The white light produced by a flash source was reflected 
by the specimen’s surface and captured by a low-noise high-speed camera, typically at 1–2 million 
frames/s. The portion of the specimen to be imaged, the field of view, was coated by a flat white paint 
and decorated by a characteristic speckle pattern. Next, the textured images were processed by digital 
image correlation (DIC) algorithms to produce a temporal sequence of full-field displacement maps. 
The displacement fields were then post-processed to produce velocity, strain, strain rate, and stress 
maps. 

2. Monitoring Dynamic Shear Ruptures in the Laboratory 

The algorithm developed in this paper is a post-processing algorithm that is designed to enforce 
the continuity of stresses measured near frictional interfaces during experimental dynamic ruptures. 
This section briefly summarizes the experimental setup, diagnostics, image analysis, and numerical 
methods that are used to obtain the displacement, strain, and stress fields before using the algorithm. 
This setup is the evolution of the Caltech “ Laboratory Earthquake Setup ” developed by Rosakis and 
his co-workers over a span of 15 years [1–3,24–29]. A more detailed description of the current form 
of the setup is given in [3]. 

The presentation focuses on the analysis of experimental dynamic ruptures, but the algorithm 
can be used for a wider range of frictional experiments that involve image analysis. The same 
methodology can also be used for the analysis of opening, shear, and mixed-mode cracks at both 
coherent and incoherent (frictional) interfaces separating both similar and dissimilar solids. Such 
interfaces are common in nature (e.g., faults), and are also important to a variety of engineering 
problems involving composites and bi-materials. 

2.1. The Laboratory Setup 

The laboratory setup is designed to study the dynamics of shear ruptures propagating along 
preexisting inclined frictional interfaces via full-field measurements of displacements, velocities, 
strains, and stresses associated with the rupture (Figure 1). Two Homalite-100 quadrilateral plates 
with a frictional interface inclined at an angle α are loaded under uniaxial compression P (Figure 1), 
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Figure 1. Schematics of the laboratory rupture experiment. Dynamic shear ruptures evolved
spontaneously along the frictional interface, inclined at an angle α, of two Homalite plates under a
compressional load P. Ruptures were initiated by the small burst of a NiCr wire placed across the
interface and connected to a capacitor bank. The white light produced by a flash source was reflected
by the specimen’s surface and captured by a low-noise high-speed camera, typically at 1–2 million
frames/s. The portion of the specimen to be imaged, the field of view, was coated by a flat white
paint and decorated by a characteristic speckle pattern. Next, the textured images were processed by
digital image correlation (DIC) algorithms to produce a temporal sequence of full-field displacement
maps. The displacement fields were then post-processed to produce velocity, strain, strain rate, and
stress maps.

DIC is an optical technique used to determine the full-field deformation between a reference and
a deformed image [4–6]. The correlation algorithms use either global or local approaches to compute
the desired field quantities [7,8]. In global approaches, the pattern matching is performed over the
entire domain of analysis, typically using the finite element method [9,10], which allows enforcing
compatibility of the displacement field. In local approaches, the image matching is performed with
small windows, or “subsets”, separated by a distance, referred to as “step”, which can be less than
half a subset size, (i.e., subsets can overlap) [4,11,12]. A number of recent investigations have focused
on evaluating the accuracy and resolution of DIC [13,14]. The full-field measurements enabled by
DIC have been used in a wide range of applications [4,6]. However, standard DIC techniques cannot
capture displacement discontinuities associated with cracks or ruptures, as they assume a continuous
displacement field [4]. Various approaches have been proposed to analyze discontinuous displacement
fields [15–22], but they generally entail the application of constraints with a theoretical interpretation of
the fields. This limits the implementation of such approaches to cases where the theoretical assumptions
are valid.

In a previous study on dynamic ruptures conducted using an experimental setup similar to
that employed here, it was possible to capture the static displacements associated with dynamic
ruptures, after these ruptures traversed a part of a fault, because a low-frame-rate camera with high
resolution (i.e., 4 megapixels) was employed [23]. In that study, the discontinuous displacement field
was accurately mapped by simply having subsets over the interface as the high resolution and low
noise of the images allowed for the subset size to be relatively small compared to the image size, so
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that smearing of the displacement fields caused by having subsets across the interface was minimal.
Generally, local DIC approaches that provide the solution up to half a subset from the interface may
also be sufficient when tracking the quasi-static propagation and opening of tensile crack faces and
the associated strain field, using a large field of views and high-resolution cameras. However, these
correlation approaches are not possible when the subset size is large compared to the field of view (i.e.,
when using low-resolution cameras), such as our ultra-high-speed camera (which has a resolution of
250 × 400 pixels2) or high-resolution cameras, but with comparatively large subset sizes, situations
typically arising in the study of dynamic problems [3]. To resolve the displacement discontinuities
on the interface associated with the propagation of dynamic shear ruptures, the studies in [1–3] used
the commercial DIC software Vic-2D (Correlated Solutions, Inc.) to separately correlate the domains
above and below the interface. While standard local DIC methods calculate displacements up to
half a subset away from the interface, the “fill boundary” algorithm of Vic-2D employed in [1–3]
uses affine transformation functions to extrapolate the displacements from the center of the subset
up to the interface. This enables the use of large subsets in each side of the interface, which are
essential to overcoming the noise associated with ultra-high-speed photography and the analyzed rapid
ruptures. An important limitation of this approach, however, is that the extrapolated displacements
are less accurate than those obtained directly by the actual correlation, especially at pixels near the
interface, which have the largest distance from the subset center. This leads to errors in the strains
and stresses near the interface, which are obtained from the spatial derivatives of the displacement
fields. In addition, the non-coupled correlation of the domains above and below the interface results in
non-physical discontinuities in the tractions across the interface.

This study proposes a simple and fast method to supplement the DIC solution with a
post-processing algorithm that enforces the continuity of normal and shear tractions across the
interface. The algorithm uses a constrained inversion to construct local 2-D polynomials that satisfy
traction continuity conditions at the interface while matching the displacements of pixels closer to
the center of the subset, where the DIC solution is most accurate. The polynomials are then used
to calculate all stress components near the interface. In Section 2, we describe the experimental
setup, including the laboratory experiment, ultra-high-speed diagnostics, the digital image correlation
approach, and the post-processing procedure to turn the displacement fields into strain and stress
fields. In Section 3, we present the method to enforce traction continuity along the interface and study
the effects of the parameters involved in this method on the full-field stresses, displacements and
particle velocities. Implications for the analysis of friction using the stress fields produced by this
approach and conclusions are given in Sections 4 and 5, respectively.

2. Monitoring Dynamic Shear Ruptures in the Laboratory

The algorithm developed in this paper is a post-processing algorithm that is designed to enforce
the continuity of stresses measured near frictional interfaces during experimental dynamic ruptures.
This section briefly summarizes the experimental setup, diagnostics, image analysis, and numerical
methods that are used to obtain the displacement, strain, and stress fields before using the algorithm.
This setup is the evolution of the Caltech “ Laboratory Earthquake Setup ” developed by Rosakis and
his co-workers over a span of 15 years [1–3,24–29]. A more detailed description of the current form of
the setup is given in [3].

The presentation focuses on the analysis of experimental dynamic ruptures, but the algorithm can
be used for a wider range of frictional experiments that involve image analysis. The same methodology
can also be used for the analysis of opening, shear, and mixed-mode cracks at both coherent and
incoherent (frictional) interfaces separating both similar and dissimilar solids. Such interfaces are
common in nature (e.g., faults), and are also important to a variety of engineering problems involving
composites and bi-materials.
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2.1. The Laboratory Setup

The laboratory setup is designed to study the dynamics of shear ruptures propagating along
preexisting inclined frictional interfaces via full-field measurements of displacements, velocities, strains,
and stresses associated with the rupture (Figure 1). Two Homalite-100 quadrilateral plates with a
frictional interface inclined at an angle α are loaded under uniaxial compression P (Figure 1), resulting
in initial shear and normal stresses on the interface of τ0 = Psin(α)cos(α) and σ0 = Pcos2 (α), respectively.
The rupture is nucleated by a local pressure release provided by a rapid expansion of a NiCr wire
filament due to an electrical discharge of Cordin 640 high-voltage capacitor (Cordin, Salt Lake City,
UT, USA). A key aspect of the setup is that the low shear modulus of Homalite enables production of
well-developed dynamic ruptures in samples of tens of centimeters.

Once the rupture initiates, a target area coated with a random black-speckle pattern is monitored
using Shimadzu HPV-X ultra-high-speed camera system (Shimadzu, Kyoto, Japan), capable of recording
up to 10 million frames per second, and Cordin 605 high-speed white-light source system with two
light heads (Cordin, Salt Lake City, UT, USA) (Figure 1). In the experiment reported here, the camera
recorded a sequence of 128 images of the patterns distorted by the propagating rupture, with a
resolution of 400 × 250 pixels2, at a temporal sampling of 2 million frames/second and an exposure
time of 200 ns. Moreover, the HPV-X camera was equipped with a range of prime telephoto lenses,
which allowed it to monitor fields of view of different sizes [3].

2.2. Digital Image Correlation to obtain Displacement Fields

We employed the local digital image correlation (DIC) software Vic-2D (Correlation Solutions Inc.)
to analyze the sequence of images acquired with the HPV-X high-speed camera, and to produce evolving
displacement maps, computed with respect to a selected reference configuration. In local approaches,
the correlation is performed on local “subsets” separated by a distance, referred to as “step”, which can
be less than half the subset size (i.e., subsets can overlap) [4,11,12]. The 2D-DIC algorithms provide the
two in-plane displacement components at each subset center. A parametric study performed in [3]
showed that a subset size of 41 pixels and step size of 1 are needed to accurately resolve the spatial and
temporal features of dynamic ruptures. In order to capture the discontinuous displacement field across
the interface, the correlation is performed separately for the domains above and below the interface.
While standard local DIC approaches are able to produce the displacement map up to half a subset
away from the interface, the “fill boundary” algorithm of Vic-2D uses affine transformation functions
to extrapolate the displacements from the center of the subset up to the interface.

2.3. Post-Processing of the Displacement Fields

Prior to the computation of strain fields, we filtered high-frequency noise from the displacement
fields using a non-local-means (NL-means) filter [23,30,31]. This filter enables the displacement fields to
be smoothed, while maintaining the original signal pattern. An example of full-field displacement maps
of a laboratory rupture obtained using high-speed photography, DIC analysis, and a non-local filter is
given in Figure 1. To facilitate comparisons, we report the same experimental rupture discussed in [1,3],
produced with an applied vertical load P = 23 MPa and inclination angle α = 29◦, and monitored with
a small field of view. This was a super-shear rupture propagating at a speed of 2200 m/s. Super-shear
ruptures are interfacial ruptures whose tip propagates at speeds greater than the shear wave speed of
the surrounding solid, as first observed in [24,26,32,33]. Note that the full-field maps are cropped and
their size is slightly smaller than the reported field of view size. These displacement fields are used
throughout the study to test the capability of new algorithms to enforce traction continuity (TC) at
the interface.
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Strains are computed from the filtered displacement fields using finite difference approximation.
We employ a frame system x1-x2 parallel to the interface and use the central difference scheme for
pixels away from the boundaries [23]:

ε11(i, j, k) =
u1(i, j + 1, k) − u1(i, j− 1, k)

2 s
(1)

ε22(i, j, k) =
u2(i + 1, j, k) − u2(i− 1, j, k)

2 s
(2)

ε12(i, j, k) =
1
2

(
u1(i + 1, j, k) − u1(i− 1, j, k)

2 s
+

u2(i, j + 1, k) − u2(i, j− 1, k)
2 s

)
, (3)

where u1(i, j, k) and u2(i, j, k) are the interface-parallel and interface-normal displacement components,
respectively, for pixel (i, j) and frame k, and s is the step size. Note that the displacements in
Equations (1)–(3) are expressed in pixels. Second-order backward and forward difference schemes are
used to compute strains at the pixels immediately above and below the interface, respectively [1,3].

The stress changes with respect to the reference configuration (before rupture) are computed from
the strain fields using the standard plane-stress linear elastic constitutive equations:

∆σ11(x1, x2, t)
∆σ22(x1, x2, t)
∆σ12(x1, x2, t)

 = E
1− ν2


1 ν 0
ν 1 0
0 0 1− ν



ε11(x1, x2, t)
ε22(x1, x2, t)
ε12(x1, x2, t)

, (4)

where E is the Young’s modulus and ν is Poisson’s ratio. The actual stresses are given by:

σ11(x1, x2, t) = σ11(0)(x1, x2) + ∆σ11(x1, x2, t)
σ22(x1, x2, t) = σ22(0)(x1, x2) + ∆σ22(x1, x2, t)
σ12(x1, x2, t) = σ12(0)(x1, x2) + ∆σ12(x1, x2, t),

(5)

where σ11(0)(x1, x2), σ22(0)(x1, x2) = σ0, and σ12(0)(x1, x2) = τ0 are the pre-stresses at the reference
configuration. Since Homalite-100 is a strain-rate sensitive material at the strain rate levels developed
during these dynamic ruptures, we use the dynamic values of the elastic constants to compute the
stress changes [1,3]. An example of full-field maps of normal and shear stresses calculated from the
displacement fields shown in Figure 1 are given in Figure 2a,b, respectively. The figures clearly show
that the experimental technique enables capturing the spatial and temporal features of the ruptures. In
particular, the more compressional and dilatational regions surrounding the crack are clearly imaged,
as expected for shear ruptures (see [1,3] for more examples and physical insight). However, a significant
limitation is that in the “fill boundary” algorithm of Vic-2D the domains above and below the interface
are correlated and extrapolated towards the interface independently, without applying continuity
constraints along the interface. Therefore, tractions are discontinuous at the interface, especially the
normal component, where at some locations there is a difference of about 9 MPa between the normal
tractions above and below the interface. Note that the increase of normal tractions towards the interface
is the physical consequence of the shear rupture; however, close to the interface the tractions need to
evolve towards being continuous. In the following section we present a post-processing algorithm to
resolve this issue.
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of view of 19 x 12 mm. (a, b) Full-field maps obtained using Vic-2D extrapolation near the interface. 
(c, d) Fulfilled maps obtained with the stress continuity constraints, using a good set of parameters 
nx1, nx2,inter, and nx2,cent. (e–h) Enforcement of stress continuity with extreme values of nx2,inter and nx2,cent 
leads to discontinuities and spurious oscillations in the stress fields. Note that the full-field maps are 
cropped and their size is slightly smaller than the reported field of view size. 

3. A Post-Processing Algorithm to Enforce Traction Continuity along the Interface 

We present a method to supplement the DIC solution with a post-processing algorithm in which 
the displacements are modified in the proximity of the interface, such that the normal and shear 
tractions are continuous across the interface. The main idea is (i) to keep the displacement fields 
obtained with the local DIC up (or close) to the center of the subset touching the interface, and (ii) to 
use a portion of those fields to construct a polynomial extrapolation for the displacement so that 
stresses computed from the extrapolated displacements satisfy traction continuity conditions at the 
interface. The formulation presented here is for a coordinate frame x1-x2, such that x1 is parallel to the 
interface. However, the method can easily be extended to any other frame. The procedure is described 
here for a given column of pixels at a given frame, and was implemented for all the columns and 
frames. 

3.1. Traction Continuity Conditions 

The condition for continuity of normal traction across the interface is given by 𝜎ଶଶሺሻା + Δ𝜎ଶଶା = 𝜎ଶଶሺሻି + Δ𝜎ଶଶି, (6)
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Figure 2. Full-field maps of normal (left) and shear (right) stresses measured for a super-shear crack-like
rupture during a test with α = 29◦, P = 23 MPa (σ0 = 17.6 MPa and τ0 = 9.75 MPa), and a field of
view of 19 x 12 mm. (a,b) Full-field maps obtained using Vic-2D extrapolation near the interface.
(c,d) Fulfilled maps obtained with the stress continuity constraints, using a good set of parameters nx1,
nx2,inter, and nx2,cent. (e–h) Enforcement of stress continuity with extreme values of nx2,inter and nx2,cent

leads to discontinuities and spurious oscillations in the stress fields. Note that the full-field maps are
cropped and their size is slightly smaller than the reported field of view size.

3. A Post-Processing Algorithm to Enforce Traction Continuity along the Interface

We present a method to supplement the DIC solution with a post-processing algorithm in which
the displacements are modified in the proximity of the interface, such that the normal and shear
tractions are continuous across the interface. The main idea is (i) to keep the displacement fields
obtained with the local DIC up (or close) to the center of the subset touching the interface, and (ii) to use
a portion of those fields to construct a polynomial extrapolation for the displacement so that stresses
computed from the extrapolated displacements satisfy traction continuity conditions at the interface.
The formulation presented here is for a coordinate frame x1-x2, such that x1 is parallel to the interface.
However, the method can easily be extended to any other frame. The procedure is described here for a
given column of pixels at a given frame, and was implemented for all the columns and frames.

3.1. Traction Continuity Conditions

The condition for continuity of normal traction across the interface is given by

σ22(0)
0+ + ∆σ22

0+ = σ22(0)
0− + ∆σ22

0−, (6)
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where the superscripts (0+) and (0−) denote the values immediately above and below the interface,
respectively, and σ22(0)

0+ = σ22(0)
0− are the initial stresses. Assuming a linear elastic response for

the materials above and below the interface, the condition in Equation (6) can be written in terms of
strains as

E+

1− ν+2

(
ε22

0+ + ν+1ε11
0+

)
=

E−

1− ν−2

(
ε22

0− + ν−ε11
0−

)
, (7)

where the superscripts (+) and (−) denote the material properties above and below the interface,
respectively. For small strains the condition can be expressed in terms of displacement gradients as

E+

1− ν+2

(
∂u2

∂x2

0+
+ ν+

∂u1

∂x1

0+)
=

E−

1− ν−2

(
∂u2

∂x2

0−
+ ν−

∂u1

∂x1

0−)
. (8)

Similarly, the continuity of shear traction is expressed via

σ12(0)
0+ + ∆σ12

0+ = σ12(0)
0− + ∆σ12

0−, (9)

and

µ+
(
∂u1

∂x2

0+
+
∂u2

∂x1

0+)
= µ−

(
∂u1

∂x2

0−
+
∂u2

∂x1

0−)
, (10)

where µ is the shear modulus.

3.2. Approximating the Displacements with Local Polynomials

In order to modify the displacements near the interface for the jth column of pixels, we approximate
the displacement fields u+

2 , u+
1 , u−2 , and u−1 with local polynomials in terms of both spatial coordinates.

The polynomials are defined over rectangles of nx1 × nx2 pixels above and below the interface, which
are centered at the jth column of pixels (Figure 3). The pixels within each rectangle are divided into a
group of nx1 × nx2,inter pixels that are closer to the interface, and a group of nx1 × nx2,cent pixels that are
closer to the center of the subset. To represent the spatial variations in stresses, we approximate the
displacement fields with cubic polynomials with n = 10 coefficients as

up+
2 (x1, x2) = a10+

2 x1
3 + a9+

2 x1
2x2 + a8+

2 x1
2 + a7+

2 x1x2
2 + a6+

2 x1x2 + a5+
2 x1 + a4+

2 x2
3 + a3+

2 x2
2

+ a2+
2 x2 + a1+

2

up+
1 (x1, x2) = a10+

1 x1
3 + · · ·+ a1+

1

up−
2 (x1, x2) = a10−

2 x1
3 + · · ·+ a1−

2

up−
1 (x1, x2) = a10−

1 x1
3 + · · ·+ a1−

1

. (11)

Note that nx1 and nx2 should be chosen small enough to avoid smoothing local patterns in the
displacement fields.

3.3. Inverting for the Polynomial Coefficients

To obtain the polynomial coefficients, we aim to minimize the misfit between the observed
displacements uob+

2 , uob−
2 , uob+

1 , and uob−
1 , produced by the DIC analysis, and the displacements

predicted by the polynomials up+
2 , up−

2 , up+
1 , and up−

1 at the pixels closer to the center of the subset.
Recall that the DIC solution is computed up to half a subset away from the interface and extrapolated to
the interface by the “fill Boundary” algorithm of Vic-2D. Since we expect such extrapolation to be reliable
close to the center of the subset, but not close to the interface, we can use some of the extrapolated
values by taking nx2,inter < 20 (Figure 3c). We can also exclude the displacement extrapolated by Vic-2D
and consider only the computed values (up to the subset center) by taking nx2,inter ≥ 20 (Figure 3d).
The minimization condition leads to the following system of equations:
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X+
[m×n]

· · · · · · 0
... X−

[m×n]
. . .

...
...

. . . X+
[m×n]

...

0 · · · · · · X−
[m×n]



A+
2[n]

A−2[n]
A+

1[n]
A−1[n]


=


uob+

2[m]

uob−
2[m]

uob+
1[m]

uob−
1[m]

 (12)

where

X+
[m×n]

=


x11

3 x11
2x12 · · · 1

...
...

. . .
...

xm1
3 xm1

2xm2 · · · 1

, x2 > 0

and

X−
[m×n] =


x11

3 x11
2x12 · · · 1

...
...

. . .
...

xm1
3 xm1

2xm2 · · · 1

, x2 < 0

are the sensitivity sub-matrices above and below the interface, respectively,

A+
2[n]

=
[

a10+
2 · · · a1+

2

]T

A−2[n] =
[

a10−
2 · · · a1−

2

]T

A+
1[n]

=
[

a10+
1 · · · a1+

1

]T

A−1[n] =
[

a10−
1 · · · a1−

1

]T

are the assemblies of polynomial coefficients, and m = nx1 × nx2,cent is the number of pixels within the
group closer to the center of the subset.

The polynomials must also fulfill the constraints for continuity of tractions across the interface.
The condition for continuity of normal tractions is enforced by

E+

1− ν+2

∂up0+
2

∂x2
+ ν+

∂up0+
1

∂x1

 = E−

1− ν−2

∂up0−
2

∂x2
+ ν−

∂up0−
1

∂x1

 (13)

and can be assembled into the following matrix form:

 E+

1− ν+2

∂X0+
[nx1×n]

∂x2
−

E−

1− ν−2

∂X0−
[nx1×n]

∂x2

E+

1− ν+2 ν
∂X0+

[nx1×n]

∂x1
−

E−

1− ν−2 ν
∂X0−

[nx1×n]

∂x1




A+
2,[n]

A−2,[n]
A+

1,[n]
A−1,[n]

 = 0, (14)

where, for example,

∂up0+
2

∂x2
=
∂X0+

[nx1×n]

∂x2
A+

2,[n]
=


0 x11

2
· · · 0

...
...

. . .
...

0 xnx11
2
· · · 0

A+
2,[n]

, x2 = 0.

Similarly, the condition for continuity of shear stresses is enforced by
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[
µ+

∂X0+
[nx1×n]

∂x1
−µ−

∂X0−
[nx1×n]

∂x1
µ+

∂X0+
[nx1×n]

∂x2
−µ−

∂X0−
[nx1×n]

∂x2

]


A+
2,[n]

A−2,[n]
A+

1,[n]
A−1,[n]

 = 0. (15)
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Figure 3. (a) A speckled image with two subsets of 41 × 41 pixels above and below the interface (yellow
squares). The post-processing algorithm is performed on the regions inside the subsets marked by
the red rectangles. (b) The geometry of the pixels over which the local polynomials approximating
the displacement fields are defined. The polynomials approximating u+2 , u+1 extend over a rectangle
above the interface, while those approximating u−2 , u−1 extend over a rectangle below the interface;
both rectangles include nx1 × nx2 pixels. The pixels within each rectangle are divided into a group of
nx1 ×nx2,inter pixels that are closer to the interface, and a group of nx1 ×nx2,cent pixels that are closer to the
center of the subset. The observed displacements in the latter group are used together with continuity
of stresses constraints on the interface to construct the polynomials. (c,d) Two different combinations of
nx2,inter and nx2,cent and their relationship with Vic-2D extrapolation. In the first combination, the group
of pixels nx1 × nx2,cent, which are used as data in the inversion, include pixels where the displacement
values were obtained by the “fill boundary” algorithm of Vic-2D.

Different methods can be used to solve the system of equations in Equation (12) together with
the constraints in Equations (14) and (15) for the polynomial coefficients; here we use Matlab (The
MathWorks, Natick, MA, USA) function lsqlin. Once the coefficients are obtained, the displacements
at the pixels of the central column (nx2 pixels above and nx2 pixels below the interface) are replaced
by those predicted by the corresponding polynomials, and the procedure is repeated for all columns
and images. Note that the system of equations to be solved is small because the local polynomials
should represent the local variations in displacements and stresses well. Thus, the computation time
was small, and the modification of all pixel columns within an image was done within 2–3 s for the
images analyzed here (400 pixels along the interface). Figure 4 shows the interface-parallel (a) and
normal (b) displacements at the center of the field of view (j = 190) for the rupture of Figure 1. Both the
displacements obtained by Vic-2D (with the “fill boundary” algorithm) and displacements modified
by TC enforcement are shown. The maximum difference in displacements between the two solutions
was smaller than 0.001 pixels, which is equivalent to 0.5% for u1 and 1.5% for u2, but it was enough to
enforce the continuity of traction.
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Figure 4. Interface parallel (a) and normal (b) displacements at the central columns of the subsets
shown in Figure 3a. The black lines represent the displacements obtained with Vic-2D, while the blue
lines are the displacements modified with the traction continuity algorithm, using nx1 = 5, nx2,inter = 12,
and nx2,cent = 11. The red circles represent the observed displacements that are used to invert for the
coefficients of the displacement polynomials up+

2 , up−
2 , up+

1 , and up−
1 . The black diamonds correspond

to the centers of the subsets.

When the gradients in displacements in the direction parallel to the interface are large, as in the
case of the rupture analyzed in this study, direct calculation of strains and stresses using the modified
displacement fields may not result in completely continuous tractions at the interface. The calculation
of strains and stresses for pixels in column j involves the displacements in columns j−1 and j + 1, as
it requires displacement gradients with respect to x1 (Equations (1)–(4)). When enforcing TC, these
gradients are computed using the polynomial centered at column j. Once the displacement fields
have been updated using the procedure described above, strains can be computed from the updated
displacement fields, using finite difference schemes, as discussed in Section 2.3. However, the finite
differences would be using the displacements of columns j−1 and j + 1, which are obtained from other
polynomials than that used to enforce TC, those centered in columns j−1 and j + 1. As such, the spatial
derivatives of the modified displacement field with respect to x1 would be slightly different than those
obtained during the enforcement of TC, using the polynomial centered at column j. Although the
differences between polynomials centered at two neighboring columns are small, they may be enough
to cause some discontinuities in tractions at the interface. To ensure the continuity of tractions, we
computed strains and stresses within the 2× nx2 band, where displacements are updated directly as the
algorithm goes over each column of pixels (i.e., we calculated the displacement derivatives for column
j with respect to x1 using the displacements in columns j−1 and j + 1 obtained from the polynomial
centered at column j. Full-field maps of stresses modified by the algorithm using nx1 = 7, nx2,inter = 12,
and nx2,cent = 11 (Figure 2c,d) demonstrated the capability of this approach to generate more realistic
and continuous stress fields near the interface. Interestingly, because of the symmetry of the problem,
the enforcement of TC led to normal stresses that are close to the background value (∼17.6 MPa) at
the interface.

3.4. The Effects of the Geometrical Parameters of the Polynomial

It is important to choose appropriate values for the geometrical parameters nx1, nx2,inter, and
nx2,cent in order not to introduce unwanted field distortions. For instance, a choice of a small value of
nx2,inter together with a large value of nx2,cent or vice versa can lead to stress fields that are continuous
on the interface, but have sharp discontinuities (Figure 2e,f) or spurious oscillations (Figure 2g,h) in
the bulk. In this section, we study the effects of different parameter combinations in more details,
aiming to find the parameter sets that avoid these distortions in the stress field. We ran the algorithm
324 times, varying the geometrical parameters in the following ranges: 3 ≤ nx1 ≤ 9, 4 ≤ nx2,inter ≤ 20,
and 5 ≤ nx2,cent ≤ 21. Note that for nx1 ≥ 13 the system was over constrained. Overall, we found that
parameters in ranges of 8 ≤ nx2,inter ≤ 14 (1/5 to 1/3 of the subset size) and 7 ≤ nx2,cent ≤ 15 gave similar
results, independent of the value of nx1.
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We found that the stress fields obtained with the algorithm were insensitive to the value of nx1.
For example, there was no observable difference between full-field maps of stresses obtained with nx1 =

3 and nx1 = 9 (Figure 5a–d). To further examine the effect of nx1, we plot the normal and shear stresses
vs position along two lines perpendicular to the interface at x1 = 170 and 220 pixels (Figure 5e–h).
For both lines there was a “jump” larger than 5.5 MPa in the normal stress at the interface when the
calculation was done with the “fill boundary” algorithm of Vic-2D without TC enforcement. The TC
algorithm enforced the normal stress to be continuous across the interface, with a normal stress at the
interface that was about the average of the normal stresses at the pixels immediately above and below
the interface when TC was not enforced. The results were not sensitive to nx1. A small effect of nx1 on
the shear stress was observed for the line located at x1 = 220 pixels (Figure 5h), with a difference of
0.12 MPa between the results for nx1 = 3 and 9. The shear stress at the interface when TC was enforced
were smaller than the shear stresses at the pixels immediately above and below the interface when TC
was not enforced.
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Figure 5. The effect of parameter nx1 on the stress field. (a–d) Full-field maps of normal (left) and shear
(right) stresses for nx1 = 3 and 9. (e–h) Normal (left) and shear (right) stresses vs position along paths
perpendicular to the interface at x1 = 170 and 220 pixels (grey lines in (c)) for different values of nx1.
The stresses calculated with the “fill boundary” algorithm of Vic-2D without the traction continuity
algorithm are also shown, where the black diamonds correspond to the centers of the subsets above
and below the interface. In all the cases shown in this figure, nx2,inter = 10 and nx2,cent = 11.

As shown in Figure 2e–h, a large difference between the parameters nx2,inter and nx2,cent resulted
in artifacts in the stress field. On the one hand, taking nx2,inter = 4 and nx2,cent = 21 (with nx1 = 7)
resulted in discontinuities at the boundary between the Vic-2D solution and polynomial extrapolation
(Figure 2e,f), nx2,inter + nx2,cent pixels away from the interface due to a poor fit between the stresses
obtained by the polynomial and the original stresses at this region. On the other hand, taking nx2,inter =

20 and nx2,cent = 5 (with nx1 = 7) resulted in spurious oscillations (Figure 2g,h). Some effects of nx2,inter
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were observed also when nx2,cent was fixed at a moderate value (e.g., nx2,cent = 11), especially for the
shear stress. A small value of nx2,inter (e.g., nx2,inter = 6) led to large gradients in the normal stresses
near the interface, as well as to small discontinuities at the pixels located nx2 pixels above and below
the interface (Figure 6a,b). A large value of nx2,inter (e.g., nx2,inter = 16) resulted in an artificial increase
or decrease of stresses at localized regions around the interface compared with the domains above
and below (Figure 6c,d). For example, the normal stress decreased locally at the interface at x1 =

370 pixels (Figure 6c), while the shear stress increased locally at x1 = 170 and 370 pixels (Figure 6d).
Some issues are illustrated further in plots of the normal and shear stresses vs position along two lines
perpendicular to the interface at x1 = 170 and 220 pixels (Figure 6e–h). The value of normal stress on
the interface was similar for nx2,inter ≤ 14, but diverged for higher values, with a difference of about 1
MPa for nx2,inter = 20. For nx2,inter ≤ 6, the TC enforcement resulted in a poor agreement between the
stresses obtained by the polynomial and the original stresses also at the pixels closer to the center of
the subset. The shear stress at the interface also diverged, with an increase of about 1 MPa for nx2,inter
= 16, at x1 = 170 pixels (Figure 6f).Appl. Sci. 2019, 9, x FOR PEER REVIEW 13 of 18 
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Figure 6. The effect of parameter nx2,inter on the stress field. (a–d) Full-field maps of normal (left) and
shear (right) stresses for nx2,inter = 6 and 16. (e–h) Normal (left) and shear (right) stresses vs position
along paths perpendicular to the interface at x1 = 170 and 220 pixels (grey lines in (c)) for different values
of nx2,inter. The circles on the curves correspond to nx2,inter, while the filled diamonds correspond to nx2.
The stresses calculated with the “fill boundary” algorithm of Vic-2D without the traction continuity
algorithm are also shown, where the black diamonds correspond to the centers of the subsets above
and below the interface. In all the cases shown in this figure nx1 = 7 and nx2,cent = 11.

The effect of nx2,cent was generally smaller than that of nx2,inter. Full-field maps of stresses obtained
with nx2,cent = 7 and nx2,inter = 10 (Figure 7a,b), were similar to those in Figure 2c,d. However, large
value of nx2,cent = 19 resulted in small discontinuities in normal stress at the pixels located nx2 pixels
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above and below the interface (Figure 7c,d). Both at x1 = 170 and 220 pixels there was a very small
effect of nx2,cent on the normal stress at the interface (Figure 7e,g). However, for nx2,cent ≥ 17, the fit
between the stresses obtained by the polynomial and the original stresses was poor also for the pixels
closer to the center of the subset. Similarly to nx2,inter, the shear stress at the interface may significantly
have differed for large values of nx2,cent (Figure 7f).Appl. Sci. 2019, 9, x FOR PEER REVIEW 14 of 18 
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4. Implications for Friction Analysis

The experimental setup developed in [1,3], which combines ultra-high-speed photography with
digital image correlation, enables us to observe displacements, velocities, and stresses close to the
interface. For the field of view shown in Figure 1, these quantities can be measured up to 25 µm (0.5
pixels) from the interface using the “fill boundary” algorithm of Vic-2D. This enables studying the
evolution of friction, defined by the ratio f = σ12

0/σ22
0, at any point along the interface, as well as its

dependence on variables such as slip (relative displacement across the interface) and slip rate [1]. As a
first approach to enforce traction continuity on the interface, the tractions σ12

0 and σ22
0 were calculated

in [1] by averaging the stresses at the pixels immediately above and below the interface. Because of the
anti-symmetric and symmetric patterns in the stress changes ∆σ22 and ∆σ12, respectively, the normal
stress on the interface σ22

0 was inferred to be nearly constant, as expected during the propagation of a
dynamic shear rupture along a planar interface, and the shear stress σ12

0 had a smoother evolution
than the individual components σ0+

12 and σ0−
12 above and below the interface. The averaging enabled us
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to study friction, despite large differences between the normal stresses immediately above and below
the interface [1], but it is important to examine whether those average values actually correspond to
the tractions at the interface computed with the continuity condition.

In general, the averaged normal stresses (without TC enforcement) agreed with the normal stresses
computed with TC enforcement for the pixels immediately above and below the interface (Figure 8a),
with some small deviations. Note that, because we enforced the continuity at the interface, the stresses
obtained with TC enforcement for the pixels located 0.5 pixels above and below the interface did not
completely overlap, with a maximum difference of 0.3 MPa. Because of its symmetry with respect to the
interface, the discontinuity in shear stress across the interface for the original Vic-2d results (Figure 8b)
was significantly smaller than in the normal stress. Overall, there was a good agreement between the
shear tractions obtained by the averaging procedure and those obtained with TC enforcement, again,
with some minor differences. Interestingly, the differences were consistently smaller in the cohesive
zone (the zone where the shear traction drops from a maximum to a residual value), with a maximum
difference of about 1 MPa at x1 = 9 mm. This is also shown locally in Figure 5h. Because the stresses
were computed from displacement gradients, small changes in the displacements were enough to
enforce the traction continuity on the interface, and there were only minor differences between the
interface-parallel displacements and velocities obtained with TC enforcement and those obtained
without TC enforcement (Figure 8c,d). The small differences in stresses resulted in some differences in
the evolution of local friction with slip and slip rate (Figure 8e,f). However, the important characteristics
of the local friction, such as the peak, residual levels, and weakening distance, were similar.Appl. Sci. 2019, 9, x FOR PEER REVIEW 16 of 18 
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Figure 8. (a,b) normal and shear stresses along the interface. The black curves represent the stresses
±0.5 pixels from the interface obtained without traction continuity (TC) enforcement, while the green
curve represents the average of the two. The blue curves represent the stresses obtained with TC
enforcement ±0.5 pixels from the interface. (c,d) Interface-parallel displacements and velocities ±0.5
pixels from the interface, obtained with (blue) and without (black) TC enforcement. (e,f) Resolved
friction vs slip and slip rate at x1 = 8.5 mm, obtained with (blue) and without (black) TC enforcement.
Both curves represent the average of the values immediately above and below interface. The polynomial
geometrical parameters are nx1 = 7, nx2,inter = 10, and nx2,cent = 11.
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5. Conclusions

In this work, the local DIC solution is supplemented with a fast post-processing algorithm to
enforce the continuity of tractions across the interfaces of shear ruptures. This procedure allows us to
obtain more physically meaningful stress fields near the interface, which is important when DIC is
applied to study the dynamics of laboratory frictional ruptures. In the algorithm, the stresses near
the interface are calculated from local polynomials that are constructed using a constrained inversion.
This inversion is such that the resulting displacements match the displacements of pixels closer to
the center of the subset, where the DIC solution is most accurate, while the resulting stresses satisfy
traction continuity conditions at the interface.

We applied the algorithm to the displacement fields of a laboratory shear rupture obtained with
a local DIC procedure, to show that the algorithm indeed produces the desired continuous traction
fields across the interface. A sensitivity study provided a constraint on the parameters nx2,inter, nx2,cent,
and nx1 involved in the construction of the polynomials, such that undesired artifacts in the stress
fields were eliminated. We found that parameter ranges of 8 ≤ nx2,inter ≤ 14 (1/5 to 1/3 of the subset
size) and 7 ≤ nx2,cent ≤ 15 gave similar results, independent of the value of nx1. Relatively minor
changes in displacement fields around the interface can produce non-negligible gradient changes,
resulting in some non-uniqueness regarding the exact stress evolution towards the interface, even if
the traction continuity is enforced. Future progress can be made by combining the results inferred by
the analysis presented in this work with dynamic rupture modeling that matches the observed full
fields. The dynamic solutions can then be interrogated for the spatial dependencies of stress fields next
to the interface.

The averaging procedure for stresses above and below the interface, employed in the previous
study [1] to study friction, works well to mimic the traction continuity across the interface due to the
special nature of this rupture problem that exhibits certain symmetries across the interface. However,
the averaging procedure may not work as well in cases where the symmetries are disrupted, as in the
case of ruptures approaching a free surface [27]. We will examine such cases in future studies.
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