Cerebral Blood Flow in Low Intracranial Pressure Headaches—What Is Known?
Abstract
:1. Introduction
2. Cerebral Blood Flow and Intracranial Pressure
3. Monroe–Kellie Doctrine and Intracranial Hypotension Headaches
4. Techniques to Measure Cerebral Blood Flow
5. Cerebral Blood Flow in Intracranial Hypotension—Clinical and Experimental Studies
5.1. Transcranial Doppler Studies
5.2. Different Techniques Studies
5.3. Case Reports
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Headache Classification Committee of the International Headache Society (IHS). The International Classification of Headache Disorders, 3rd edition. Cephalalgia 2018, 38, 1–211. [Google Scholar] [CrossRef] [PubMed]
- Mokri, B. Spontaneous low pressure, low CSF volume headaches: Spontaneous CSF leaks. Headache 2013, 53, 1034–1053. [Google Scholar] [CrossRef] [PubMed]
- Cipolla, M.J. The Cerebral Circulation; Morgan & Claypool Life Sciences: Williston, VT, USA, 2009. [Google Scholar]
- de-Lima-Oliveira, M.; Salinet, A.S.M.; Nogueira, R.C.; de Azevedo, D.S.; Paiva, W.S.; Teixeira, M.J.; Bor-Seng-Shu, E. Intracranial Hypertension and Cerebral Autoregulation: A Systematic Review and Meta-Analysis. World Neurosurg. 2018, 113, 110–124. [Google Scholar] [CrossRef] [PubMed]
- Donnelly, J.; Czosnyka, M.; Harland, S.; Varsos, G.V.; Cardim, D.; Robba, C.; Liu, X.; Ainslie, P.N.; Smielewski, P. Cerebral haemodynamics during experimental intracranial hypertension. J. Cereb. Blood Flow Metab. 2017, 37, 694–705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Armstead, W.M. Cerebral Blood Flow Autoregulation and Dysautoregulation. Anesthesiol. Clin. 2016, 34, 465–477. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Boto, G.; Rivero-Garvía, M.; Gutiérrez-González, R.; Márquez-Rivas, J. Basic concepts about brain pathophysiology and intracranial pressure monitoring. Neurologia 2015, 30, 16–22. [Google Scholar] [CrossRef]
- Varsos, G.V.; Kasprowicz, M.; Smielewski, P.; Czosnyka, M. Model-based indices describing cerebrovascular dynamics. Neurocrit. Care 2014, 20, 142–157. [Google Scholar] [CrossRef]
- Czosnyka, M.; Smielewski, P.; Piechnik, S.; Steiner, L.A.; Pickard, J.D. Cerebral autoregulation following head injury. J. Neurosurg. 2001, 95, 756–763. [Google Scholar] [CrossRef]
- Cremer, O.L.; van Dijk, G.W.; Amelink, G.J.; de Smet, A.M.; Moons, K.G.; Kalkman, C.J. Cerebral hemodynamic responses to blood pressure manipulation in severely head-injured patients in the presence or absence of intracranial hypertension. Anesth. Analg. 2004, 99, 1211–1217. [Google Scholar] [CrossRef]
- Puppo, C.; Camacho, J.; Varsos, G.V.; Yelicich, B.; Gómez, H.; Moraes, L.; Biestro, A.; Czosnyka, M. Cerebral Critical Closing Pressure: Is the Multiparameter Model Better Suited to Estimate Physiology of Cerebral Hemodynamics? Neurocrit. Care 2016, 25, 446–454. [Google Scholar] [CrossRef]
- Wang, Y.; Duan, Y.Y.; Zhou, H.Y.; Yuan, L.J.; Zhang, L.; Wang, W.; Li, L.H.; Li, L. Middle cerebral arterial flow changes on transcranial color and spectral Doppler sonography in patients with increased intracranial pressure. J. Ultrasound Med. 2014, 33, 2131–2136. [Google Scholar] [CrossRef] [PubMed]
- Varsos, G.V.; Kolias, A.G.; Smielewski, P.; Brady, K.M.; Varsos, V.G.; Hutchinson, P.J.; Pickard, J.D.; Czosnyka, M. A noninvasive estimation of cerebral perfusion pressure using critical closing pressure. J. Neurosurg. 2015, 123, 638–648. [Google Scholar] [CrossRef] [PubMed]
- Varsos, G.V.; Richards, H.; Kasprowicz, M.; Budohoski, K.P.; Brady, K.M.; Reinhard, M.; Avolio, A.; Smielewski, P.; Pickard, J.D.; Czosnyka, M. Critical closing pressure determined with a model of cerebrovascular impedance. J. Cereb. Blood Flow Metab. 2013, 33, 235–243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Donnelly, J.; Czosnyka, M.; Harland, S.; Varsos, G.V.; Cardim, D.; Robba, C.; Liu, X.; Ainslie, P.N.; Smielewski, P. Increased ICP and Its Cerebral Haemodynamic Sequelae. Acta Neurochir. Suppl. 2018, 126, 47–50. [Google Scholar]
- Mokri, B. The Monro-Kellie hypothesis: Applications in CSF volume depletion. Neurology 2001, 56, 1746–1748. [Google Scholar] [CrossRef]
- Wilson, M.H. Monro-Kellie 2.0: The dynamic vascular and venous pathophysiological components of intracranial pressure. J. Cereb. Blood Flow Metab. 2016, 36, 1338–1350. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.M.; Davidsson, L. Sagging brain development after lumbar puncture agrees with Monro-Kellie hypothesis. J. Neurol. 2013, 260, 920–922. [Google Scholar] [CrossRef]
- Karakis, I.; Nuccio, A.H.; Amadio, J.P.; Fountain, A.J., Jr. The Monro-Kellie Doctrine in Action: Posterior Reversible Leukoencephalopathy Syndrome Caused by Intracranial Hypotension from Lumboperitoneal Shunt Placement. World Neurosurg. 2017, 98, 868.e11–868.e15. [Google Scholar] [CrossRef]
- Fishman, R.A.; Dillon, W.P. Dural enhancement and cerebral displacement secondary to intracranial hypotension. Neurology 1993, 43 Pt 1, 609–611. [Google Scholar] [CrossRef]
- Amorim, J.A.; de Barros, M.V.G.; Valença, M.M. Post-dural (post-lumbar) puncture headache: Risk factors and clinical features. Cephalalgia 2012, 32, 916–923. [Google Scholar] [CrossRef]
- Lipman, I.J. Primary intracranial hypotension: The syndrome of spontaneous low cerebospinal fluid pressure with traction headache. Dis. Nerv. Syst. 1977, 38, 212–213. [Google Scholar] [PubMed]
- Paldino, M.; Mogilner, A.Y.; Tenner, M.S. Intracranial hypotension syndrome: A comprehensive review. Neurosurg. Focus 2003, 15, ECP2. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Aziz, S.; Benzon, H.T.; Hurley, R. Postmeningeal Puncture Headache and Spontaneous Intracranial Hypotension. In Essentials of Pain Medicine; Elsevier Science Health Science: Amsterdam, The Netherlands, 2018; pp. 169–176. [Google Scholar]
- Feil, K.; Forbrig, R.; Thaler, F.S.; Conrad, J.; Heck, S.; Dorn, F.; Pfister, H.W.; Straube, A. Reversible cerebral vasoconstriction syndrome and posterior reversible encephalopathy syndrome associated with intracranial hypotension. Neurocrit. Care 2017, 26, 103–108. [Google Scholar] [CrossRef] [PubMed]
- Honig, A.; Eliahou, R.; Pikkel, Y.Y.; Leker, R.R. Iatrogenic intracranial hypotension and cerebral venous thrombosis. J. Neurol. Sci. 2016, 366, 191–194. [Google Scholar] [CrossRef] [PubMed]
- Koss, S.A.; Ulmer, J.L.; Hacein-Bey, L. Angiographic features of spontaneous intracranial hypotension. AJNR Am. J. Neuroradiol. 2003, 24, 704–706. [Google Scholar] [PubMed]
- Nowaczewska, M.; Książkiewicz, B. Cerebral blood flow characteristics in patients with post-lumbar puncture headache. J. Neurol. 2012, 259, 665–669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pomeranz, S.; Beni, L.; Shalit, M.N. The effect of intracranial hypotension on cerebral blood flow in a feline model. Acta Neurochir. (Wien) 1993, 122, 113–117. [Google Scholar] [CrossRef]
- Schievink, W.I.; Maya, M.M.; Chow, W.; Louy, C. Reversible cerebral vasoconstriction in spontaneous intracranial hypotension. Headache 2007, 47, 284–287. [Google Scholar] [CrossRef]
- Yoon, K.W.; Cho, M.K.; Kim, Y.J.; Lee, S.K. Sinus thrombosis in a patient with intracranial hypotension: A suggested hypothesis of venous stasis. a case report. Interv. Neuroradiol. 2011, 17, 248–251. [Google Scholar] [CrossRef]
- Sudikoff, S.; Banasiak, K. Techniques for measuring cerebral blood flow in children. Curr. Opin. Pediatr. 1998, 10, 291–298. [Google Scholar] [CrossRef]
- Fantini, S.; Sassaroli, A.; Tgavalekos, K.T.; Kornbluth, J. Cerebral blood flow and autoregulation: Current measurement techniques and prospects for noninvasive optical methods. Neurophotonics 2016, 3, 031411. [Google Scholar] [CrossRef] [PubMed]
- Rostami, E.; Engquist, H.; Enblad, P. Imaging of cerebral blood flow in patients with severe traumatic brain injury in the neurointensive care. Front. Neurol. 2014, 5, 114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naqvi, J.; Yap, K.H.; Ahmad, G.; Ghosh, J. Transcranial Doppler ultrasound: A review of the physical principles and major applications in critical care. Int. J. Vasc. Med. 2013, 2013, 629378. [Google Scholar] [CrossRef] [PubMed]
- Cardim, D.; Robba, C.; Bohdanowicz, M.; Donnelly, J.; Cabella, B.; Liu, X.; Cabeleira, M.; Smielewski, P.; Schmidt, B.; Czosnyka, M. Non-invasive Monitoring of Intracranial Pressure Using Transcranial Doppler Ultrasonography: Is It Possible? Neurocrit. Care 2016, 25, 473–491. [Google Scholar] [CrossRef] [Green Version]
- Wakerley, B.R.; Kusuma, Y.; Yeo, L.L.; Liang, S.; Kumar, K.; Sharma, A.K.; Sharma, V.K. Usefulness of transcranial Doppler-derived cerebral hemodynamic parameters in the noninvasive assessment of intracranial pressure. J. Neuroimaging 2015, 25, 111–116. [Google Scholar] [CrossRef]
- Robba, C.; Cardim, D.; Sekhon, M.; Budohoski, K.; Czosnyka, M. Transcranial Doppler: A stethoscope for the brain-neurocritical care use. J. Neurosci. Res. 2018, 96, 720–730. [Google Scholar] [CrossRef] [Green Version]
- Bellner, J.; Romner, B.; Reinstrup, P.; Kristiansson, K.A.; Ryding, E.; Brandt, L. Transcranial Doppler sonography pulsatility index (PI) reflects intracranial pressure (ICP). Surg. Neurol. 2004, 62, 45–51; discussion 51. [Google Scholar] [CrossRef]
- Homburg, A.M.; Jakobsen, M.; Enevoldsen, E. Transcranial Doppler recordings in raised intracranial pressure. Acta Neurol. Scand. 1993, 87, 488–493. [Google Scholar] [CrossRef]
- de Riva, N.; Budohoski, K.P.; Smielewski, P.; Kasprowicz, M.; Zweifel, C.; Steiner, L.A.; Reinhard, M.; Fábregas, N.; Pickard, J.D.; Czosnyka, M. Transcranial Doppler pulsatility index: What it is and what it isn’t. Neurocrit. Care 2012, 17, 58–66. [Google Scholar] [CrossRef]
- Croal, P.L.; Leung, J.; Kosinski, P.; Shroff, M.; Odame, I.; Kassner, A. Assessment of cerebral blood flow with magnetic resonance imaging in children with sickle cell disease: A quantitative comparison with transcranial Doppler ultrasonography. Brain Behav. 2017, 7, e00811. [Google Scholar] [CrossRef] [Green Version]
- Nowaczewska, M.; Kukulska-Pawluczuk, B.; Kaźmierczak, H.; Pawlak-Osińska, K. Post-Lumbar Puncture Headache-Does Hydration before Puncture Prevent Headache and Affect Cerebral Blood Flow? J. Clin. Med. 2019, 8, 1710. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Göbel, H.; Klostermann, H.; Lindner, V.; Schenkl, S. Changes in cerebral haemodynamics in cases of post-lumbar puncture headache: A prospective transcranial Doppler ultrasound study. Cephalalgia 1990, 10, 117–122. [Google Scholar] [CrossRef] [PubMed]
- Mowafy, S.M.S.; Ellatif, S.E.A. Transcranial Doppler role in prediction of post-dural puncture headache in parturients undergoing elective cesarean section: Prospective observational study. J. Anesth. 2019, 33, 426–434. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.C.; Luo, C.L.; Wang, S.J.; Chern, C.M.; Fuh, J.L.; Lin, S.H.; Hu, H.H. Colour doppler imaging for diagnosis of intracranial hypotension. Lancet 1999, 354, 826–829. [Google Scholar] [CrossRef]
- Salmon, J.H.; Timperman, A.L. Effect of intracranial hypotension on cerebral blood flow. J. Neurol. Neurosurg. Psychiatry 1971, 34, 687–692. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, E.A.; Silva, S.; Albucher, J.F.; Luzi, A.; Loubinoux, I.; Januel, A.C.; Cognard, C.; Payoux, P.; Chollet, F. Cerebral hemodynamic changes induced by a lumbar puncture in good-grade subarachnoid hemorrhage. Cerebrovasc. Dis. Extra 2012, 2, 52–62. [Google Scholar] [CrossRef]
- Chaves, C.; Freidberg, S.R.; Lee, G.; Zerris, V.; Ries, S.; Chavali, R. Cerebral vasospasm following intracranial hypotension caused by cerebrospinal fluid leak from an incidental lumbar durotomy. Case report. J. Neurosurg. 2005, 102, 152–155. [Google Scholar] [CrossRef]
Author (Year) | Study Group (Number of Participants) | Technique to Measure CBF | Results |
---|---|---|---|
Nowaczewska (2012) [28] | Patients before and after LP (n = 66) | TCD | Vm decreased in MCAs 24 h after LP in PDPH group. |
Nowaczewska (2019) [43] | Patients before and after LP (n = 99) | TCD | Vm decreased in MCAs after LP in all patients. PI increased after LP only in the PDPH group. |
Gobel (1990) [44] | Patients before and after LP (n = 45) | TCD | Vm decreased in right MCA 48 h after LP in PDPH group. |
Mowafy (2019) [45] | Parturient patients undergoing elective cesarean sections (n = 90) | TCD | Vm increased in MCAs in all patients within the first 48 h after cesarean sections. PI decreased at 24 h and 48 h in PDPH group. |
Chen (1999) [46] | IH patients (n = 25) | CDFI | Vmax and diameter of the superior ophthalmic veins increased in patients with IH. |
Pomeranz (1993) [29] | IH cats (n = 11) | hydrogen clearance method | Regional CBF was unchanged relative to the baseline. |
Salmon (1971) [47] | IH dogs (n = 7) | radioactive gas 133Xe | Increase in cortical blood flow when ICP was lowered acutely from 100 mm to 40 mm of CSF. |
Salmon (1971) [47] | IH patients (n = 7) | radioactive gas 133Xe | After lowering CSF pressure, CVR decreased, the cortical blood flow increased, and the relative weight of functional grey matter increased. |
Schmidt (2012) [48] | SAH patients before and after LP (n = 6) | O 15 PET | Heterogeneous and biphasic changes in cerebral hemodynamics. Regional CBF was not kept constant and either augmented or decreased after the drop in ICP. |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nowaczewska, M.; Kaźmierczak, H. Cerebral Blood Flow in Low Intracranial Pressure Headaches—What Is Known? Brain Sci. 2020, 10, 2. https://doi.org/10.3390/brainsci10010002
Nowaczewska M, Kaźmierczak H. Cerebral Blood Flow in Low Intracranial Pressure Headaches—What Is Known? Brain Sciences. 2020; 10(1):2. https://doi.org/10.3390/brainsci10010002
Chicago/Turabian StyleNowaczewska, Magdalena, and Henryk Kaźmierczak. 2020. "Cerebral Blood Flow in Low Intracranial Pressure Headaches—What Is Known?" Brain Sciences 10, no. 1: 2. https://doi.org/10.3390/brainsci10010002
APA StyleNowaczewska, M., & Kaźmierczak, H. (2020). Cerebral Blood Flow in Low Intracranial Pressure Headaches—What Is Known? Brain Sciences, 10(1), 2. https://doi.org/10.3390/brainsci10010002