Triaxial Loading and Unloading Tests on Dry and Saturated Sandstone Specimens
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Specimen Preparation
2.2. Test Scheme
3. Results
3.1. Mechanical Properties
3.2. Fracturing Characteristics
3.3. Energy Evolution of Rock Failure
4. Discussion
5. Conclusions
- (1)
- The peak strength difference between dry and saturated sandstones grows with the increasing of initial confining pressure, and the effect of water on rock strength is more remarkable under high initial confining pressures. As a result, when the sandstone specimens are saturated by water, the values of cohesion, internal friction angle and Young’s modulus are decreased whereas the Poisson’s ratio is increased.
- (2)
- In the conventional triaxial compression test, both macroscopic and microscopic failure of the rocks show a combined tension and shear fracture under low initial confining pressure ( ≤ 10 MPa), but it shows shear fracture under high initial confining pressure ( > 10 MPa). The microscopic failure of the rock in unloading test mainly shows a combined tension and shear fracture, which is consistent with the macroscopic failure of sandstone under low initial confining pressure ( ≤ 20 MPa). However, under high initial confining pressure conditions ( > 20 MPa), it mainly shows shear fracture in macroscopic view. The failure of sandstone in unloading test is more violent than that the failure under triaxial loading test, particularly for dry sandstones.
- (3)
- The energy evolution processes confirm that there are some differences for rock specimens under different confining pressures, particularly for the elastic deformation stage. During this stage, the total energy (U) and elastic strain energy (Ue) curves are almost overlapped when the rock specimen is under low initial confining pressures. However, when the rock is under high initial confining pressures, U and Ue begin to separate, and the absorbed energy is basically stored as Ue, partially as the dissipative strain energy (Ud). The internal damage has occurred and the internal cracks of the rock develop earlier under the high initial confining pressure conditions.
- (3)
- The energy consumption during the failure process mainly contributes to crack initiation and internal damage in loading tests. In unloading test, the energy is mainly consumed for the circumferential deformation and converted into kinetic energy for rock failure. The failure of the saturated rock is relatively moderate because the absorbed energy is mainly used for internal damage and only a part of energy is used for release. Rockburst phenomenon is tended to occur for dry rocks, especially under triaxial unloading conditions. It also indicates that the water injection of the rock may be effective to prevent rockbursts under high in-situ stresses conditions.
Author Contributions
Funding
Conflicts of Interest
References
- Al-Shalabi, E.W.; Sepehrnoori, K. A comprehensive review of low salinity/engineered water injections and their applications in sandstone and carbonate rocks. J. Pet. Sci. Eng. 2016, 139, 137–161. [Google Scholar] [CrossRef]
- Zhou, Z.; Cai, X.; Cao, W.; Li, X.; Xiong, C. Influence of Water Content on Mechanical Properties of Rock in Both Saturation and Drying Processes. Rock Mech. Rock Eng. 2016, 49, 3009–3025. [Google Scholar] [CrossRef]
- Wang, Y.; Meng, F.; Geng, F.; Jing, H.; Zhao, N. Investigating Water Permeation through the Soil-Rock Mixture in Underground Engineering. Pol. J. Environ. Stud. 2017, 26, 1777–1788. [Google Scholar] [CrossRef] [Green Version]
- Vasarhelyi, B. Statistical analysis of the influence of water content on the strength of the miocene limestone. Rock Mech. Rock Eng. 2005, 38, 69–76. [Google Scholar] [CrossRef]
- Talesnick, M.; Shehadeh, S. The effect of water content on the mechanical response of a high-porosity chalk. Int. J. Rock Mech. Min. Sci. 2007, 44, 584–600. [Google Scholar] [CrossRef]
- Erguler, Z.A.; Ulusay, R. Water-induced variations in mechanical properties of clay-bearing rocks. Int. J. Rock Mech. Min. Sci. 2009, 46, 355–370. [Google Scholar] [CrossRef]
- Török, Á.; Vásárhelyi, B. The influence of fabric and water content on selected rock mechanical parameters of travertine, examples from Hungary. Eng. Geol. 2010, 115, 237–245. [Google Scholar] [CrossRef]
- Yilmaz, I. Influence of water content on the strength and deformability of gypsum. Int. J. Rock Mech. Min. Sci. 2010, 47, 342–347. [Google Scholar] [CrossRef]
- Çelik, M.Y.; Ergül, A. The influence of the water saturation on the strength of volcanic tuffs used as building stones. Environ. Earth Sci. 2015, 74, 3223–3239. [Google Scholar] [CrossRef]
- Shi, X.; Cai, W.; Meng, Y.; Li, G.; Wen, K.; Zhang, Y. Weakening laws of rock uniaxial compressive strength with consideration of water content and rock porosity. Arab. J. Geosci. 2016, 9, 369. [Google Scholar] [CrossRef]
- Li, D.; Wong, L.N.Y.; Liu, G.; Zhang, X. Influence of water content and anisotropy on the strength and deformability of low porosity meta-sedimentary rocks under triaxial compression. Eng. Geol. 2012, 126, 46–66. [Google Scholar] [CrossRef]
- Rathnaweera, T.; Ranjith, P.; Perera, M.; De Silva, V. Development of a laboratory-scale numerical model to simulate the mechanical behaviour of deep saline reservoir rocks under varying salinity conditions in uniaxial and triaxial test environments. Measurement 2017, 101, 126–137. [Google Scholar] [CrossRef]
- Bejarbaneh, B.Y.; Armaghani, D.J.; Amin, M.F.M. Strength characterisation of shale using Mohr–Coulomb and Hoek–Brown criteria. Measurement 2015, 63, 269–281. [Google Scholar] [CrossRef] [Green Version]
- Mckean, S.H.; Priest, J.A.; Priest, J. Multiple failure state triaxial testing of the Montney Formation. J. Pet. Sci. Eng. 2019, 173, 122–135. [Google Scholar] [CrossRef]
- Zhu, W.; Wong, T.-F.; Baud, P.; Wong, T. Failure mode and weakening effect of water on sandstone. J. Geophys. Res. Biogeosci. 2000, 105, 16371–16389. [Google Scholar] [Green Version]
- Zhou, J.; Wei, J.; Yang, T.; Zhu, W.; Li, L.; Zhang, P. Damage analysis of rock mass coupling joints, water and microseismicity. Tunn. Undergr. Space Technol. 2018, 71, 366–381. [Google Scholar] [CrossRef]
- Duan, H.F.; Jiang, Z.Q.; Zhu, S.Y.; Xiao, W.G.; Li, D.L. Micro-mechanism of water stability and characteristics of strength softening of rock in deep mines. Chin. J. Geotech. Eng. 2012, 34, 1636–1645. [Google Scholar]
- Zhao, X.G.; Wang, J.; Cai, M.; Cheng, C.; Ma, L.K.; Su, R.; Zhao, F.; Li, D.J. Influence of Unloading Rate on the Strainburst Characteristics of Beishan Granite Under True-Triaxial Unloading Conditions. Rock Mech. Rock Eng. 2014, 47, 467–483. [Google Scholar] [CrossRef]
- Kundu, J.; Mahanta, B.; Sarkar, K.; Singh, T.N. The Effect of Lineation on Anisotropy in Dry and Saturated Himalayan Schistose Rock Under Brazilian Test Conditions. Rock Mech. Rock Eng. 2018, 51, 5–21. [Google Scholar] [CrossRef]
- Liu, D.; Wang, Z.; Zhang, X.; Wang, Y.; Zhang, X.; Li, D. Experimental investigation on the mechanical and acoustic emission characteristics of shale softened by water absorption. J. Nat. Gas Sci. Eng. 2018, 50, 301–308. [Google Scholar] [CrossRef]
- Lyu, Q.; Long, X.; Ranjith, P.; Tan, J.; Kang, Y. Experimental investigation on the mechanical behaviours of a low-clay shale under water-based fluids. Eng. Geol. 2018, 233, 124–138. [Google Scholar] [CrossRef]
- Xiao, T.L.; Li, X.P.; Lu, Y.I. Structural plane of rock mass strength characteristics and its impact on Groundwater, in Trends in Civil Engineering. Adv. Mater. Res. 2012, 446–449, 476–479. [Google Scholar] [CrossRef]
- Wasantha, P.; Ranjith, P.; Shao, S. Energy monitoring and analysis during deformation of bedded-sandstone: Use of acoustic emission. Ultrasonics 2014, 54, 217–226. [Google Scholar] [CrossRef]
- Peng, K.; Liu, Z.P.; Zou, Q.L.; Zhang, Z.Y.; Zhou, J.Q. Static and dynamic mechanical properties of granite from various burial depths. Rock Mech. Rock Eng. 2019. [Google Scholar] [CrossRef]
- Li, D.; Sun, Z.; Xie, T.; Li, X.; Ranjith, P.G. Energy evolution characteristics of hard rock during triaxial failure with different loading and unloading paths. Eng. Geol. 2017, 228, 270–281. [Google Scholar] [CrossRef]
- Zhang, D.; Li, S.; Bai, X.; Yang, Y.; Chu, Y. Experimental Study on Mechanical Properties, Energy Dissipation Characteristics and Acoustic Emission Parameters of Compression Failure of Sandstone Specimens Containing En Echelon Flaws. Appl. Sci. 2019, 9, 596. [Google Scholar] [CrossRef]
- Hua, A.Z.; You, M.Q. Rock failure due to energy release during unloading and application to underground rock burst control. Tunn. Undergr. Space Technol. 2001, 16, 241–246. [Google Scholar] [CrossRef]
- Lu, T.K.; Zhao, Z.J.; Hu, H.F. Improving the gate road development rate and reducing outburst occurrences using the waterjet technique in high gas content outburst-prone soft coal seam. Int. J. Rock Mech. Min. Sci. 2011, 48, 1271–1282. [Google Scholar] [CrossRef]
- Song, D.; Wang, E.; Liu, Z.; Liu, X.; Shen, R. Numerical simulation of rock-burst relief and prevention by water-jet cutting. Int. J. Rock Mech. Min. Sci. 2014, 70, 318–331. [Google Scholar] [CrossRef]
- Bautista, J.; Taleghani, A.D. Prediction of formation damage at water injection wells due to channelization in unconsolidated formations. J. Pet. Sci. Eng. 2018, 164, 1–10. [Google Scholar] [CrossRef]
- Guo, W.Y.; Tan, Y.L.; Yang, Z.L.; Zhao, T.B.; Hu, S.C. Effect of Saturation Time on the Coal Burst Liability Indexes and Its Application for Rock Burst Mitigation. Geotech. Geol. Eng. 2018, 36, 589–597. [Google Scholar] [CrossRef]
- Zhang, Z.Z.; Feng, G. Experimental investigation on the energy evolution of dry and water-saturated red sandstones. Int. J. Min. Sci. Technol. 2015, 25, 383–388. [Google Scholar] [CrossRef]
- Hong-qing, Z.; Min-bo, Z.; Shuai-hu, Z.; Bei-fang, G.; Xiang, S. Effect of triaxial compression on damage deformation of coal rock under pulsed pore water pressure. Rock Soil Mech. 2015, 36, 2137–2143. [Google Scholar]
- Cai, C.; Gao, F.; Li, G.; Huang, Z.; Hou, P. Evaluation of coal damage and cracking characteristics due to liquid nitrogen cooling on the basis of the energy evolution laws. J. Nat. Gas Sci. Eng. 2016, 29, 30–36. [Google Scholar] [CrossRef]
- Zhu, Q.; Li, D.; Han, Z.; Li, X.; Zhou, Z. Mechanical properties and fracture evolution of sandstone specimens containing different inclusions under uniaxial compression. Int. J. Rock Mech. Min. Sci. 2019, 115, 33–47. [Google Scholar] [CrossRef]
- Zhuang, D.; Tang, C.; Liang, Z.; Ma, K.; Wang, S.; Liang, J. Effects of excavation unloading on the energy-release patterns and stability of underground water-sealed oil storage caverns. Tunn. Undergr. Space Technol. 2017, 61, 122–133. [Google Scholar] [CrossRef]
- Wang, S.; Hagan, P.; Zhao, Y.; Chang, X.; Song, K.I.; Zou, Z. The Effect of Confining Pressure and Water Content on Energy Evolution Characteristics of Sandstone under Stepwise Loading and Unloading. Adv. Civ. Eng. 2018, 2018. [Google Scholar] [CrossRef]
- He, Z.; Li, G.; Tian, S.; Wang, H.; Shen, Z.; Li, J. SEM analysis on rock failure mechanism by supercritical CO2 jet impingement. J. Pet. Sci. Eng. 2016, 146, 111–120. [Google Scholar] [CrossRef]
- Mancktelow, N.S.; Pennacchioni, G. The influence of grain boundary fluids on the microstructure of quartz-feldspar mylonites. J. Struct. Geol. 2004, 26, 47–69. [Google Scholar] [CrossRef]
- Storti, F.; Billi, A.; Salvini, F. Particle size distributions in natural carbonate fault rocks: Insights for non-self-similar cataclasis. Earth Planet. Sci. Lett. 2003, 206, 173–186. [Google Scholar] [CrossRef]
- Xie, H.; Li, L.; Peng, R.; Ju, Y. Energy analysis and criteria for structural failure of rocks. J. Rock Mech. Geotech. Eng. 2009, 1, 11–20. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Huang, D.; Li, X. Strain Rate Dependency of Coarse Crystal Marble under Uniaxial Compression: Strength, Deformation and Strain Energy. Rock Mech. Rock Eng. 2014, 47, 1153–1164. [Google Scholar] [CrossRef]
- Ning, J.; Wang, J.; Jiang, J.; Hu, S.; Jiang, L.; Liu, X. Estimation of Crack Initiation and Propagation Thresholds of Confined Brittle Coal Specimens Based on Energy Dissipation Theory. Rock Mech. Rock Eng. 2018, 51, 119–134. [Google Scholar] [CrossRef]
- Peng, R.; Ju, Y.; Wang, J.G.; Xie, H.; Gao, F.; Mao, L. Energy Dissipation and Release during Coal Failure under Conventional Triaxial Compression. Rock Mech. Rock Eng. 2015, 48, 509–526. [Google Scholar] [CrossRef]
Rock Composition | Grain Size (mm) | Mineral Content (%) |
---|---|---|
Quartz | 0.03 ~ 0.2 | 77 |
Potassium feldspar | 0.05 ~ 0.2 | 10 |
Calcite | 0.01 ~ 0.08 | 7 |
Sericite | 0.01 ~ 0.02 | 4 |
Others | 0.01 ~ 0.1 | 2 |
Group | Specimen No. | Density (kg/m3) | P-Wave Velocity (m/s) | Initial Confining Pressure (MPa) | Unloading Point (MPa) | Loading Rate | Unloading Rate (MPa/min) |
---|---|---|---|---|---|---|---|
TC-D | TC-D-0 | 2387.3 | 2951 | 0 | 0.1 mm/min | ||
TC-D-10 | 2380.4 | 2979 | 10 | 0.1 mm/min | |||
TC-D-20 | 2387.5 | 2916 | 20 | 0.1 mm/min | |||
TC-D-30 | 2398.3 | 3063 | 30 | 0.1 mm/min | |||
TC-D-40 | 2382.1 | 3077 | 40 | 0.1 mm/min | |||
TC-S | TC-S-0 | 2456.8 | 3381 | 0 | 0.1 mm/min | ||
TC-S-10 | 2459.8 | 3363 | 10 | 0.1 mm/min | |||
TC-S-20 | 2464.1 | 3362 | 20 | 0.1 mm/min | |||
TC-S-30 | 2459.7 | 3393 | 30 | 0.1 mm/min | |||
TC-S-40 | 2450.0 | 3392 | 40 | 0.1 mm/min | |||
TU-D | TU-D-10 | 2380.7 | 3299 | 10 | 0.8σ(10) | 0.1 mm/min-1.5 MPa/min | 3 |
TU-D-20 | 2391.3 | 3292 | 20 | 0.8σ(20) | 0.1 mm/min-1.5 MPa/min | 3 | |
TU-D-30 | 2387.8 | 3315 | 30 | 0.8σ(30) | 0.1 mm/min-1.5 MPa/min | 3 | |
TU-D-40 | 2391.3 | 3313 | 40 | 0.8σ(40) | 0.1 mm/min-1.5 MPa/min | 3 | |
TU-S | TU-S-10 | 2454.7 | 3396 | 10 | 0.8σ(10) | 0.1mm/min-1.5 MPa/min | 3 |
TU-S-20 | 2457.7 | 3347 | 20 | 0.8σ(20) | 0.1 mm/min-1.5 MPa/min | 3 | |
TU-S-30 | 2457.8 | 3349 | 30 | 0.8σ(30) | 0.1 mm/min-1.5 MPa/min | 3 | |
TU-S-40 | 2457.7 | 3399 | 40 | 0.8σ(40) | 0.1 mm/min-1.5 MPa/min | 3 |
Group | Specimen Number | Unloading Point | Critical Failure Point | ||||||
---|---|---|---|---|---|---|---|---|---|
TC-D | TC-D-10 | 10 | - | - | - | 10 | 0.0110 | −0.0084 | −0.0058 |
TC-D-20 | 20 | - | - | - | 20 | 0.0136 | −0.0085 | −0.0034 | |
TC-D-30 | 30 | - | - | - | 30 | 0.0156 | −0.0118 | −0.008 | |
TC-D-40 | 40 | - | - | - | 40 | 0.0218 | −0.0166 | −0.0114 | |
TC-S | TC-S-10 | 10 | - | - | - | 10 | 0.0118 | −0.0124 | −0.013 |
TC-S-20 | 20 | - | - | - | 20 | 0.0137 | −0.0122 | −0.0107 | |
TC-S-30 | 30 | - | - | - | 30 | 0.0180 | −0.0104 | −0.0028 | |
TC-S-40 | 40 | - | - | - | 40 | 0.0185 | −0.0100 | −0.0015 | |
TU-D | TU-D-10 | 10 | 0.0063 | −0.0012 | 0.0039 | 1.52 | 0.0077 | −0.0080 | −0.0083 |
TU-D-20 | 20 | 0.0082 | −0.0025 | 0.0032 | 14.82 | 0.0137 | −0.0116 | −0.0095 | |
TU-D-30 | 30 | 0.0088 | −0.0019 | 0.005 | 15.51 | 0.0123 | −0.0104 | −0.0085 | |
TU-D-40 | 40 | 0.0096 | −0.0022 | 0.0052 | 20.01 | 0.0145 | −0.0135 | −0.0125 | |
TU-S | TU-S-10 | 10 | 0.0063 | −0.0017 | 0.0029 | 4.56 | 0.0085 | −0.0095 | −0.0105 |
TU-S-20 | 20 | 0.0086 | −0.0020 | 0.0046 | 10.56 | 0.0103 | −0.0134 | −0.0165 | |
TU-S-30 | 30 | 0.0082 | −0.0025 | 0.0032 | 19.73 | 0.0118 | −0.0100 | −0.0082 | |
TU-S-40 | 40 | 0.0082 | −0.0018 | 0.0046 | 21.61 | 0.0137 | −0.0136 | −0.0135 |
Group | (MPa) | Unloading Point | Critical Failure Point | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
U(MJ/m3) | U1(MJ/m3) | Ue(MJ/m3) | Ud(MJ/m3) | U3(MJ/m3) | U’(MJ/m3) | U1’(MJ/m3) | Ue’(MJ/m3) | Ud’(MJ/m3) | U3’(MJ/m3) | ||
TC-D | 10 | - | - | - | - | - | 0.85 | 1.01 | 0.41 | 0.43 | −0.17 |
20 | - | - | - | - | - | 1.31 | 1.62 | 0.73 | 0.59 | −0.33 | |
40 | - | - | - | - | - | 1.80 | 2.54 | 0.84 | 0.95 | −0.79 | |
60 | - | - | - | - | - | 2.52 | 3.75 | 1.02 | 1.50 | −1.30 | |
TC-S | 10 | - | - | - | - | - | 0.66 | 0.90 | 0.32 | 0.34 | −0.25 |
20 | - | - | - | - | - | 0.95 | 1.40 | 0.44 | 0.50 | −0.48 | |
40 | - | - | - | - | - | 1.60 | 1.98 | 0.56 | 0.94 | −0.82 | |
60 | - | - | - | - | - | 1.62 | 2.40 | 0.62 | 0.99 | −0.85 | |
TU-D | 10 | 0.33 | 0.35 | 0.31 | 0.02 | −0.02 | 0.45 | 0.50 | 0.33 | 0.12 | −0.06 |
20 | 0.59 | 0.66 | 0.53 | 0.06 | −0.10 | 0.83 | 1.13 | 0.55 | 0.27 | −0.36 | |
40 | 0.75 | 0.82 | 0.61 | 0.13 | −0.11 | 1.01 | 1.34 | 0.66 | 0.35 | −0.37 | |
60 | 0.89 | 1.01 | 0.74 | 0.15 | −0.17 | 1.35 | 1.98 | 0.83 | 0.52 | −0.69 | |
TU-S | 10 | 0.26 | 0.28 | 0.24 | 0.02 | −0.03 | 0.36 | 0.48 | 0.24 | 0.12 | −0.12 |
20 | 0.38 | 0.43 | 0.32 | 0.06 | −0.08 | 0.52 | 0.85 | 0.34 | 0.18 | −0.35 | |
40 | 0.54 | 0.64 | 0.41 | 0.10 | −0.15 | 0.71 | 1.15 | 0.46 | 0.25 | −0.48 | |
60 | 0.59 | 0.66 | 0.42 | 0.17 | −0.15 | 0.85 | 1.48 | 0.50 | 0.36 | −0.70 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, D.; Sun, Z.; Zhu, Q.; Peng, K. Triaxial Loading and Unloading Tests on Dry and Saturated Sandstone Specimens. Appl. Sci. 2019, 9, 1689. https://doi.org/10.3390/app9081689
Li D, Sun Z, Zhu Q, Peng K. Triaxial Loading and Unloading Tests on Dry and Saturated Sandstone Specimens. Applied Sciences. 2019; 9(8):1689. https://doi.org/10.3390/app9081689
Chicago/Turabian StyleLi, Diyuan, Zhi Sun, Quanqi Zhu, and Kang Peng. 2019. "Triaxial Loading and Unloading Tests on Dry and Saturated Sandstone Specimens" Applied Sciences 9, no. 8: 1689. https://doi.org/10.3390/app9081689
APA StyleLi, D., Sun, Z., Zhu, Q., & Peng, K. (2019). Triaxial Loading and Unloading Tests on Dry and Saturated Sandstone Specimens. Applied Sciences, 9(8), 1689. https://doi.org/10.3390/app9081689