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Abstract: This paper explores the full control of a quadrotor Unmanned Aerial Vehicles (UAVs) by
exploiting the nature-inspired algorithms of Particle Swarm Optimization (PSO), Cuckoo Search
(CS), and the cooperative Particle Swarm Optimization-Cuckoo Search (PSO-CS). The proposed
PSO-CS algorithm combines the ability of social thinking in PSO with the local search capability
in CS, which helps to overcome the problem of low convergence speed of CS. First, the quadrotor
dynamic modeling is defined using Newton-Euler formalism. Second, PID (Proportional, Integral,
and Derivative) controllers are optimized by using the intelligent proposed approaches and the
classical method of Reference Model (RM) for quadrotor full control. Finally, simulation results prove
that PSO and PSO-CS are more efficient in tuning of optimal parameters for the quadrotor control.
Indeed, the ability of PSO and PSO-CS to track the imposed trajectories is well seen from 3D path
tracking simulations and even in presence of wind disturbances.
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1. Introduction

Over the past few years, Unmanned Aerial Vehicles (UAVs) of type quadrotors or quadcopters
have seen an increasing interest since their wide range of civilian and military applications. These
quadrotors are considered the most complex flying machines due to many physical effects influencing
their dynamics including aerodynamic effects, gravity, gyroscopic effects, friction, and inertia. However,
they have advantages over conventional helicopters. Given that the left and the right motors rotate
clockwise, and the front and the rear motors rotate counterclockwise, gyroscopic effects and aerodynamic
torques tend to cancel in trimmed flight.

Many researchers modeled the quadrotor using the formalisms of Newton-Euler [1,2] and
Euler-Lagrange [2–4]. For both methods, the quadrotor modeling is regarded as a delicate task and
the model obtained using these approaches is strongly nonlinear, fully coupled, under-actuated (Six
Degrees of Freedom System (6-DOF) with only four actuators) and dynamically unstable with complex
behavior. In this work, we adopt the most used formalism of Newton-Euler to define the dynamics of
the quadrotor.

Regarding the quadrotor’s control, there are several types of research done both in linear and
nonlinear control methods [5–7]. For practicality, the linear controllers, especially PID (Proportional,
Integral, and Derivative)/PD (Proportional and Derivative)/ PI (Proportional and Integral), are easy to
design and simple to tune, which perform better in practical implementation [8]. In literature, PIDs are
the most used for quadrotor control [2,9,10]. However, tuning the parameters of these controllers is
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very important to get best performances. In this scope, classical methods can be used. They include
the methods of Ziegler-Nichols [11], Graham-Lathrop [12], Naslin [13], Cohen-Coon, Reference Model
(RM) [14,15], and many other techniques.

Nature-inspired optimization algorithms can effectively resolve complex problems compared
to classical and statistical methods. Some of these algorithms proposed in the literature are Genetic
Algorithm (GA) [16,17], Particle Swarm Optimization (PSO) [18], Ant Colony Optimization (ACO) [19],
Artificial Bee Colony (ABC) [20], and Cuckoo Search (CS) [21,22]. GA is inspired by the crossover,
mutation, and recombination principles of genetics. PSO algorithm is inspired by social behavior
patterns of organisms that live and interact within large groups. It incorporates swarming behaviors
observed in flocks of birds and schools of fish. ACO is inspired by ants’ behavior in seeking food
sources. The ABC algorithm is based on the natural behavior of honeybee swarm, and CS algorithm
is motivated by the aggressive breeding of a bird called ‘cuckoo’. The PSO method has shown
superior performances. It has features such as a straightforward algorithm, rapid convergence,
easy implementation, and is computationally efficient when applied to a diverse set of optimization
problems [15]. In CS, immigration and environmental specifications have the advantage to help
cuckoos’ groups to converge and reach the best places for breeding and egg laying [21]. Another
advantage of CS compared to PSO and GA is that it uses a smaller number of parameters to be tuned,
which makes it more adaptable [21]. Due to these advantages, PSO and CS are still successfully applied
in recent works for control problems [23–25], and PSO is especially used in tuning PID controllers
for quadrotor’s control [26,27]. Therefore, regarding PSO and CS programs, there are many common
points. Both use the same initialization matrices of particles in n-dimensional research space for PSO
and nests with D eggs (problem’s dimension) for CS. The fitness function evaluates the quality of
particles and nests in the same way. Then, the velocities of displacement of particles and nests are
calculated in different ways for PSO and CS, which generates differences in the convergence speeds of
both algorithms. For these reasons, it would be very interesting to analyze the social thinking and local
search abilities of PSO and CS in quadrotor control.

The main contribution of our paper lies on using PSO and CS to improve results concerning the
quadrotor full control. However, the CS algorithm suffers from a low convergence speed, since it uses
a fixed step size over generations. To overcome this problem, Naik et al. [28] proposed an adaptive
cuckoo search algorithm (ACS) with adaptive step size. The ACS converges to a near optimum solution
faster than CS algorithm. However, the problem of ACS algorithm is that it does not achieve better
solutions compared to CS in most cases. In our work, we propose the cooperative PSO-CS algorithm
that combines the ability of social thinking in PSO with the local search capability of CS. Such a
cooperative process is likely to offer proper guidance for cuckoos to the global best positions and to
ensure a balance between exploitation and exploration of the search space. Consequently, we are
interested in examining if it is possible for us to improve results of quadrotor control by effectively
integrating these two algorithms with complementary strengths. Our work treats position and attitude
control in order to cover all topics in quadrotor control. For this objective, the control design includes
six PID controllers: Three for angles (φ, θ, ψ) and three for positions (x, y, z). These controllers are
optimally tuned using the heuristics PSO and CS, the cooperative PSO-CS and the classical method
of Reference Model (RM). A comparative study is done to highlight the efficiency of the proposed
intelligent controllers of PSO and PSO-CS. Indeed, their robustness is demonstrated in presence of
wind disturbance.

The rest of this paper is organized as follows. In Section 2, Newton-Euler formalism is used
to establish the quadrotor dynamic model. In Section 3, the proposed algorithms of PSO, CS, the
cooperative PSO-CS and RM are presented. In Section 4, the quadrotor full control is treated using PID
controllers optimally tuned with the proposed methods. In the last section, our conclusions are given.
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2. Quadrotor Dynamic Modeling

The quadrotor is a complex flying system, strongly nonlinear, multivariable, fully coupled, and
under-actuated (6-DOF and only four control inputs). Therefore, its modeling is a delicate task.
For better understanding of its dynamic modeling, different working hypotheses were assumed: A
rigid and a symmetrical quadrotor structure (diagonal matrix of inertia); a rigid propellers (negligible
effect of deformation during rotation); the lift and the drag forces are proportional to the square of the
rotational speed of the rotors (a very close approximation of the aerodynamic behavior); and the center
of mass is exactly the origin of reference related to the structure.

From the configuration shown in Figure 1, the quadrotor has two pairs of rotating rotors attached
to the end of a cross and the control electronics is situated in the center of the cross. The front and
the rear propellers spin counterclockwise, while the left and the right ones spin clockwise, which
effectively neutralizes the unwanted reactive torque and allows the vehicle to fly without overturning.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 3 of 25 

and a symmetrical quadrotor structure (diagonal matrix of inertia); a rigid propellers (negligible 
effect of deformation during rotation); the lift and the drag forces are proportional to the square of 
the rotational speed of the rotors (a very close approximation of the aerodynamic behavior); and the 
center of mass is exactly the origin of reference related to the structure. 

From the configuration shown in Figure 1, the quadrotor has two pairs of rotating rotors 
attached to the end of a cross and the control electronics is situated in the center of the cross. The 
front and the rear propellers spin counterclockwise, while the left and the right ones spin clockwise, 
which effectively neutralizes the unwanted reactive torque and allows the vehicle to fly without 
overturning. 

 
Figure 1. Quadrotor’s configuration. 

Notice that the absolute position of the mass center is described by the three coordinates (x, y, z) 
and its attitude by the three Euler’s angles (φ, θ, ψ). Using Newton-Euler formalism [2], the dynamic 
model of the quadrotor can be expressed as: 

𝜑ሷ = 𝑙 𝑈ଶ𝐼௫ + ൫𝐼௬ − 𝐼௭൯𝐼௫ ൫𝜓 ሶ 𝑐𝑜𝑠𝜑 𝑐𝑜𝑠𝜃 − 𝜃ሶ𝑠𝑖𝑛𝜑൯൫𝜃ሶ𝑐𝑜𝑠𝜑 + 𝜓ሶ  𝑠𝑖𝑛𝜑 𝑐𝑜𝑠𝜃൯− 𝐽(𝜔ଵ − 𝜔ଶ + 𝜔ଷ − 𝜔ସ)𝐼௫ ൫𝜓 ሶ 𝑠𝑖𝑛𝜑 𝑐𝑜𝑠𝜃 + 𝜃ሶ  𝑐𝑜𝑠𝜑൯− 𝐾௫𝐼௫ ൫𝜑ሶ ଶ − 2𝜑ሶ 𝜓 ሶ 𝑠𝑖𝑛𝜃ଶ൯ (1)

𝜃ሷ = 𝑙 𝑈ଷ𝐼௬ + (𝐼௭ − 𝐼௫)𝐼௬ ൫𝜓ሶ  𝑐𝑜𝑠𝜑 𝑐𝑜𝑠𝜃 − 𝜃 ሶ 𝑠𝑖𝑛𝜑൯൫𝜑ሶ − 𝜓 ሶ 𝑠𝑖𝑛𝜃൯− 𝐽(𝜔ଵ − 𝜔ଶ + 𝜔ଷ − 𝜔ସ)𝐼௬ ൫𝜓 ሶ 𝑠𝑖𝑛𝜃 − 𝜙ሶ ൯− 𝐾௬𝐼௬ ൫𝜃ሶ ଶ 𝑐𝑜𝑠𝜑ଶ + 2𝜑ሶ  𝜓ሶ  𝑠𝑖𝑛𝜑 𝑐𝑜𝑠𝜑 𝑐𝑜𝑠𝜃 + 𝜓ሶ ଶ 𝑠𝑖𝑛𝜑ଶ 𝑐𝑜𝑠𝜃ଶ൯ (2)

𝜓ሷ = 𝑈ସ𝐼௭ + ൫𝐼௫ − 𝐼௬൯𝐼௭ ൫𝜓 ሶ 𝑠𝑖𝑛𝜑 𝑐𝑜𝑠𝜃 + 𝜃ሶ  𝑐𝑜𝑠𝜑൯൫𝜑ሶ − 𝜓 ሶ 𝑠𝑖𝑛𝜃൯− 𝐽(𝜔ଵ − 𝜔ଶ + 𝜔ଷ − 𝜔ସ)𝐼௬ ൫𝜓ሶ  𝑠𝑖𝑛𝜃 − 𝜑ሶ ൯ − (𝜃ሶ ଶ𝑠𝑖𝑛𝜑ଶ
− 2𝜑ሶ 𝜓ሶ  𝑠𝑖𝑛𝜑 𝑐𝑜𝑠𝜑 𝑐𝑜𝑠𝜃) + 𝐾௭𝐼௭ 𝜓ሶ ଶ𝑐𝑜𝑠𝜑ଶ𝑐𝑜𝑠𝜃ଶ (3)

 

Figure 1. Quadrotor’s configuration.

Notice that the absolute position of the mass center is described by the three coordinates (x, y, z)
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where m is the total mass of the quadrotor; l the distance from the center of the body to the rotor; Ix, Iy

and Iz are the inertias around x, y, and z axis; b and d thrust and drag coefficients respectively; Kfax, Kfay,
and Kfaz are frictions aerodynamics coefficients; Kftx, Kfty, and Kftz are translation drags coefficients; Jr

is the rotor inertia; g represents gravity constant; ωi is the angular speed of the motor i and finally φ, θ,
and ψ are rotation around the roll, pitch, and yaw axis, respectively.

3. Proposed Methods

Intelligent and classical control methods of Particle Swarm Optimization (PSO), Cuckoo Search
(CS), the cooperative PSO-CS, and the classical Reference Model (RM) are detailed in this section for
further reason to be applied in quadrotor control.

3.1. PSO Algorithm

Particle Swarm Optimization (PSO) is a class of stochastic algorithms, which was developed by
Eberhart and Kennedy in 1995 for hard optimization problems. The basic principle of PSO is inspired
by the social behavior of animals moving in swarm as bird flocking. To search for food, each bird called
particle, flies in the space of solutions, and determines its speed according to its personal experience
and the information gained through interaction with other swarm members [18].

PSO is employed to intelligently select optimal parameters from N particles. The initialization
matrix contains N particles dispersed in a D-dimensional search space. Like most optimization
techniques, PSO requires a fitness function relevant to the particle’s position. Each particle i stores its
best position Pbi(t+1) and the best solution in its vicinity Pg(t+1), which is the position of the particle
that has the smallest fitness value in the swarm as expressed in Equation (9). The mechanism of
displacement of each particle is managed by three rules. First, the particle tends to follow the direction
of its current velocity. Second, it wants to move toward its best position. Finally, it tends to move to
the best position reached by its neighbors [18,29]. In fact, the new velocity matrix Vij and position
matrix Xij of the particle i = {1, 2, . . . , N} in the search space of dimension D, with j = {1, 2, . . . , D} are
calculated at iteration (t+1), according to Equations (10) and (11).

Pbi(t + 1) =
{

Xi(t + 1) i f f (Xi(t + 1)) < f (Pbi(t))
Pbi(t) else

(8)

Pg = mini=1,2...N f (Pbi(t + 1)) (9)

Vi j(t + 1) = wVi j(t) + R1C1 ⊗
(
Pbi j(t) −Xi j(t)

)
+ R2C2 ⊗

(
Pgi j(t) −Xi j(t)

)
(10)

Xi j(t + 1) = Xi j(t) + Vi j(t + 1) (11)

where

• Pbij is the best position found by the particle i;
• Pgij is the best position found by the neighborhood;
• w, C1, and C2 are weighting coefficients;
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• R1 and R2 are random variables generated from a uniform distribution in [0,1];
• ⊗means element wise multiplications.

The weighting coefficients govern the process of finding the best solution and reflect the sociability
of the particles. In order to move the particle towards the best solutions, selection of these coefficients
must ensure a compromise between local and global exploration of the search space. In previous
works [30,31], the constants C1 and C2 must verify the condition C1 + C2 ≤ 4. Also, experimental
results in Reference [30] show that [1/2((C1 + C2) − 1)] < w ≤ 1. PSO search works in G iterations and
the coordinates of the obtained global best position Pg are the parameters optimally tuned.

3.2. CS Algorithm

Cuckoo Search (CS) algorithm, proposed by Yang and Deb in 2009, is based on the life of the
”cuckoo” bird. The basic principle of this optimization algorithm is the specific breeding and egg laying
of this bird. In the habitat of other host birds, adult cuckoos lay some eggs that grow and become
mature cuckoos if they are not discovered and removed by host birds. The immigration of groups of
cuckoos and environmental specifications hopefully lead them to converge and reach the best places
for reproduction and breeding [21].

The primary population of CS is composed of N nests representing a set of solutions, where each
nest has multiple eggs (D eggs). As in nature, each cuckoo dedicates from five to 20 eggs. These
values are used as the limits of the dimension D. Each cuckoo lays one egg at a time and dumps it
in a randomly chosen nest. The best nests with high-quality eggs (solutions) will carry over to the
next generations, where the profit of a solution is obtained by evaluation of a fitness function F of the
habitat, so the profit is an array of 1 × D. The number of available host nests is fixed, and a host can
discover an alien egg with probability Pa from [0, 1]. In this case, the host bird can either throw the
egg away or abandon the nest to build a completely new nest in a new location. For simplicity, this
assumption can be approximated by a fraction Pa of the N nests being replaced by new nests, having
new random solutions [21].

To replace solutions in the nests with new solutions, Lévy flights mechanism is used. A new
solution Xi(t + 1) for cuckoo I is given by Equation (12), where ⊗ is entry wise product, similar to that
used in PSO, α > 0 is the step size, and R is a random variable generated from a uniform distribution
in the interval [0, 1] in order to provide a stochastic weight.

Xi(t + 1) = X(i) + αR⊗ Levy(λ) (12)

The random walk via Lévy flight is more efficient in exploring the search space, as its step length is
drawn from a Lévy distribution and it is much longer in the long run. The Mantegna algorithm is used
as Lévy stable distribution in most problems to decide the step length. Thus, the step length S from
Mantegna algorithm can be written as represented by Equation (13), where u and v are samples drawn
from Gaussian normal distribution given by Equation (14), and σu

2 is the variance of the distributions
given by Equation (15), where Γ is the gamma function [22].

Levy(λ) ≈ S = u|v|−
1
λ (1 < λ ≤ 3) (13) u ≈ Norm
(
0, σ2

u

)
v ≈ Norm (0, 1)

(14)

σ2
u =

{
Γ(1 + λ) sin(πλ/2)

Γ[(1 + λ)/2]λ2(λ−1)/2

}1/λ

(15)

The fraction Pa of worse solutions are generated as given by Equation (16), where Xj(t) and Xk(t)
are two random solutions chosen by random permutation, H is a Heaviside function, and r is a random
number drawn from a normal distribution.
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Xi(t + 1) = Xi(t) + (Pa − r)
(
X j(t) −Xk(t)

)
(16)

3.3. Cooperative PSO-CS Algorithm

The initialization matrix in PSO contains N particles dispersed in a D-dimensional search space,
when in CS, this matrix is composed of N nests and each nest has D eggs (problem’s dimension).
In both PSO and CS, this primary population can be regarded of dimension D × N and the quality
of these solutions is evaluated in the same way. The global best particle in PSO (or the best nest in
CS) is the particle (or the nest) that has the smallest fitness value among all potential solutions. Then,
the velocities of displacement of particles and nests are calculated in different ways in PSO and CS.
However, due to the fast convergence of PSO algorithm and the low convergence speed of the CS
algorithm, the cooperation between PSO and CS would be very interesting to combine the ability of
social thinking in PSO with the local search capability of CS. This cooperative PSO-CS aims to modify
the speed equation of displacement by combining the Lévy flights random walks of cuckoos and the
movement of particles toward the global best solution in their vicinity Pg. New solutions Xi (t + 1) are
given by:

Xi(t + 1) = Xi(t) + αR⊗ Levy(λ) + C2R2 ⊗ (Pg(t) −Xi(t)) (17)

The use of cooperative PSO-CS helps to improve searching at global and local scales, which allows
a balance between exploration and exploitation of the search space. Both algorithms are combined
and involved to produce results. This combination of PSO and CS capabilities contribute to increase
particle diversification in the entire search space and ensure good coverage during iterations. Thanks
to this cooperation, CS algorithm can be proposed to control the quadrotor. Indeed, to evaluate the
efficiency of the proposed PSO-CS method, comparisons with the intelligent approaches of PSO and
CS are presented in the next sections for quadrotor’s control and trajectory tracking.

3.4. RM Method

Reference Model (RM) technique is a linear method that approaches the behavior of any system
of “n” order to the desired behavior of a reference system of first or second order. If the reference
behavior is that of a first order, the desired settling time Ts is fixed and the value of τ is deduced, such
that Ts = 3τ. The dominant pole is then to place at −1/τ and the (n−1) other poles on left of −1/τ in
the complex plane [14,15]. If the reference behavior is that of a second order, with imposed values for
damping ζ and natural pulsation ωn, the two dominant poles are to place at −ζωn ± jωn

√
(1 − ζ2) and

the (n−2) other poles on left of −ζωn in the complex plane [14,15].
The closed loop transfer function H(p), of the system including the controller and its denominator

DH(p) are computed. By taking into account some desired specifications (Ts, τ or ζ,ωn), the characteristic
polynomial Rs(p) of the reference system is evaluated.

Rs(P) =


(
p + 1

τ

) (
p + α

τ

)n−1
i f a f irst order behavior desired(

p2 + 2ζωnp +ωn
2
)
(p + αζωn)

n−2 else
(18)

The parameter “α” in (18) is made much greater than 1 to ensure the dominance of the poles −1/τ
or −ζωn ± jωn

√
(1 − ζ2). By equating the coefficients of DH(p) and Ds(p), the controller parameters can

be extracted [14,15].

4. Quadrotor Control

4.1. Virtual Control

To manage the system dynamics, a simplified model is needed. By considering small rotations
(cos x = 1 and sin x = x), the equations become linear and the PID controllers’ inputs can be clearly seen.
Consequently, the control inputs for φ, θ, and ψ are U2, U3, and U4, respectively. To deal with the
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under-actuated part, φ, θ, and U1 are used to create three virtual control inputs so that every output
will be controlled separately. Physically, these virtual controls mean that the translation motion along
x, y, and z are controlled indirectly by the three common inputs (φ, θ, and U1). These virtual controls
are given by Equation (19) and the desired trajectories of roll (φd), pitch (θd) and U1d are obtained by
inverting Equation (19). 

Ux = (cosϕcosψsinθ+ sinϕsinψ)U1

Uy = (sinψsinθcosϕ− cosψsinϕ)U1

Uz = (cosϕcosθ)U1

(19)


ϕd = sin−1

Ux sinψd−Uy cosψd√
U2

x+U2
y+U2

z


θd = tan−1

(
Ux cosψd+Uy sinψd

cosϕd

)
U1d =

√
U2

x + U2
y + U2

z

(20)

4.2. Control Law Design

For an appropriate control of the UAV quadrotor system described by Equations (1)–(6), PID
controllers are used. These controllers are simple to design and robust. The complete control scheme
for the quadrotor is represented in Figure 2. It can be clearly seen from this figure that three PID
controllers are used for positions (x, y, z) and three PIDs for attitudes (φ, θ, ψ). The inputs are divided
to two parts, the desired and the sensor signals. Desired signals for positions and yaw angle (xd, yd, zd,
ψd) are fixed by the pilot or the autopilot program. Sensor signals for desired roll and pitch angles (φd,
θd, and U1d) are computed from the three virtual inputs Ux, Uy, and Uz.
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Figure 2. Complete control scheme for quadrotor.

The transfer functions Cs(p) of PID controllers are given in Equation (21), where s = {φ, θ, ψ, x, y,
z}. Their gains (Kps, Kis, Kds) should be optimally tuned for the quadrotor in order to ensure stable, fast,
precise, and robust responses. For this objective, PSO, CS, PSO-CS, and RM methods are applied to
realize an optimal setting of these parameters.

Cs(p) = Kps +
Kis
p

+ Kdsp (21)
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4.3. Quadrotor Intelligent Control Using PSO, CS, and PSO-CS

To control the nonlinear and fully coupled quadrotor defined by Equations (1)–(6), it is suitable to
use a method directly applicable to nonlinear systems as PSO, CS, and the cooperative PSO-CS. Instead
of linear PID controllers, the intelligent and adaptive controllers can look for optimal PIDs parameters
for the six quadrotors’ outputs [φ, θ, ψ, x, y, z].

The initial populations (N = 200) of PSO, CS, and PSO-CS are randomly dispersed in a search
space that is chosen sufficient to contain all possible solutions [0, 200] and its dimension D is set to 18.
To define the exploration capacity of each particle in order to improve the convergence of the process
and to not exceed the velocity limits, we tested numerous values of w, and the compromise between
local and global exploration in PSO was achieved for w = 0.8. The confidence coefficients C1 and C2

define the exploration capacity. They determine the degree of influence of the past positions of the
particle itself and those of the other particles of the swarm in order to regulate the velocities relative
to the best local and global positions, thus making it possible to determine the movements relative
to these best positions. C1R1 and C2R2 are represented by matrices with dimension of 200 × swarm
size. We considered that C1R1 takes random values in [0, 0.8] to avoid the problem of fast convergence,
when C2R2 takes random values in [0, 1.2] to give more importance to the global best solution Pg (the
interval of C2R2 is large to that of C1R1). In CS, the parameters used in experiments are as follows:
Abandon probability Pa = 0.25, and the Lévy flights settings, α = 0.1 and λ = 1.5. In PSO-CS, the same
settings of PSO and CS are conserved: Pa = 0.25, and the Lévy flights settings, α = 0.1, λ = 1.5 and C2

with random values in [0, 1.2].
To evaluate the optimization performance of the quadrotor’s responses using the proposed

approaches, the fitness function (profit) is defined in a similar way in order to minimize the differences
between the desired and the controlled outputs responses of the quadrotor. This fitness function is
defined in Equation (22) as the sum of the errors Ek that characterize the difference in behavior between
the inputs and the outputs of the quadrotor based on the Integral Square Error (ISE), with l = 6 and
k = {1, 2, 3, 4, 5, 6}.

F =
∑l

k=1

∫
∞

0
E2

k(t)dt (22)

ISE =

∫
∞

0
E2

k(t)dt (23)

The performances found with ISE are compared to those established using three other performance
indices: Integral Absolute Error (IAE), Integral Time Absolute Error (ITAE), and Integral Time Square
Error (ITSE).

IAE =

∫
∞

0

∣∣∣Ek(t)
∣∣∣dt (24)

ITAE =

∫
∞

0
t
∣∣∣Ek(t)

∣∣∣dt (25)

ITSE =

∫
∞

0
t E2

k(t)dt (26)

The maximum number of generations for the three programs (PSO, CS and PSO-CS) is fixed as
the stop criterion and set to 20.

4.4. Quadrotor Classical Control Using RM

To use the linear RM technique for quadrotor control, the complete nonlinear Equations (1)–(6)
should be simplified. The most used technique to simplify these nonlinear equations is to
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consider weak angles variations (reduced gyroscopic effects) and retain the linear portion, the
Equations (1)–(6) become: 

Ix
..
ϕ = lU2

Iy
..
θ = lU3

Iz
..
ψ = U4

..
x =

cosϕ cosψ sinθ+sinϕ sinψ
m U1 −

K f tx
m
·
x

..
y =

sinψ sinθ cosϕ−cosψ sinϕ
m U1 −

K f ty
m
·
y

..
z = −g + cosϕ cosθ

m U1 −
K f tz

m
·
z

(27)

The inputs U2, U3, U4, Ux, Uy, and Uz affect respectively angles of roll, pitch, and yaw, and
positions x, y, and z, the reason for their usage as the PID controllers’ inputs. By applying the Laplace
transform, we obtain the following transfer functions for angles (φ, θ, ψ) and positions (x, y, z).

Gϕ(p) =
ϕ (p)

U2 (p)
= l

Ixp2

Gθ(p) =
θ (p)

U3 (p)
= l

Iyp2

Gψ(p) =
ψ (p)

U4 (p)
= 1

Izp2

Gx(p) =
x (p)

Ux (p)
= Kx

p (τx p+1)

Gy(p) =
y (p)

Uy (p)
=

Ky

p (τy p+1)

Gz(p) =
z (p)

Uz (p)
= Kz

p (τz p+1)

(28)

where Kj = 1/Kftj, τj = m/Kftj and j = {x, y, z}.
For quadrotor’s attitudes and positions control, the behavior of the linear equations defined in

(28) is approached to a desired reference one of a first order system. The desired behaviors for angles
and positions correspond to the characteristic polynomials Rs(p), where s = {φ, θ, ψ, x, y, z} and α, α1,
α2 are taken equal to 30, 2 and 30, respectively.

Rs(p) =
(
p +

1
τ

)(
p +

α1

τ

)(
p +

α2

τ

)
(29)

For all cases, we calculate the closed loop transfer functions Hs(p) of the six systems including the
PID controllers, for which we desire search their parameters. The computed denominators DHs(p) are
given in Equation (30). 

DHϕ(p) = p3 +
l Kdϕ

Ix
p2 +

l Kpϕ
Ix

p +
l Kiϕ

Ix

DHθ(p) = p3 +
l Kdθ

Ix
p2 +

l Kpθ
Ix

p + l Kiθ
Ix

DHψ(p) = p3 +
l Kdψ

Ix
p2 +

l Kpψ
Ix

p +
l Kiψ

Ix

DHx(p) = p3 +
Kdx+K f tx

m p2 +
Kpx
m p + Kix

m

DHy(p) = p3 +
Kdy+K f ty

m p2 +
Kpy
m p +

Kiy
m

DHz(p) = p3 +
Kdz+K f tz

m p2 +
Kpz
m p + Kiz

m

(30)

5. Results and Discussions

Simulations of the proposed intelligent and classical PID controllers are carried out on the
quadrotor’s attitudes (φ, θ, ψ) and positions (x, y, z). These PIDs are tested firstly in the case of hovering
to a determined position coordinates in order study the performances of the proposed intelligent
PSO, CS and PSO-CS and the classical RM controllers. Then, for two different desired trajectories,
the controllers’ gains are optimized through the intelligent proposed approaches. The main objective
is to confirm the ability of these intelligent nature inspired methods to control the quadrotor and
to efficiently realize different imposed trajectories even under the presence of disturbances. Table 1
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gives the parameters of the quadrotor and Table 2 presents the suggested trajectories’ dynamics and
their conditions.

Table 1. Quadrotor’s parameters.

Parameter (unit) Value

m (Kg) 0.65
g (m/s2) 9.806

l (m) 0.4
b (N/rad/s) 2.9842 × 10−5

d (N.m/rad/s) 7.5 × 10−7

Ix, Iy (Kg.m2) 7.5 × 10−3

Iz (Kg.m2) 1.3 × 10−3

Jr (Kg.m2) 2.8385 × 10−5

Kfax, Kfay (N/rad/s) 5.567 × 10−4

Kfaz (N/rad/s) 6.354 × 10−4

Kftx, Kfty(N/rad/s) 5.567 × 10−4

Kftz (N/rad/s) 3.354 ×10−4

Table 2. Trajectories’ conditions and dynamics.

Initial Conditions Trajectory Description Attitude’s Saturation

R
ec

ta
ng

ul
ar

Tr
aj

ec
to

ry

[φ, θ, ψ, x, y, z] =
[0, 0, 0, 0, 0, 10]

xd(t) = 2[u(t− 4) − u(t− 12)]
yd(t) = 2[u(t− 8) − u(t− 16)]
zd(t) = 10u(t− 20)
ψd(t) = 0

−
90
◦

<
φ

,θ
<

90

H
el

ic
al

Tr
aj

ec
to

ry

[φ, θ, ψ, x, y, z] =
[0, 0, 0, 0, 0, 2]

xd(t) = 2 sin(2πt)
yd(t) = 2 sin(2πt−π/2)
zd(t) = tu(t) − (t− 18)u(t− 18)
ψd(t) = 0

5.1. Comparisons of Intelligent and Classical Control Performances

To get the quadrotor to hover at a determined position coordinates, desired signals for positions
[xd, yd, zd] are considered step signals of 1 m and desired yaw angle (ψd) is fixed to 1 degree. Table 3
summarizes the PID controllers gains computed online using PSO, CS, and PSO-CS, and offline with
the conventional RM for the quadrotor’s outputs (φ, θ, ψ, x, y, z). Figures 3–6 show the step responses
for the corresponding outputs [x, y, z, ψ] obtained with these methods. Figures 7 and 8 show the
various obtained curves for the desired sensor signals as well as the controlled responses. Table 4 gives
the obtained quadrotor’s responses performances: Settling time (Ts), maximum overshoot (Mp), and
the errors previously mentioned (ISE, IAE, ITAE, and ITSE).

For control systems, the RM method often respects the fixed set of specifications and gives
acceptable results [15]. However, this method is linear, and it cannot be applied directly to quadrotor
control (the nonlinear quadrotor model). It can be observed from the obtained responses in Figures 3
and 4 and the performances in Table 4 that the search for the parameters of PIDs by RM is not
optimal: Responses with overshoots, settling times, and some error values exceed the amplitude
of the desired signal. These unsatisfactory performances of the linear RM method in search of PID
gains can be explained by the fact that the linear transfer functions defining the system (26) already
have integrations.
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Table 3. Optimal Proportional, Integral and Derivative (PID) parameters obtained with Particle Swarm
Optimization (PSO), Cuckoo Search (CS), Particle Swarm Optimization-Cuckoo Search (PSO-CS), and
Reference Model (RM) for the quadrotor.

Quadrotor’s
Output

Optimal PID Gains

PSO CS

Kp Ki Kd Kp Ki Kd

x 42.829 0.167 12.366 27.345 0.865 14.023

y 62.881 0.226 16.065 36.714 0.505 14.056

z 34.545 14.508 9.498 14.756 8.647 8.077

φ 14.740 1.749 0.975 17.948 0.178 1.055

θ 13.872 0.809 0.555 19.430 0.867 1.806

ψ 15.299 0.702 0.994 7.967 0.198 0.278

PSO-CS RM

Kp Ki Kd Kp Ki Kd

x 69.822 −0.011 16.974 59.150 29.250 30.550

y 45.880 0.008 15.067 39.650 19.500 20.800

z 31.859 17.724 6.715 26.066 10.394 16.865

φ 206.617 3.941 1.493 2.739 2.608 0.783

θ 121.842 −1.648 2.217 3.293 1.630 1.695

ψ 38.469 0.469 1.466 1.092 1.040 0.31
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Figure 3. Quadrotor’s position x using Particle Swarm Optimization (PSO), Cuckoo Search (CS),
Particle Swarm Optimization-Cuckoo Search (PSO-CS), and Reference Model (RM).
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Figure 4. Quadrotor’s position y using Particle Swarm Optimization (PSO), Cuckoo Search (CS),
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Figure 5. Quadrotor’s altitude z using Particle Swarm Optimization (PSO), Cuckoo Search (CS), Particle
Swarm Optimization-Cuckoo Search (PSO-CS), and Reference Model (RM).
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Figure 6. Quadrotor’s yaw attitude (ψ) using Particle Swarm Optimization (PSO), Cuckoo Search (CS),
Particle Swarm Optimization-Cuckoo Search (PSO-CS), and Reference Model (RM).

CS results present a considerable overshoot in yaw angle and the errors values of ISE and IAE
are around 50% of the desired altitude z, which proves that ISE value weight more significantly the
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quality of solutions and more adequate to evaluate the fitness function. However, the PSO approach is
suitable and results in better performances. Comparisons of PSO results to those of Genetic Algorithms
presented in Reference [16] show that PSO reduces the settling time Ts from 2.5 s to 0.172 s for yaw
angle. For altitude z, the value of Ts is increased to 1.07 s instead of 0.4 s for GA. These results illustrate
that PSO and GA techniques are highly competitive to explore the optimal solution in quadrotor
control. In the same project of quadrotor control, the work presented in Reference [32] suggests
three intelligent controllers, multilayer neural networks controller based on reference model (RMNN),
Neural Networks with PD’s controller behavior (CPDNN), and Fuzzy Logic to adjust PID controllers’
gains (Fuzzy-PID). The proposed Fuzzy-PID and CPDNN achieves better performances compared to
RMNN. Thus, comparing PSO results to those of Fuzzy-PID and CPDNN confirm that PSO is highly
competitive to soft computing methods.Appl. Sci. 2019, 9, x FOR PEER REVIEW 13 of 25 
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Considering the Figures 3–8 and Table 4, the controllers tuned using PSO-CS have good
performances for positions and attitudes. Thus, PSO-CS results are seen concurrent to those obtained
using PSO, where responses lead to fast settling times with no overshoot and reduced errors. The desired
sensor signal curves in Figures 7 and 8 (desired roll and pitch angles (φd and θd)) depend on the
outputs of the controllers PID-x, PID-y, and PID-z. It is observed from this figure that these intelligent
approaches, and especially PSO and PSO-CS, allow to follow perfectly the sensor signals for roll and
pitch (φd and θd), and give controlled responses close to the desired curves.

These programs are implemented using Matlab R2016a and performed on a computer with a
processor Intel® Core™ i7-3770 CPU of 3.40 GHz and 8.0 GB of RAM. From the conducted experiments,
we can get conclusions that for the same goal, the PSO algorithm spends less CPU time (10 min 45 s)
than the PSO-CS algorithm (14 min 12 s) and the CS algorithm (12 min 15 s). During the calculation of
the velocity update equation, PSO-CS consumes an additional CPU time as the algorithm combines
the two matrices generating Lévy flights random walks of cuckoos and that generating the movement
of particles toward the global best solution Pg. However, the PSO-CS and PSO algorithms get higher
performances (reduced errors) than the CS algorithm and RM method. These results are achieved
thanks to the good adjustment of PSO, CS and PSO-CS parameters: Position and velocity initializations,
the appropriate choice of the fitness function, the good tuning of the weighting coefficients w, C1, and
C2, the chosen probability Pa, and the Lévy flights settings for α and λ.
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Table 4. Performances obtained with Particle Swarm Optimization (PSO), Cuckoo Search (CS), Particle
Swarm Optimization-Cuckoo Search (PSO-CS), and Reference Model (RM) for the quadrotor.

Output Performances
Method

PSO CS PSO-CS RM

x

Ts (s) 0.730 1.384 0.522 3.779

Mp (%) 0.412 1.769 0.446 22.869

ISE 0.227 0.346 0.1650 0.365

IAE 0.324 0.492 0.234 0.714

ITSE 0.034 0.083 0.018 0.176

ITAE 0.088 0.262 0.038 0.847

y

Ts (s) 0.675 1.018 0.782 3.517

Mp (%) 0.497 0.898 0.010 30.741

ISE 0.237 0.296 0.226 0.441

IAE 0.322 0.410 0.319 0.802

ITSE 0.036 0.058 0.034 0.245

ITAE 0.083 0.152 0.076 0.954

z

Ts (s) 1.070 1.821 0.813 1.855

Mp (%) 0.107 2.463 0.002 3.467

ISE 0.243 0.406 0.208 0.342

IAE 0.397 0.587 0.308 0.617

ITSE 0.050 0.129 0.031 0.122

ITAE 0.134 0.312 0.081 0.521

φ

ISE 0.028 0.006 0.005 0.093

IAE 0.197 0.053 0.032 0.431

ITSE 0.016 0.001 0.000 0.076

ITAE 0.388 0.036 0.013 0.741

θ

ISE 0.334 0.129 0.024 0.912

IAE 0.886 0.271 0.068 1.509

ITSE 0.386 0.026 0.001 1.238

ITAE 2.006 0.134 0.023 2.822

ψ

Ts (s) 0.172 0.207 0.097 2.228

Mp (%) 0.300 20.424 0.047 16.129

ISE 0.036 0.037 0.022 0.138

IAE 0.073 0.068 0.038 0.331

ITSE 0.0012 0.012 0.000 0.033

ITAE 0.038 0.011 0.006 0.244

5.2. Rectangular Trajectory Tracking

This experimental simulation on the quadrotor engages to test the PIDs’ efficiency when the
vehicle tracks a square trajectory without overturning. In this mode, inputs for desired positions (xd,
yd, zd) are considered pulse signals and desired yaw attitude is set to 0◦. Figure 9 shows the tracking of
each position coordinate (x, y, z) and the tracking trajectories in 3D plan obtained using the proposed
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methods. Responses for desired and controlled roll (φ) and pitch (θ) attitudes are illustrated in Figure 6.
Table 5 resumes the errors ISE used to compute fitness function.

It can be noticeably observed from Figure 9 and Table 5 that the adaptive autotuned controllers
using PSO, CS, and PSO-CS have good performances (reduced errors) for positions (x, y, z) control.
PSO-CS and PSO responses always lead to fast settling times with no overshoot for x position.
RM presents overshoots for positions and CS shows few overshoots for y position and altitude z.
The intelligent PSO and the cooperative PSO-CS drive the system toward perfect tracking of the
prescribed square trajectory. Also, all these methods allowed maintaining the yaw angle in zero
degrees: no overturning of the aircraft. Figures 10 and 11 confirm that these intelligent approaches of
PSO-CS nd PSO give controlled responses closed to the desired roll and pitch attitudes.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 15 of 25 

PSO algorithms get higher performances (reduced errors) than the CS algorithm and RM method. 
These results are achieved thanks to the good adjustment of PSO, CS and PSO-CS parameters: 
Position and velocity initializations, the appropriate choice of the fitness function, the good tuning of 
the weighting coefficients w, C1, and C2, the chosen probability Pa, and the Lévy flights settings for α 
and λ. 

5.2. Rectangular Trajectory Tracking 

This experimental simulation on the quadrotor engages to test the PIDs’ efficiency when the 
vehicle tracks a square trajectory without overturning. In this mode, inputs for desired positions (xd, 
yd, zd) are considered pulse signals and desired yaw attitude is set to 0°. Figure 9 shows the tracking 
of each position coordinate (x, y, z) and the tracking trajectories in 3D plan obtained using the 
proposed methods. Responses for desired and controlled roll (ϕ) and pitch (θ) attitudes are illustrated 
in Figure 6. Table 5 resumes the errors ISE used to compute fitness function. 

It can be noticeably observed from Figure 9 and Table 5 that the adaptive autotuned controllers 
using PSO, CS, and PSO-CS have good performances (reduced errors) for positions (x, y, z) control. 
PSO-CS and PSO responses always lead to fast settling times with no overshoot for x position. RM 
presents overshoots for positions and CS shows few overshoots for y position and altitude z. The 
intelligent PSO and the cooperative PSO-CS drive the system toward perfect tracking of the 
prescribed square trajectory. Also, all these methods allowed maintaining the yaw angle in zero 
degrees: no overturning of the aircraft. Figures 10 and 11 confirm that these intelligent approaches of 
PSO-CS nd PSO give controlled responses closed to the desired roll and pitch attitudes. 

 
Figure 9. Quadrotor’s positions (x, y, z) using Particle Swarm Optimization (PSO), Cuckoo Search 
(CS), Particle Swarm Optimization-Cuckoo Search (PSO-CS), and Reference Model (RM) (rectangular 
trajectory). 

0 5 10 15 20
0

5

10

Time [s]

z 
[m

]

0 5 10 15 20
0

0.5

1

1.5

2

2.5

Time [s]

y 
[m

]

0 5 10 15 20
0

0.5
1

1.5
2

2.5

Time [s]

x 
[m

]

 

 

0

1

2

0

1

2

0

2

4

6

8

10

12

 

x [m]y [m] 

z 
[m

]

Desired output PSO output CS output PSO-CS output RM output

Figure 9. Quadrotor’s positions (x, y, z) using Particle Swarm Optimization (PSO), Cuckoo
Search (CS), Particle Swarm Optimization-Cuckoo Search (PSO-CS), and Reference Model (RM)
(rectangular trajectory).



Appl. Sci. 2019, 9, 1719 17 of 26

Appl. Sci. 2019, 9, x FOR PEER REVIEW 16 of 25 

 
Figure 10. Quadrotor’s roll attitude (ϕ) using Particle Swarm Optimization (PSO), Cuckoo Search 
(CS), Particle Swarm Optimization-Cuckoo Search (PSO-CS), and Reference Model (RM) (rectangular 
trajectory). 

 
Figure 11. Quadrotor’s pitch attitude (θ) using Particle Swarm Optimization (PSO), Cuckoo Search (CS), 
Particle Swarm Optimization-Cuckoo Search (PSO-CS), and Reference Model (RM) (rectangular trajectory). 

Figure 10. Quadrotor’s roll attitude (φ) using Particle Swarm Optimization (PSO), Cuckoo
Search (CS), Particle Swarm Optimization-Cuckoo Search (PSO-CS), and Reference Model (RM)
(rectangular trajectory).

Appl. Sci. 2019, 9, x FOR PEER REVIEW 16 of 25 

 
Figure 10. Quadrotor’s roll attitude (ϕ) using Particle Swarm Optimization (PSO), Cuckoo Search 
(CS), Particle Swarm Optimization-Cuckoo Search (PSO-CS), and Reference Model (RM) (rectangular 
trajectory). 

 
Figure 11. Quadrotor’s pitch attitude (θ) using Particle Swarm Optimization (PSO), Cuckoo Search (CS), 
Particle Swarm Optimization-Cuckoo Search (PSO-CS), and Reference Model (RM) (rectangular trajectory). 

Figure 11. Quadrotor’s pitch attitude (θ) using Particle Swarm Optimization (PSO), Cuckoo
Search (CS), Particle Swarm Optimization-Cuckoo Search (PSO-CS), and Reference Model (RM)
(rectangular trajectory).



Appl. Sci. 2019, 9, 1719 18 of 26

Table 5. Errors (ISE-Integral Square Error) obtained with Particle Swarm Optimization (PSO), Cuckoo
Search (CS), Particle Swarm Optimization-Cuckoo Search (PSO-CS), and Reference Model (RM) for the
quadrotor (rectangular trajectory).

Method
Errors ISE for Output

x y z φ θ ψ

PSO 1.083 0.677 3.287 0.119 0.093 7.586 × 10−36

CS 1.447 1.327 21.46 0.152 0.318 1.001 × 10−35

PSO-CS 0.955 0.795 1.453 0.107 0.4022 1.651 × 10−36

RM 2.573 1.561 33.756 0.277 0.712 1.210 × 10−34

To test the robustness of these PID controllers, external disturbance was introduced. The most
likely disturbance acting on the quadrotor is the wind disturbance along z axis. The external disturbance
is modeled in this simulation by a random signal of variable amplitude inserted in the closed loop
scheme of altitude z. It is noticed from Figures 12–14 and the errors ISE presented in Table 6 that when
random disturbance affects the quadrotor, PSO, CS, and PSO-CS controllers reject these undesirable
effects and provide outputs responses close to the desired ones. Therefore, we can affirm that PSO, CS,
and especially the cooperative PSO-CS, are able to tune optimally the six PID controllers and drive the
quadrotor to the desired altitude z, positions x and y, and yaw angle.
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Figure 12. Quadrotor’s positions (x, y, z) using Particle Swarm Optimization (PSO), Cuckoo Search (CS),
Particle Swarm Optimization-Cuckoo Search (PSO-CS), and Reference Model (RM) with disturbance
(rectangular trajectory).
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Table 6. Errors (ISE-Integral Square Error) obtained Particle Swarm Optimization (PSO), Cuckoo
Search (CS), Particle Swarm Optimization-Cuckoo Search (PSO-CS), and Reference Model (RM) for the
quadrotor with disturbance (rectangular trajectory).

Method
Errors ISE for Output

x y z φ θ ψ

PSO 1.254 1.161 14.212 0.524 0.982 1.056 × 10−28

CS 1.498 1.334 21.612 0.147 2.441 7.378 × 10−35

PSO-CS 1.079 0.685 3.287 0.183 0.195 8.157 × 10−36

RM 2.555 1.573 33.776 0.272 0.704 5.467 × 10−35

5.3. Helical Trajectory Tracking

Through the last simulation, we will investigate more the efficiency of the proposed intelligent
control methods (PSO, CS, and PSO-CS) to search for optimal PID autotuned controllers for the
quadrotor, when the desired trajectory is a helix. Simulation results of each position’s tracking (x, y, z),
and the tracking in 3D plan are presented in Figure 15. The tracking of roll and pitch attitudes (φ and
θ) are presented in Figures 16 and 17. Table 7 summarizes the obtained ISE errors.

Figure 15 clearly shows the possibility of the quadrotor system to follow a linear movement in
altitude z in the first mode from 0 to 18 s and to keep perfectly a stable attitude z of 20 m in the second
mode from 18 to 30 s. For translation motion, the quadrotor makes a complete circle of 2 m of radius in
30 s, where we notice that the errors in x, y, and z axis are very small (from Table 7). The same figure
illustrates in 3D plan that the quadrotor tracks the helix trajectory and ends by a circle form. Also, the
quadrotor avoids with high precision the overturning and maintains exactly 0◦ in yaw attitude.
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Figure 15. Quadrotor’s positions (x, y, z) using Particle Swarm Optimization (PSO), Cuckoo Search (CS),
Particle Swarm Optimization-Cuckoo Search (PSO-CS), and Reference Model (RM) (helical trajectory).
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Table 7. Errors (ISE-Integral Square Error) obtained with Particle Swarm Optimization (PSO), Cucko
Search (CS), Particle Swarm Optimization-Cuckoo Search (PSO-CS), and Reference Model (RM) for the
quadrotor (helical trajectory).

Method
ISE Errors for Output

x y z φ θ ψ

PSO 0.006 0.013 0.069 0.010 0.069 7.540 × 10−38

CS 0.013 0.005 0.121 0.023 0.089 6.982 × 10−36

PSO-CS 0.011 0.010 0.007 0.001 0.033 7.495 × 10−35

RM 0.006 0.004 0.08 0.238 1.565 1.954 × 10−34

Figures 16 and 17 and Table 7 illustrate that PSO, CS, and PSO-CS help to follow perfectly the
sensor signals (φd and θd). These results prove the possibility of our system to follow the imposed
combined trajectory form with precision, for all variables (positions (x and y), altitude z, and attitudes
(φ, θ, and ψ).

These controllers are tested in order to evaluate their performances under the same disturbance (a
random input of variable amplitude) inserted in the altitude z closed loop scheme of the quadrotor. It
can be observed from Figures 18–20 and Table 8 that PSO and PSO-CS controllers reject the disturbance
effects and drive all variables to the desired ones. Therefore, we can affirm that despite the usage of
a combined trajectory form and the presence of forcible disturbance, adaptive PSO-CS and PSO are
proven as remarkably robust and efficient for quadrotor control.
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Figure 18. Quadrotor’s positions (x, y, z) Particle Swarm Optimization (PSO), Cuckoo Search (CS),
Particle Swarm Optimization-Cuckoo Search (PSO-CS), and Reference Model (RM) with disturbance
(helical trajectory).
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Table 8. Errors (ISE-Integral Square Error) obtained with Particle Swarm Optimization (PSO), Cuckoo
Search (CS), Particle Swarm Optimization-Cuckoo Search (PSO-CS), and Reference Model (RM) for the
quadrotor with disturbance (helical trajectory).

Method
ISE Errors for Output

x y z φ θ ψ

PSO 0.072 0.048 0.163 1.079 2.606 2.001 × 10−34

CS 0.756 0.188 0.172 1.155 6.084 3.721 × 10−36

PSO-CS 0.009 0.009 0.007 0.010 0.023 1.128 × 10−35

RM 55.221 53.052 0.932 2.016 6.745 2.291 × 10−33

6. Conclusions

In this paper, Particle Swarm Optimization (PSO), Cuckoo Search (CS), and the proposed
cooperative PSO-CS were applied to control the quadrotor system. Results proved the efficiency of
PSO approach and the cooperative PSO-CS to control optimally the quadrotor’s outputs (φ, θ, ψ, x,
y, z) compared to CS and the classical Reference Model (RM) methods. Experimental simulations
also confirm the effectiveness of the aircraft using the proposed intelligent PID controllers to track the
imposed rectangular and helical trajectories. Indeed, the robustness and performances of the intelligent
controllers are validated in presence of disturbance. The performances of PSO-CS showed not only
the stability robustness against the external disturbance, but also the fast response and the excellent
tracking capacity for the different trajectories. These achievements are the results of the good settings
of PSO, CS, and PSO-CS parameters. The advantages of the proposed PSO-CS in seeking for the best
solutions in control problem are the results of exploiting the local search capacity of CS and benefiting
from the global intelligence offered by PSO.

Concerning the limitations of our PSO-CS, one more parameter is added to CS program, which
is the acceleration constant C2. A wrong setting of this parameter can cause premature convergence.
C2 makes the cuckoos move toward the global best solution and must ensure a compromise between
local and global exploration of the search space. On the other hand, the PSO-CS program consumes
additional CPU time to calculate the velocity update equation over generations in order to perform
the search.
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CS Cuckoo Search
ISE Integral Square Error
IAE Integral Absolute Error
ITSE Integral Time Square Error
ITAE Integral Time Absolute Error
PI Proportional and Integral
PID Proportional, Integral and Derivative
PD Proportional and Derivative
PSO Particle Swarm Optimization
PSO-CS Particle Swarm Optimization-Cuckoo Search
RM Reference Model
UAV Unmanned Aerial Vehicles
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