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Abstract: Current water color remote sensing algorithms typically do not consider the vertical
variations of phytoplankton. Ecolight with a radiative transfer program was used to simulate the
underwater light field of vertical inhomogeneous waters based on the optical properties of a eutrophic
lake (i.e., Lake Chaohu, China). Results showed that the vertical distribution of chlorophyll-a
(Chla(z)) can considerably affect spectrum shape and magnitude of apparent optical properties
(AOPs), including subsurface remote sensing reflectance in water (rrs(λ, z)) and the diffuse attenuation
coefficient (Kx(λ, z)). The vertical variations of Chla(z) changed the spectrum shapes of rrs(λ, z)
at the green and red wavelengths with a maximum value at approximately 590 nm, and changed
the Kx(λ, z) from blue to red wavelength range with no obvious spectral variation. The difference
between rrs(λ, z) at depth z m and its asymptotic value (∆rrs(λ, z)) could reach to ~78% in highly
stratified waters. Diffuse attenuation coefficient of downwelling plane irradiance (Kd(λ, z)) had
larger vertical variations, especially near water surface, in highly stratified waters. Three weighting
average functions performed well in less stratified waters, and the weighting average function
proposed by Zaneveld et al., (2005) performed best in highly stratified waters. The total contribution
of the first three layers to rrs(λ, 0−) was approximately 90%, but the contribution of each layer
in the water column to rrs(λ, 0−) varied with wavelength, vertical distribution of Chla(z) profiles,
concentration of suspended particulate inorganic matter (SPIM), and colored dissolved organic matter
(CDOM). A simple stratified remote sensing reflectance model considering the vertical distribution of
phytoplankton was built based on the contribution of each layer to rrs(λ, 0−).

Keywords: vertical distribution of phytoplankton; underwater light field; subsurface remote sensing
reflectance; weighting average function

1. Introduction

The frequent occurrence of algal blooms in eutrophic lakes is a worldwide problem that threatens
ecological and environmental safety, drinking water resources, and human activities. Under the
regulation of self-buoyancy and environmental conditions (e.g., light intensity, wind, waves), algae
can move up and down in the water column, and exhibit a vertically inhomogeneous distribution of
chlorophyll-a (Chla(z), z refers to water depth, Table 1). The Gaussian and shifted Gaussian models
have often been used to illustrate the vertical non-uniform profiles of phytoplankton in oceanic
waters [1–6]. Meanwhile, four vertical distribution classes (vertically uniform, Gaussian, exponential,
and hyperbolic) of Chla(z), with the maximum value on the water surface, were observed in a shallow
eutrophic lake (i.e., Lake Chaohu, China) with a large content of cyanobacteria [7].
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Table 1. Acronyms, abbreviations, and symbols of the parameters used in this study.

Acronyms and Abbreviations

AOPs Apparent optical properties
CDOM Colored dissolved organic matter

IOPs Inherent optical properties
OACs Optically active constituents

Symbols

a(λ) Total absorption coefficient at λ nm (m−1)
ag(λ) Absorption coefficient of CDOM at λ nm (m−1)
bb(λ) Total backscattering coefficient at λ nm (m−1)
Chla Chlorophyll-a concentration (mg/m3)

Chla(z) Vertical profile of chlorophyll-a concentration at water depth z m (mg/m3), described by
three parameters: C0, h, and σ

Ed(λ, z) Downwelling plane irradiance at λ nm and water depth z m (W m−2 nm−1)
Eu(λ, z) Upwelling plane irradiance at λ nm and water depth z m (W m−2 nm−1)

Fr(z1, z2) Fraction of rrs(λ,0−) at the layer between z1 m and z2 m
G(λ, z) = rrs(λ, z)/(bb(λ, z)/(a(λ, z) + bb(λ, z)))

gGC Average weighting function derived by Gordon and Clark (1980) [8]
gS Average weighting function derived by Sokoletsky and Yacobi (2011) [9]
gx Average weighting function, x represents the different functions
gZ Average weighting function derived by Zaneveld et al. (2005) [10]

IOP’(λ, z) = bb(λ, z)/(a(λ, z) + bb(λ, z))
Lu(λ, z) Upwelling radiance at λ nm and water depth z m (W m−2 sr−1 nm−1)

Kd Diffuse attenuation coefficient of downwelling plane irradiance (m−1)
KLu Diffuse attenuation coefficient of upwelling radiance (m−1)
Ku Diffuse attenuation coefficient of upwelling plane irradiance (m−1)

rrs(0−) Remote sensing reflectance just below the water surface (sr−1)
rrs(z) Remote sensing reflectance at water depth z m (sr−1)
rrs(zb) The asymptotic value of rrs(z) at deep water zb m (sr−1)
Rrs(λ) Remote sensing reflectance just above the water surface at λ nm (sr−1)

rrs-v(0−) Model derived rrs(0−)of stratified waters (sr−1)
θ Solar zenith angle (◦)
Sg Spectral slope of ag spectrum from 400 to 700 nm (nm−1)

SPIM Suspended particulate inorganic matter (mg/L)

Ocean color remote sensing has been extensively used to monitor eutrophication by estimating
the concentrations of Chla [11,12] and phycocyanin (PC) [13,14], area, and frequency of algal
blooms [1,2,15,16] in oceanic, coastal, and inland waters. Notably, remote sensing reflectance (Rrs(λ))
is related to the optical characteristics of water constituents within a certain depth [17]. However,
current remote sensing inversion models are typically developed based on the relationship between
Rrs(λ) and bio-optical parameters near the water surface, or based on the assumption that Chla and the
corresponding inherent optical properties (IOPs) are vertically uniform. In fact, the inhomogeneous
distribution of phytoplankton considerably affects the spectrum shape and magnitude of Rrs(λ) [18–20].
The differences in Rrs(λ) between the vertical nonuniform and uniform water can be as high as >70%
when the near-surface Chla decreases dramatically with depth [21]. Vertical variations of Chla(z) and
IOPs(z) would introduce large errors in estimation of optical parameters using water color inversion
algorithms built based on the assumption of vertical homogeneity [19,21,22].

Apparent optical properties (AOPs) are optical properties that depend on IOPs and ambient
light [23]. The underwater light field depends on the sun’s position, the wavelength of light,
the scattering and absorption properties of water constitutes, water depth, aerosols, roughness of water
surface, and cloud conditions [23,24]. The radiative transfer equation (RTE) provides a connection
between IOPs and AOPs. Several approaches, including Monte Carlo simulation [25–28], the invariant
imbedding method [23], and the discrete ordinate method [29], have been used to obtain numerical
solutions for the RTE of water via the necessary boundary conditions. Several vector radiative transfer
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models of coupled ocean–atmosphere system (e.g., studies in References [30–36]) were developed to
predict the radiance and degree of polarization of the light using various numerical methods.

Through theoretical analyses and numerical modeling, sub-surface remote sensing reflectance
(rrs(0−)) was determined to be generally proportional to the ratio of bb/(a + bb), where a is the absorption
coefficient and bb is the backscattering coefficient [37,38]. The most extensively used forward remote
sensing model was reported by Gordon et al. [39] and is expressed as follows:

rrs(0−) = g
bb

a + bb
, (1)

g = g0 + g1
bb

a + bb
, (2)

where, g0 = 0.0949, and g1 = 0.0794 for nadir-viewed rrs(0−). Parameter g is related to the sun’s zenith
angle, viewing angle, bottom reflection, and radiance distribution [40]. However, this model was built
based on the assumption of vertical homogeneity, and thus, the use of Equation (1) to model rrs(0−)
would lead to limitations in stratified waters. For example, two waters with the same surface a and bb
but different vertical profiles of Chla(z) may have varying values and spectrum shapes of rrs(0−) and
Rrs(λ). In such case, rrs(0−) contains the signal from vertical variation of phytoplankton, and is not
related well to the bb/(a + bb) near the water surface in stratified waters. Stramska and Stramski [19]
emphasized the necessity of understanding the relationship between the vertical distribution of IOPs(z)
and Rrs(λ). The relationship between bb(z)/(a(z) + bb(z)) in each water depth and rrs(0−) could explain
the effects of vertical distribution of phytoplankton on underwater light field.

Several approaches have been proposed to reduce the effects of vertical distribution of
phytoplankton on Rrs(λ) [9,10,17]. The Rrs(λ) of stratified Case I waters was interpreted and found to
be identical to that of hypothetical homogeneous waters with phytoplankton pigment concentration
(Crs), which is a depth-weighted average of the actual profiles of pigment concentration [8]. This
hypothesis was accepted and used in several studies on stratified waters by changing the average
weighting function [2,3,10]. Zaneveld et al. [10] proposed that Rrs(λ) is a function of the derivative of
the round trip attenuation of the downwelling and backscattered light, while it was usually modeled
as being dependent on the round trip attenuation [8]. Pitarch et al. [41] added a degree of freedom
between the aforementioned two functions [8,10] to retrieve vertical profiles of the total suspended
matter concentration. Besides, the average Chla(z) within the penetration layer or certain water depth
was used to replace the vertically weighted Chla in Lake Kinneret [9].

Effects of Chla(z) vertical distribution on Rrs(λ) and Chla estimation have been studied based on
the relationship between Rrs(λ) and structure parameters of Chla(z) profiles in Lake Chaohu, China [21].
With the knowledge of Chla(z) profile parameters, Rrs(λ) of nonuniform waters can be corrected to the
Rrs(λ) of uniform waters with same average Chla across the water column [21]. However, structure
parameters of Chla(z) profiles were difficult to obtain from Rrs(λ). In addition, how the Chla(z) vertical
inhomogeneous affect the underwater light field of eutrophic lakes was not known. In this study, on
the basis of radiative transfer simulation, effects of Chla(z) vertical profiles on underwater light field in
eutrophic lakes were first analyzed. The objectives are to (1) analyze the influence of Chla(z) vertical
distribution on Kx(λ, z) and rrs(λ, z); (2) calculate the contribution of IOPs(λ, z) between depths z1 and
z2 to rrs(λ, 0−) by evaluating different weighting average functions; and (3) establish a simple remote
sensing reflectance model considering the vertical distribution of phytoplankton in eutrophic lake.
Contribution of IOPs(λ, z) to rrs(λ, 0−) of a certain water depth could provide useful guidance to field
measurement. Considering the vertical distribution of phytoplankton on underwater light fields can
help to understand the light fluctuations and improve the inversion of optically active constituents
(OACs) in eutrophic lakes in the future.
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2. Data and Methods

2.1. Field-Measured Dataset

Three field surveys were performed in Lake Chaohu in 2013 (28 May, 19–24 July, and 10–12
October) [7]. Water samples were obtained from 9 depths (surface, 0.1, 0.2, 0.4, 0.7, 1.0, 1.5, 2.0,
and 3.0 m) using an ad hoc vertical collection device. The samples of water surface (0 m) were
collected directly using a water sampler. The Chla value was measured using a Shimadzu UV-2600
spectrophotometer after filtering with Whatman GF/C glass-fibre filters (pore size of 1.1 µm) and
extraction pigment using 90% acetone extraction [42,43]. For suspended particulate inorganic matter
(SPIM), water samples were filtered using the pre-combusted and pre-weighted 47 mm Whatman GF/F
glass fiber filters. The filters were then dried at 105 ◦C for 4–6 h, SPIM was derived gravimetrically by
burning organic matter from the filters and weighting the filters again [44]. Water samples were filtered
using 0.22-µm pore-size filters, and absorption coefficient of colored dissolved organic matter (ag(λ),
280 nm to 700 nm with 1 nm interval) was measured using a Shimadzu UV-2600 spectrophotometer.
Additional information regarding the measurements and processing methods used to derive Chla,
SPIM, and ag(λ) can be found in previous studies [21,45,46].

Chla values showed a large range (max/min ratio = 268.78) and variability (standard deviation
(SD)/mean = 2.62). The CV (coefficient of variation = SD/mean) of Chla(z) vertical profiles ranged from
4% to 239% with an average value of 67% [7]. The Chla(z) vertical profiles were classified into 4 classes:
Vertically uniform (Class 1), Gaussian (Class 2), exponential (Class 3), and hyperbolic (Class 4) [7].
In this study, Gaussian distribution type was analyzed, as the exponential and hyperbolic types were
usually measured in the cases with high content of algal blooms.

Gaussian functions with maximum values on the water surface was used to describe
Chla(z) profiles:

Chla(z) = C0 +
h

σ
√

2π
exp[−

1
2
(

z
σ
)

2
], (3)

where C0 is the background value of Chla(z) in the water column, and h and σ determine the vertical
variations of Chla(z).

Mean CV of vertical profiles of SPIM and dissolved organic carbon (DOC) was 28% (8–64%) and
14% (6–34%), respectively, which was obvious lower than that of Chla(z) profiles. Note that the vertical
profiles of ag(λ) were not measured in this study, so the vertical profiles of ag(λ) were assumed to be
vertical uniform according to the vertical variation of DOC. SPIM and ag(λ) were set to be vertically
homogeneous with the average value of field measurements in Lake Chaohu (Table 2).

Table 2. Input parameters of Ecolight simulation: Solar zenith angle (θ), suspended particulate inorganic
matter (SPIM), absorption coefficient of colored dissolved organic matter (CDOM) at 440 nm (ag(440)),
and spectrum shape of CDOM absorption coefficient (Sg). C0, h, and σ are structure parameters of
Chla(z) profiles.

Input Parameters Default Values Variable Values

λ (nm) 400–750, every 5 nm \

Wind speed (m/s) 2.25 \

θ(◦) 30 15–75, every 15◦

SPIM (mg/L) 30 0–60, every 5 mg/L
ag(440) (m−1) 0.85 0–4.0, every 0.5 m−1

Sg (nm−1) 0.019 \

C0 0–40, every 5 \

h 1–76, every 5 \

σ 0.2–1.4, every 0.2 \
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2.2. Ecolight Simulation Data

Ecolight (version 5, Sequoia Scientific, Inc., Bellevue, WA, USA) was used to simulate the
underwater light field of waters with four types of constituents: Pure water, phytoplankton, mineral
particles, and colored dissolved organic matter (CDOM). According to the field dataset of Lake Chaohu,
China, details of the input parameters of Ecolight simulation are presented in Table 2. The specific
inherent optical properties (SIOPs), phase functions, and backscattering ratio were same as those in
the study of Xue et al. [21] according to the field measurement of OACs and IOPs in Lake Chaohu.
Water depth was set as 0–3.0 m with an interval of 0.1 m based on the mean water depth (~2.6 m)
of Lake Chaohu. Furthermore, as penetration depth is evidently lower than water depth in Lake
Chaohu, scattering signal from the bottom of water was not taken into consideration. The simulations
were performed from 400 to 750 nm with an interval of 5 nm, and the solar zenith angle (θ) was
set as 30◦. Wind speed was set as 2.25 m/s to obtain the slope statistics of the air–water interface
(refractive index = 1.34). Inelastic radiative processes, including Raman scattering by water molecules,
fluorescence by CDOM, and fluorescence by Chla, were also considered in the Ecolight simulation.
Raman scattering was calculated for the Raman scattering coefficient at a reference wavelength of
488 nm using the default algorithm in Ecolight. For Chla fluorescence, the quantum efficiency of 0.02
was used, and it was assumed to be independent of excitation wavelength [23]. The RADTRAN-X
subroutine of Ecolight was used to model the incident solar and sky irradiances the water surface
under clear sky conditions [23].

There were total 1008 Chla(z) profiles: The range of C0 is 0–40 with an interval of 5, that of h is
1–76 with an interval of 5, and that of σ is 0.2–1.4 with an interval of 0.2 (Table 2). The underwater light
field of the 1008 vertical inhomogeneous of Chla(z) profiles and the corresponding homogeneous cases
(N = 1008) with average Chla value in the water column were simulated using Ecolight. Moreover,
six representative profiles (L1–L6, Figure 1a) with different vertical variations of Chla(z) and vertical
homogeneous SPIM (=30 mg/L) and ag(440) (=0.85 m−1) were selected to describe the effects of Chla(z)
vertical distribution on the underwater light field. Chla(z) profiles of L1 (C0 = 5, h = 16, σ = 0.6) and L2
(C0 = 10, h = 16, σ = 0.6) exhibited less variability, whereas L5 (C0 = 10, h = 16, σ = 0.2) and L6 (C0 = 10,
h = 21, σ = 0.2) changed dramatically near the water surface. The associated a(z) and bb(z) profiles at
550 nm presented a similar vertical tendency as Chla(z) (Figure 1b,c). bb/(a + bb)(550) demonstrated an
inverse distribution with Chla(z), a(z), and bb(z) profiles (Figure 1d). In addition, the six representative
Chla(z) profiles with varying SPIM (0−60 mg/L with an interval of 5 mg/L) and ag(440) (0−4.0 m−1

with an interval of 0.5 m−1) were simulated to illustrate the effects of SPIM and ag(440) on underwater
light field.

After the Ecolight simulation, two AOP parameters, namely, subsurface remote sensing reflectance
(rrs(λ, z)) and the diffuse attenuation coefficient (Kx(λ, z)), were used to describe the spectral and
vertical variations of the underwater light field. rrs(λ, z) is the ratio of upwelling radiance (Lu(λ, z)) to
downwelling plane irradiance (Ed(λ, z)) at wavelength λ nm and water depth z m in the water column:

rrs(λ, z) =
Lu(λ, z)
Ed(λ, z)

. (4)

Kx(λ, z), particularly Kd(λ, z), Ku(λ, z), and KLu(λ, z), represents the diffuse attenuation coefficients
of Ed, upwelling plane irradiance (Eu(λ, z)), and Lu, respectively. Kx(λ, z) is defined as follows [23]:

Kd(λ, z) = −
d ln Ed(λ, z)

dz
= −

1
Ed(λ, z)

dEd(λ, z)
dz

, (5)

Ku(λ, z) = −
d ln Eu(λ, z)

dz
= −

1
Eu(λ, z)

dEu(λ, z)
dz

, (6)

KLu(λ, z) = −
d ln Lu(λ, z)

dz
= −

1
Lu(λ, z)

dLu(λ, z)
dz

. (7)



Appl. Sci. 2019, 9, 1635 6 of 23

Although it is defined differently in practice, Kx(λ, z) often has nearly the same values in vertically
homogeneous waters except near the surface, and it asymptotically approaches the same value at
great depth.
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Figure 1. Bio-optical properties of six representative examples: (a) Chla(z), (b) a(550), (c) bb(550), and
(d) bb/(a + bb)(550). Different lines represent different vertical structure parameters (C0, h, σ) of Chla(z)
profiles: L1 (5, 16, 0.6), L2 (10, 16, 0.6), L3 (10, 21, 0.6), L4 (5, 16, 0.2), L5 (10, 16, 0.2), L6 (10, 21, 0.2).

2.3. Contribution of Each Layer to rrs(0−, λ)

In accordance with radiative transfer theory, Chla(z) profiles changed the AOPs(λ, z) of the
underwater light field by modifying the IOP(λ, z) profiles. The relationship between the IOP(λ, z) of
each layer and rrs immediately below the water surface (rrs(λ, 0−)) can be constructed through the
Kx(λ, z) profiles based on the average weighting approach [8], and this relationship can then be used to
calculate the contribution of each layer to the rrs(λ, 0−).

The contribution of each layer between z1 m and z2 m to a remotely sensed signal can be derived
using Equation (8) [10]:

Fr(z1, z2) =

∫ z2

z1

IOP′(z)
d
dz

[exp{−
∫ z

0
[gx(z′)]dz′}]dz/

∫
∞

0
IOP′(z)

d
dz

[exp{−
∫ z

0
[gx(z′)]dz′}]dz, (8)

IOP′(z) =
bb(z)

a(z) + bb(z)
, (9)

where Fr(z1, z2) is the fraction of rrs(λ, 0−) at the layer between z1 m and z2 m, gx(z) is the average
weighting function. Three weighting average functions, namely, gGC [8], gZ [10], and gS [9], are
as follows:

gGC(λ, z) = exp(−2

z90∫
0

Kd(λ, z′)dz′), (10)
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where z90 is the depth at which 90% of the surface Ed(λ) has been attenuated.

gZ(λ, z) = 2Kd(λ, z) exp(−2

z∫
0

Kd(λ, z′)dz′), (11)

where the depth dependence of gZ is a function of the derivative of the round-trip attenuation of the
downwelling and backscattering light. Gordon and Clark [8] stated that 2Kd(z) should be the sum of
Kd(z) and KLu(z), hence Kd + KLu is also used to compare their performance with 2Kd in gGC and gZ.

gS(λ, z) =
∫ z

0 bbd(λ, z) exp{−[Kd(λ, z) + Ku(λ, z)]}dz′

≈

∫ z
0 Kd(λ, z) exp[−3Kd(λ, z)]dz′

, (12)

where bbd is the diffuse backscattering coefficient, which is difficult to obtain. Thus, gS is written as a
function of Kd in the extreme case of bb(z) ∝ Kd(z) [9].

To evaluate the performance of the model, the coefficient of correlations (R2) and the average
absolute percentage difference (APD, %) were calculated to identify the difference between the
simulated data (Xi) and the modeled data (Yi).

APD =
1
n

n∑
i=1

|Yi −Xi|

Xi
× 100% (13)

3. Results

3.1. Effects of Chla(z) Profiles on rrs(λ, z)

The six Chla(z) profiles (L1–L6, Figure 1) were used as examples to illustrate the spectral and
vertical variations of rrs(λ, z) in the vertical inhomogeneous waters (Figures 2 and 3). In general, Chla(z)
profiles changed the spectrum and magnitude of rrs(λ, z) at different water depths. Compared with
rrs(λ, z) in homogeneous waters, rrs(λ, z) considerably increased with water depth and reached the
asymptotic value at a certain depth in which Chla(z) became unchangeable. In addition, the spectral
variations of rrs(λ, z) in seriously stratified waters were larger than that of Chla(z) profiles with less
vertical variations. For example, the difference between rrs(λ, z) at depth z and the asymptotic rrs(λ, zb)
value (∆rrs(λ, z)) of L3–L6 was noticeably larger than that of L1 and L2. ∆rrs(λ, z) exhibited spectral
variations at the green and red wavelengths with a maximum value of approximately 590 nm and
showed no evident spectrum shifting of the maximum value (Figure 2).

The vertical variations of rrs(z) were also observed from profiles L1–L6 at 550 nm and 675 nm
(Figure 3a,b). A large ∆rrs typically occurred at a depth in which Chla(z) exhibited large vertical
variations. For example, L1 and L2 achieved the largest variations of Chla(z) and ∆rrs at the water
depth between 0.5 m and 1.0 m, whereas L4 and L6 obtained the largest ∆rrs at the water depth
between 0.2 m and 0.5 m. ∆rrs is also related to the vertical variation of Chla(z) profiles. For example,
the difference of rrs between 0.1 m and 0.2 m at 550 nm (∆rrs(550, 0.1–0.2)) of L6 was 0.014 sr−1, whereas
the ∆rrs(550, 0.1–0.2) of L1 was close to 0.001 sr−1. In general, ∆rrs(λ, z) increased with an increase in h
and a decrease in σ and C0. High h and low σ produce high vertical variation of Chla near the water
surface, thereby leading to high ∆rrs(λ, z) (~78%) in L4 and L6. Moreover, the vertical Chla(z) profiles
considerably affect rrs(z) in low background concentration Chla (C0). The ∆rrs between 0.1 m and 0.2 m
of L5–L6 (C0 = 5) was slightly larger than that of L3–L4 (C0 = 10). That is, rrs will vary substantially in
relatively clear waters with large vertical variations of Chla(z).
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1.0 m). “h” represents that the Chla value was vertical homogeneous, and the water depth is 0.1 m.
“v” represents the vertical inhomogeneous cases. rrs(z) profiles at 550 and 675 nm (grey dash lines)
shown in Figure 3a,b.
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cases of the vertical profiles (L1–L6).

The rrs(λ, z) profiles exhibited a similar vertical trend with bb/(a + bb)(λ, z), but their ratio [G(λ, z)
= rrs(λ, z)/(bb/(a + bb)(λ, z))] varied depending on water depth (Figure 3c,d). G(λ, z) presented a slight
increase in the first layer and then decreased with an increase in depth, particularly in L6 at 675 nm.
However, G(λ, z) showed minimal vertical variation in cases with low vertical variation of Chla(z)
profiles, such as in L1–L2. This indicated that G(λ, z) contains information of vertical variations between
rrs(λ, z) and bb/(a + bb)(λ, z), and the traditional bio-optical remote sensing model (Equation (1)) would
not work in stratified waters. For example, bb/(a + bb)(675, 0−) of L5 is 0.535, the rrs(675, 0−) would be
0.086 sr−1(= 0.535*G(675, 0−)), but the rrs(675, 0−) derived from Ecologht is 0.069 sr−1. The absolute
difference between rrs(675, 0−) without considering vertical variations and Ecolight-derived rrs(675, 0−)
of L5 would be 24.6%.

3.2. Effects of Chla(z) Profiles on Kx(λ, z)

The vertical distributions of Chla(z) also affected the spectral and vertical variations of Kx(λ, z)
(Figures 4–6). Similar to vertically homogeneous waters, Kd(λ, z) had a similar spectrum shape as
Ku(λ, z) and KLu(λ, z), and Kx(λ, z) would reach the same asymptotic value when Chla(z) profiles
became uniform at a great water depth. The Kd(λ, z) in the blue range was approximately thrice as that
in the green and red bands due to the high content of phytoplankton, NAP, and CDOM (Figure 4a).
Kd(λ, z) did not exhibit an evident spectral difference among different water depths with less vertical
variation of Chla(z) (L1 and L2 in Figure 4a,b). However, Kd(λ, z) varied considerably from the blue
to red wavelengths in seriously stratified waters (L4–L6 in Figure 4d–f). That is, the increase in Chla
value at a certain depth added to the attenuation of this layer and increased Kx. The results showed
that the Kd(λ, z) spectrum had highest values at z = 0.2 m in waters with low Chla(z) vertical variation,
but had highest values at z = 0.1 m with large vertical discrepancy in stratified waters (Figure 4). In the
highly stratified waters (L4–L6), Kd(λ, z) spectrum of deep water (e.g., z = 0.5, 1.0 m) showed weak
spectral features in the range of 650 to 700 nm (Figure 4d–f).

The Kx(z) profiles at 550 and 675 nm in L1–L6 showed that Kd(λ, z) had larger vertical variations
than Ku(λ, z) and KLu(λ, z) in highly stratified waters (Figures 5 and 6). Note that the instability of
Kx(λ, z) near water surface (z = 0.1 m) may be caused by the boundary conditions in the air–water
surface. Kd(550, z) had minimal vertical variations and was slightly higher than Ku(550, z) and
KLu(550, z) under conditions with less vertical variability (L1–L2). However, Kd(550, z) had higher
value and larger vertical variability than Ku(550, z) and KLu(550, z) in L3–L6, thereby indicating that
Ed(550, z) decreased more dramatically than Eu(550, z) and Lu(550, z) in these cases. Compared with
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the asymptotic value, the difference between Kx(550, z) at a depth of 0.2 m and the asymptotic Kx(550,
zb) value (∆Kx(550)) in L6 was 1.59, 0.94, and 1.05 m−1 for Kd, Ku, and KLu, respectively. In addition,
compared with vertical homogeneous cases, Kx(550, z) and Kx(675, z) profiles were obvious lower,
especially in highly stratified waters. In general, similar to ∆rrs(λ, z), ∆Kx(λ, z) increased with an
increase in h, and decreased with the decrease of σ and C0.Appl. Sci. 2019, 9, x FOR PEER REVIEW 10 of 23 
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(d) L4 (5, 16, 0.2), (e) L5 (10, 16, 0.2), and (f) L6 (10, 21, 0.2) at different water depths (z = 0.1, 0.2, 0.3,
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profiles. “h” represents that the Chla value was vertical homogeneous, and the water depth is 0.1 m.
“v” represents the vertical inhomogeneous cases. Kd vertical profiles at 550 and 675 nm (grey dash
lines) were showed in Figures 5 and 6, respectively.
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Figure 5. Kx(550) vertical profiles under different Chla(z) distributions: (a) L1 (5, 16, 0.6), (b) L2 (10, 16,
0.6), (c) L3 (10, 21, 0.6), (d) L4 (5, 16, 0.2), (e) L5 (10, 16, 0.2), and (f) L6 (10, 21, 0.2). Kx represents Kd,
Ku, and KLu. The solid lines represent the Kx(550, z) profiles in vertical inhomogeneous waters (“v”);
the dashed lines represent the corresponding cases in vertical homogeneous waters (“h”).
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waters (“v”); the dashed lines represent the corresponding cases in vertical homogeneous waters (“h”).

3.3. Contribution of Each Layer to rrs(0−)

The contribution of each layer to rrs(λ, 0−) can be derived using suitable average weighting
functions and Kx(λ, z) profiles based on the average weighting theory. First, the three average
weighting functions (i.e., gGC, gZ, and gS, Equations (10)–(12)) were compared to select the gx function
with the best performance in our simulated data. Kd + KLu was compared with 2Kd in gGC and
gZ due to the large difference between Kd(λ, z) and KLu(λ, z) in stratified waters. The results
indicated that the combination of gZ with Kd + KLu achieved relatively better performance in obtaining
the weight-averaged rrs(λ, 0−) (Figure 7a). Notably, the average relative error (RE) between the
Ecolight-simulated and weight-averaged rrs(λ, 0−) derived using gZ(Kd + KLu) was low in 490 nm
(~1.2%) and 550 nm (~0.9%), but obviously high in 675 nm (~7.8%). Among all the 1008 simulated
data, data with RE < 2% contributed 82% (827/1008) and 90% (908/1008) in 490 nm and 550 nm,
respectively; but data with RE > 10% were about 21% (208/1008) in 675 nm. Taking L1 as an example,
the weight-averaged rrs(λ, 0−) derived using the five weighting average functions were almost same
with the Ecolight-simulated rrs(λ, 0−), except the wavelength around 675 nm (Figure 7b). It indicated
that Chla fluorescence affected the accuracy of average weighted rrs(λ, 0−) around 675 nm. However,
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the weight-averaged rrs(λ, 0−) showed a little departure from Ecolight-simulated rrs(λ, 0−) in highly
stratified waters (L4, L6), especially in the wavelength ranging from 550 nm to 700 nm (Figure 7c,d).
The weight-averaged rrs(λ, 0−) derived using gZ(Kd + KLu) was considerably closer to the rrs(λ, 0−)
simulated by Ecolight in L6 (Figure 7d).
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Figure 7. Performance of the five combinations of weighting average functions and Kx. (a) Average
relative error of all the simulated data at 490, 550, and 675 nm. Note that 490 nm and 550 nm use the
left axis, and 675 nm uses the right axis. Weighting averaged rrs of (b) L1 (5, 16, 0.6), (c) L4 (10, 16,
0.2), and (d) L6 (10, 21, 0.2) derived by the five weighting average functions. “Z-KdKLu” represents
the approach of Zaneveld et al. (2005) using Kd + KLu in the weighting average function, “Z-2Kd”
represents the approach of Zaneveld et al. (2005) using 2Kd, “GC-KdKLu” represents the approach
of Gordon and Clark (1992) using Kd + KLu, “GC-2Kd” represents the approach of Gordon and Clark
(1992) using 2Kd, and “S” represents the approach of Sokoletsky and Yacobi (2011).

When gZ(Kd + KLu) was used, the average contribution of each layer to rrs(0−) at 490, 550, and
675 nm generally decreased with water depth and varied at different wavelengths (Figure 8a–c).
Overall, layer 1 (0–0.1 m) contributed a noticeably larger budget to rrs(0−) than the second layer
(0.1–0.2 m) and the third (0.2–0.3 m), particularly within the blue range. In vertical inhomogeneous
waters, the first layer contributed 75% and the second layer contributed 20% in the 490 nm; however,
the first layer contributed 50% and the second layer contributed 25% in the 675 nm. That is to say, rrs(0−)
contained information from a certain depth, which also varied with wavelength. The contribution of
each layer to the rrs(0−) of L6 clearly showed the spectral differences at each layer (Figure 8d). The first
two or three layers could dominate rrs(0−) in the blue band, whereas 20% of the contribution would
come from water deeper than 0.3 m in the L6 profile. The first two layers (z = 0–0.2 m) of L6 profile
contributed more than the vertical uniform case, while, the first three layers (z = 0–0.3 m) had similar
contribution in vertical inhomogeneous case and homogeneous case.

The contribution of the first three layers to rrs(0−) were then related to the structure parameters
(C0, h/σ) of Chla(z) profiles (Figure 9). The contribution to rrs(0−) increased with increasing h/σ in the
first layer, but slightly decreased with increasing h/σ in the second and third layers. h/σ represents
the vertical variation of Chla(z) near the water surface. When h/σ was high, Chla(z) would have
noticeably higher value in the first layer, which increased the contribution of this layer. In addition,
with increasing C0, the background value of Chla in the column, the contribution of rrs(0−) increased in
the first layer but decreased in the second and third layers. The effects of the structure parameters of the
Chla(z) profiles on rrs contribution varied among different wavelengths and weakened in deep water.
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Figure 9. Contribution of each layer to rrs(0−) on different vertical structure parameters (C0, h/σ) at
z = 0.1, 0.2, 0.3 m: (a) 490 nm, (b) 550 nm, (c) 675 nm. It indicated that the first three layers would
contribute about 90% to rrs(0−).

Take the six Chla(z) profiles (L1–L6) as examples, the contribution of each layer to rrs(0−) also
varied with different SPIM (ranging from 0 to 60 mg/L) and ag(440) (ranging from 0 to 4 m−1) values
(Figure 10). Compared with those of ag(440), the variations of SPIM considerably influenced the
contribution to rrs(0−). In waters with low SPIM, L1 contributed lower than that in waters with high
SPIM at the range of 550–700 nm. For example, the contribution of L1 to rrs(0−) increased from 17% to
91% at 490 nm and from 16% to 72% at 550 nm with SPIM increasing from 0 to 60 mg/L. Meanwhile,
the contribution of each layer to rrs(0−) had low variations (~5%) with ag(440) ranging from 0 to 4 m−1,
particularly when SPIM was high. Overall, the contribution of each layer to rrs(0−) varied with water
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depth, wavelength, structure parameters of Chla(z) profiles, SPIM, and ag(440). The contribution
to rrs(0−) varied from 30% to 85% in the first layer, ~10–25% in the second layer, and ~10% in the
third layer. However, one important finding was that the contributions of the first two layers were
approximately 80–90% to rrs(0−) in these waters.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 15 of 23 

the contribution of each layer to rrs(0−) had low variations (~5%) with ag(440) ranging from 0 to 4 m−1, 
particularly when SPIM was high. Overall, the contribution of each layer to rrs(0−) varied with water 
depth, wavelength, structure parameters of Chla(z) profiles, SPIM, and ag(440). The contribution to 
rrs(0−) varied from 30% to 85% in the first layer, ~10%−25% in the second layer, and ~10% in the third 
layer. However, one important finding was that the contributions of the first two layers were 
approximately 80%−90% to rrs(0−) in these waters. 

 
Figure 10. Contribution of each layer to rrs(λ, 0−) at different values of SPIM (0–60 mg/L with an 
interval of 5 mg/L, increasing from top to bottom in each large grid) and ag(440) (0–4 m−1 with an 
interval of 0.5 m−1, increasing from top to bottom in each small grid) in the wavelength region from 
400 to 750 nm. Layer 1 is the water depth between 0.0 and 0.1 m; Layer 2 is the water depth between 
0.1 and 0.2 m; Layer 3 is the water depth between 0.2 and 0.3 m. The grey dashed lines represent the 
cases with average SPIM and ag(440) values. 

3.4. Remote Sensing Reflectance Model Considering Vertical Distribution Of Phytoplankton 

The results of numerical simulations indicated that the traditional remote sensing reflectance 
model is insufficient for describing the relationship between rrs(0−) and IOP′(z) in vertically 
inhomogeneous waters. In general, multiple g values (Equation (1)) will exist for the same IOP′(z = 0) 
value on the water surface with a vertical variation of phytoplankton. Based on weighting average 
theory and Equation (8), rrs(0−) in vertically inhomogeneous waters (rrs-v(0−)) can be related to IOP′(z), 
Fr(z), and gx(z) of different water depths. 
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3.4. Remote Sensing Reflectance Model Considering Vertical Distribution Of Phytoplankton

The results of numerical simulations indicated that the traditional remote sensing reflectance model
is insufficient for describing the relationship between rrs(0−) and IOP′(z) in vertically inhomogeneous
waters. In general, multiple g values (Equation (1)) will exist for the same IOP′(z = 0) value on the
water surface with a vertical variation of phytoplankton. Based on weighting average theory and
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Equation (8), rrs(0−) in vertically inhomogeneous waters (rrs-v(0−)) can be related to IOP′(z), Fr(z),
and gx(z) of different water depths.

rrs-v(0−) =
∫
∞

0 IOP′(z) d
dz [exp{−

∫ z
0 [gx(z′)]dz′}]dz

=
n−1∑
i=1

Fr(zi, zi+1) ×
∫ zi+1

zi
IOP′(z) d

dz [exp{−
∫ z

0 [gx(z′)]dz′}]dz

=
n−1∑
i=1

IOP′(zi → zi+1) × Fr(zi, zi+1) ×
∫ zi+1

zi

d
dz [exp{−

∫ z
0 [gx(z′)]dz′}]dz

, (14)

where

IOP′(zi → zi+1) =
bb(λ, zi → zi+1)

a(λ, zi → zi+1) + bb(λ, zi → zi+1)
. (15)

By assuming

Si = Fr(zi, zi+1) ×

∫ zi+1

zi

d
dz

[exp{−
∫ z

0
[gx(z′)]dz′}]dz, (16)

rrs–v(λ, 0−) can be written as the relationship between IOP’(λ, z) and parameter Si(λ, z):

rrs-v(λ, 0−) =
n∑

i=1
[Si(λ) × IOP′(λ, zi)]

= S1(λ) × IOP′(λ, z1) + S2(λ) × IOP′(λ, z2) + . . .+ Sn−1(λ) × IOP′(λ, zn)
. (17)

As waters of the top 0.3 m contributed a large part of rrs(0−) in the simulated data in Lake Chaohu;
hence, a simple, stratified remote sensing model for nadir-viewed rrs(0−) can be built based on Equation
(17). Three simple models (Model A, Model B, and Model C) with polynomial expression were
built using the absorption and backscattering coefficients of the first two or three layers. The model
parameters (SAi, SBi, and SCi) of each model can be determined using the curve fitting toolbox in
MATLAB R2015b.

Model A:

rrs-v1(λ, 0−) = SA1(λ, z(1)) bb(λ,z(1))
a+bb(λ,z(1)) + SA2(λ, z(2)) bb(λ,z(2))

a+bb(λ,z(2)) + SA3(λ, z(3)) bb(λ,z(3))
a+bb(λ,z(3)) (18)

Model B:

rrs-v2(λ, 0−) = SB1(λ, z(1))
bb(λ, z(1))

a + bb(λ, z(1))
+ SB2(λ, z(2))

bb(λ, z(2))
a + bb(λ, z(2))

(19)

Model C:

rrs-v3(λ, 0−) = SC1(λ, z(1))
bb(λ, z(1))

a + bb(λ, z(1))
+ SC2(λ, z(2))

bb(λ, z(2))
a + bb(λ, z(2))

+ SC3(λ) (20)

A similar relative difference between modeled and simulated rrs(0−) occurred in Models A and
B, and approximately 20% of the calibration data had an average error of rrs(0−) > 10% (Figure 11).
The similar performance of Model A and Model B indicated that adding the contribution of waters
between 0.2 m and 0.3 m did not improve the performance of Model A. When a constant term was
added to the expression in Model C, the average difference would decrease to below 10%. Model C
has a maximum error of ~3.5% and an average error of ~0.9% for nadir-viewed rrs(0−) in this study.
Therefore, for the given optical properties, Model C provided rrs(0−) spectra that closely matched the
theoretical values.
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Figure 11. Performances of Model A, Model B, and Model C: (a–c) comparisons between modeled
rrs(0−) and Ecolight-simulated rrs(0−) at 490, 550, and 675 nm, respectively; (d–f) frequency of ∆rrs(0−)
of different models at 490, 550, and 675 nm, respectively.

The parameters of Model C (i.e., SC1, SC2, and SC3) were listed for five sun zenith angles (i.e., 15◦,
30◦, 45◦, 60◦, and 75◦) and three wavelengths (i.e., 490, 550, and 675 nm) (Table 3). Notably, the
parameters for various light geometries and wavelengths can also be developed, which can then be
used to model rrs(λ, 0−) over a wide range of optical properties. The proposed Model C was validated
using the remaining 1/3 Ecolight-simulated data. A comparison between the Ecolight-simulated rrs(0−)
and the model-derived rrs(0−) showed that the stratified rrs model performed well, and only 1.43% of
the validation data had APD of >5%. The average APD was 1.2%, 1.9%, and 1.6% at 490, 550, and
675 nm, respectively (Figure 12).

Table 3. Look up table of model parameters of Model C at different solar zenith angle (θ = 15◦, 30◦, 45◦,
60◦, and 75◦) at 490, 550, and 675 nm.

θ (◦) Parameters 490 nm 550 nm 675 nm

SC1 0.0978 0.0617 0.0758
15 SC2 0.0460 0.1041 0.0836

SC3 −0.0068 −0.0123 −0.0067

SC1 0.0998 0.0644 0.0791
30 SC2 0.0455 0.1023 0.0813

SC3 −0.0067 −0.0120 −0.0065

SC1 0.1034 0.0695 0.0848
45 SC2 0.0443 0.0983 0.0770

SC3 −0.0064 −0.0114 −0.0060

SC1 0.1050 0.0720 0.0879
60 SC2 0.0436 0.0961 0.0744

SC3 −0.0062 −0.0110 −0.0058

SC1 0.1063 0.0746 0.0907
75 SC2 0.0427 0.0930 0.0714

SC3 −0.0059 −0.0104 −0.0054
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Figure 12. Validation of stratified rrs model using Ecolight-simulated data at (a) 490 nm, (b) 550 nm,
and (c) 675 nm at different sun zenith angles (θ = 30◦, 45◦, 60◦), respectively.

The Model C was then validated using the field-measured data (N = 9) in Lake Chaohu on 28
May 2013. The model parameters at 490, 550, and 675 nm were obtained from Table 3, according to
the sampling location and time of each station. The measured Chla(z) profiles, SPIM, ag(440), and
SIOPs were set as the input parameters in Ecolight to derive the Ecolight-simulated rrs(0−) of each
sample. The comparison of model-derived rrs(0−) and Ecolight-simulated rrs(0−) indicated that Model
C performed well with APD = 2.0%, 2.4%, and 4.1% at 490, 550, and 675 nm, respectively (Figure 13a).
The model-derived rrs(0−) was then compared with field-measured rrs(0−), which was derived from
field-measured Rrs(λ) using the Equation (21) [47].

rrs(0−,λ) = Rrs(λ)/(0.52 + 1.7Rrs(λ)). (21)

The results showed that acceptable relative errors were acquired when validating using the
field-measured data (Figure 13). The APD of model-derived rrs(0−) and field-measured rrs(0−) was
12.1%, 17.0%, and 27.8% at 490, 550, and 675 nm, respectively (Figure 13b). The uncertainties may come
from the difficulty in optical closure between Ecolight simulation and field measurement of natural
waters, the measurement of Rrs(λ), and the derivation of rrs(0−) from measured Rrs(λ).
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Figure 13. Validation of stratified rrs model using field-measured data (N = 9) of Lake Chaohu on May
28, 2013. Comparison of rrs-model(0−) with (a) Ecolight-simulated rrs-EL(0−), and (b) field-measured
rrs-field(0−) at 490, 550, and 675 nm. Note that the model parameters were obtained from Table 3
according to the sampling time and location.

4. Discussion

4.1. Performance of Weighting Average Functions

The stratified rrs model was developed by evaluating the weighting average functions and
calculating the contribution of each layer to rrs(0−). If the weighting average function did not perform
well, the contribution of each layer to rrs(0−) (Equation (8)) and the modeled rrs(0−) would be invalid.
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In the present study, five combinations of weighting average functions and Kx indicated that gZ(Kd +

KLu) achieved the best performance, whereas gGC and gS did not perform well, particularly in the green
and red wavelengths in highly stratified waters (Figure 7). Moreover, Piskozub et al. [48] demonstrated
that gGC did not perform well in oceanic waters due to too much weight on the surface layer. The result
in this study was also in accordance with the study of Gordon and Clark [8], in which the use of 2Kd
instead of Kd + KLu in the weighting functions led to minimal errors only (<1%).

Gaussian function with maximum values in the water column is often used to describe Chla(z)
profiles in oceanic waters and deep lakes:

Chla(z) = C0 +
h

σ
√

2π
exp[−

1
2
(

z− zmax

σ
)

2
]. (22)

To discuss the applicability of the stratified rrs model in waters with different maximum Chla
depths (Zmax = 0.0, 0.5, and 1.0 m), the performance of the three weighting average functions (gZ-KdKLu,
gGC-KdKLu, gS) in waters was compared (Figure 14). Evidently, gZ-KdKLu had lower APD (<5%) than
those of gGC-KdKLu and gS in Chla(z) profiles with maximum Chla at water surface Zmax = 0.0 m.
However, these weighting functions performed worse in waters with maximum Chla under water
surface Zmax > 0 m than Zmax = 0.0 m. For example, APD increased dramatically when Zmax = 0.5 m
and 1.0 m, particularly in the blue spectrum (>10%). The APD in the case of Zmax = 1.0 m was slightly
lower than that of Zmax = 0.5 m, thereby indicating that the effects of Chla(z) vertical profiles on Rrs

could be weakened with an increase in Zmax. Overall, the performance of gZ(Kd + KLu) in waters with
different Zmax values verified that the weighting average functions are suitable to shallow eutrophic
waters with Zmax = 0.0 m, but fail in waters with a deep Chla maximum layer [49].
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Kd(λ, z) is very high in the blue region because of the rapid attenuation due to the high content
of phytoplankton, NAP, and CDOM in this study. The magnitude and spectrum shape of Kd(λ, z)
in this study is accordance with the previous studies in turbid productive waters [50–52]. However,
Kd(λ, z) has low value in the blue region, and increases to high values in the red and NIR wavelength
in clear waters [53,54]. The relatively high values of Kd(λ, z) in the red and NIR region results from the
increasing absorption coefficients of pure water in these regions. Note that relatively large error was
obvious in the wavelength ranging from 650 nm to 700 nm when calculating the contribution of each
layer to rrs(0−) (Figure 7) and evaluating the performance of weighting average functions (Figure 14).
Owing to the large difference of attenuation rate between excitation and emission photons of inelastic
scattering, inelastic scattering plays a greater role for the underwater light field at red wavelengths as
depth increases [55]. One possible reason comes from the Chla fluorescence by changing the radiance
field around 685 nm in the water column [56]. Similar to the previous study [55], Kd(λ, z) was spectral
flat at deeper water depth (Figure 4). Note that the difference in spectral of Kx(λ, z) between different
water depths added the errors of weighting average functions. In addition, it demonstrated that
the inelastic processes produce strong depth dependence of the KLu(λ, 0−) in the red and NIR (near
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Infra-red) spectral regions within the near surface layer even within an optically homogeneous water
column [56]. That is, the inelastic scattering in the red and NIR wavelength also contributes the
uncertainties when using Kx(λ, z) in the weighting average functions to model the rrs(0−) in vertical
inhomogeneous waters. Due to the complex influence of inelastic scattering in underwater light field,
we used the default model of inelastic scattering, and did not take the variations of inelastic scattering
into consideration.

4.2. Limitations

A simple stratified remote sensing reflectance model considering Chla(z) vertical distribution
was tested to illustrate the relationships between rrs(0−) and IOP′(λ, z) with vertical variations. This
model related rrs(0−) to absorption and backscattering coefficients, and used model parameters,
varying in wavelength and sun zenith angle, to express the relationship between IOP′(λ, z) of the
top two layers (z = 0–0.1 m and 0.1–0.2 m) and rrs(0−) in stratified waters. One limitation is that this
model is suitable for eutrophic lakes with maximum Chla value on the water surface. The Ecolight
simulation was processed based on field measurement in Lake Chaohu, a shallow eutrophic lake with
frequently occurring algal blooms. Under self-regulation and appropriate environmental conditions
(e.g., temperature, light, and wind), algae typically accumulate on the water surface and exhibit vertical
inhomogeneous distribution with the maximum Chla value on the water surface [7]. Moreover, the
performance of this model depends on the accuracy of weighting average functions; hence, one huge
challenge in its further application is developing appropriate and accurate weighting functions for
waters with different vertical distribution types. Another limitation is that SPIM and CDOM were
assumed to be vertically uniform based on the field data of Lake Chaohu. However, SPIM and CDOM
do not covary with phytoplankton and may not be vertically uniform in natural waters. Thus, attention
should be directed on the different vertical structures of phytoplankton, sediments, and CDOM in
Case 2 waters [10]; and it is common that they are distribute irregularly in the natural waters.

5. Conclusions

The vertical variation of IOPs characterized by Chla(z) vertical profiles with maximum value on
the water surface (shifted Gaussian function) frequently occurs in shallow eutrophic waters. However,
current remote sensing reflectance algorithms typically do not consider the vertical structure of Chla(z)
profiles. Radiative transfer simulations of underwater light field with different vertical profiles of
Chla(z) indicated that vertical variations of phytoplankton considerably affected AOPs, e.g., rrs(λ, z)
and Kx(λ, z), which are key parameters to describe the underwater light field. The vertical distribution
of Chla(z) profiles changed the spectrum shape and magnitude of rrs(λ, z) and Kx(λ, z). The substantial
vertical variation of the underwater light field occurs at water depths with large vertical variations of
Chla(z) profiles. Differences in rrs(λ) between the vertical non-uniform and asymptotic values can reach
78%, particularly when the Chla(z) profiles decreases dramatically with low σ or high h. In addition,
the contribution of the first three layers to rrs(λ, 0−) was approximately 90%, but the contribution of each
layer varied with wavelength, the structure parameters of Chla(z) profiles, SPIM, and CDOM. As an
implication, a stratified remote sensing reflectance model was developed based on the contribution
of each layer to rrs(λ, 0−) to understand the relationship between rrs(λ, 0−) and IOP’(λ, z). To apply
the model to other types of waters, accurate weighting average functions and validation based on
large radiative transfer simulation dataset and field-measured data are necessary. Nevertheless, the
proposed remote sensing reflectance model has the potential to be used in developing water color
remote sensing models in inhomogeneous waters.
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