Expression and Localization of Kv1.1 and Kv3.1b Potassium Channels in the Cochlear Nucleus and Inferior Colliculus after Long-Term Auditory Deafferentation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals and Experimental Design
2.2. Cochlear Lesions
2.3. Deafness Assessment: Auditory Brainstem Responses (ABRs)
2.4. Quantitative Real-Time PCR (qRT-PCR) for Kv1.1 and Kv3.1b mRNA Expression
2.5. Antibody Characterization for Western Blot and Immunocytochemistry
2.6. Western Blot
2.7. Perfusion Fixation for Histology and Immunocytochemistry
2.8. Histological Assessment of the Cochlear Lesion
2.9. Immunocytochemistry
2.10. Image Capture
2.11. Quantitative Evaluation of Immunolabeling Intensity for Kv1.1 and Kv3.1b
2.12. Statistical Analysis
3. Results
3.1. Hearing Loss and Lesion Assessment
3.2. Expression and Localization of Kv1.1 and Kv3.1b in the CN after Cochlear Lesion
3.2.1. Changes in Gene Expression: qRT-PCR
3.2.2. Changes in Protein Expression: Western Blot
3.2.3. Changes in Kv1.1 and Kv3.1b Immunoreactivity in the AVCN
3.3. Expression and Localization of Kv1.1 and Kv3.1b in the IC after Cochlear Lesion
3.3.1. Changes in Gene Expression: qRT-PCR
3.3.2. Changes in Protein Expression: Western Blot
3.3.3. Changes in Immunoreactivity for Kv1.1 and Kv3.1b after Cochlear Lesion in ICc
4. Discussion
4.1. Auditory Deprivation after Bilateral Mechanical Lesions of the Cochlea
4.2. Kv1.1 and Kv3.1b Gene and Protein Expression Are Relatively Unaffected in the CN on the Short Term after Auditory Deprivation in the Adult
4.3. Kv1.1 and Kv3.1b Gene and Protein Expression Is Up-Regulated in the CN at Long-Term after Cochlear Lesion
4.4. Kv1.1 and Kv3.1b Gene and Protein Levels Do not Change in the IC after Cochlear Lesion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Caminos, E.; Vale, C.; Lujan, R.; Martinez-Galan, J.R.; Juiz, J.M. Developmental regulation and adult maintenance of potassium channel proteins (Kv 1.1 and Kv 1.2) in the cochlear nucleus of the rat. Brain Res. 2005, 1056, 118–131. [Google Scholar] [CrossRef]
- Grigg, J.J.; Brew, H.M.; Tempel, B.L. Differential expression of voltage-gated potassium channel genes in auditory nuclei of the mouse brainstem. Hear. Res. 2000, 140, 77–90. [Google Scholar] [CrossRef]
- Li, W.; Kaczmarek, L.K.; Perney, T.M. Localization of two high-threshold potassium channel subunits in the rat central auditory system. J. Comp. Neurol. 2001, 437, 196–218. [Google Scholar] [CrossRef] [PubMed]
- Perney, T.M.; Kaczmarek, L.K. Localization of a high threshold potassium channel in the rat cochlear nucleus. J. Comp. Neurol. 1997, 386, 178–202. [Google Scholar] [CrossRef]
- Rosenberger, M.H.; Fremouw, T.; Casseday, J.H.; Covey, E. Expression of the Kv1.1 ion channel subunit in the auditory brainstem of the big brown bat, Eptesicus fuscus. J. Comp. Neurol. 2003, 462, 101–120. [Google Scholar] [CrossRef]
- Sivaramakrishnan, S.; Oliver, D.L. Distinct K currents result in physiologically distinct cell types in the inferior colliculus of the rat. J. Neurosci. 2001, 21, 2861–2877. [Google Scholar] [CrossRef] [Green Version]
- Cant, N.B.; Benson, C.G. Parallel auditory pathways: Projection patterns of the different neuronal populations in the dorsal and ventral cochlear nuclei. Brain Res. Bull. 2003, 60, 457–474. [Google Scholar] [CrossRef]
- Brew, H.M.; Forsythe, I.D. Two voltage-dependent K+ conductances with complementary functions in postsynaptic integration at a central auditory synapse. J. Neurosci. 1995, 15, 8011–8022. [Google Scholar] [CrossRef] [PubMed]
- Brown, M.R.; Kaczmarek, L.K. Potassium channel modulation and auditory processing. Hear. Res. 2011, 279, 32–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trussell, L.O. Cellular mechanisms for preservation of timing in central auditory pathways. Curr. Opin. Neurobiol. 1997, 7, 487–492. [Google Scholar] [CrossRef]
- Pollak, G.D.; Burger, R.M.; Klug, A. Dissecting the circuitry of the auditory system. Trends Neurosci. 2003, 26, 33–39. [Google Scholar] [CrossRef]
- Karcz, A.; Rübsamen, R.; Kopp-Scheinpflug, C. Low-threshold potassium currents stabilize IID-sensitivity in the inferior colliculus. Front. Neural Circuits 2012, 6, 60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuba, H.; Yamada, R.; Ishiguro, G.; Adachi, R. Redistribution of Kv1 and Kv7 enhances neuronal excitability during structural axon initial segment plasticity. Nat. Commun. 2015, 6, 8815. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steinert, J.R.; Robinson, S.W.; Tong, H.; Haustein, M.D.; Kopp-Scheinpflug, C.; Forsythe, I.D. Nitric Oxide Is an Activity-Dependent Regulator of Target Neuron Intrinsic Excitability. Neuron 2011, 71, 291–305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gold, J.R.; Bajo, V.M. Insult-induced adaptive plasticity of the auditory system. Front. Neurosci. 2014, 8, 110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pernia, M.; Estevez, S.; Poveda, C.; Plaza, I.; Carro, J.; Juiz, J.M.; Merchan, M.A. c-Fos and Arc/Arg3.1 expression in auditory and visual cortices after hearing loss: Evidence of sensory crossmodal reorganization in adult rats. J. Comp. Neurol. 2017, 525, 2677–2689. [Google Scholar] [CrossRef] [Green Version]
- Syka, J. Plastic Changes in the Central Auditory System After Hearing Loss, Restoration of Function, and During Learning. Physiol. Rev. 2002, 82, 601–636. [Google Scholar] [CrossRef]
- Zeng, C.; Yang, Z.; Shreve, L.; Bledsoe, S.; Shore, S. Somatosensory projections to cochlear nucleus are up-regulated after unilateral deafness. J. Neurosci. 2012, 32, 15791–15801. [Google Scholar] [CrossRef]
- Cui, Y.L.; Holt, A.G.; Lomax, C.A.; Altschuler, R.A. Deafness associated changes in two-pore domain potassium channels in the rat inferior colliculus. Neuroscience 2007, 149, 421–433. [Google Scholar] [CrossRef] [Green Version]
- Holt, A.G.; Asako, M.; Keith Duncan, R.; Lomax, C.A.; Juiz, J.M.; Altschuler, R.A. Deafness associated changes in expression of two-pore domain potassium channels in the rat cochlear nucleus. Hear. Res. 2006, 216, 146–153. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.; Monsivais, P.; Tempel, B.L.; Rubel, E.W. Activity-dependent regulation of the potassium channel subunits Kv1.1 and Kv3.1. J. Comp. Neurol. 2004, 470, 93–106. [Google Scholar] [CrossRef] [PubMed]
- Song, P.; Yang, Y.; Barnes-Davies, M.; Bhattacharjee, A.; Hamann, M.; Forsythe, I.D.; Oliver, D.L.; Kaczmarek, L.K. Acoustic environment determines phosphorylation state of the Kv3.1 potassium channel in auditory neurons. Nat. Neurosci. 2005, 8, 1335–1342. [Google Scholar] [CrossRef]
- Steinert, J.R.; Kopp-Scheinpflug, C.; Baker, C.; Challiss, R.A.J.; Mistry, R.; Haustein, M.D.; Griffin, S.J.; Tong, H.; Graham, B.P.; Forsythe, I.D. Nitric Oxide Is a Volume Transmitter Regulating Postsynaptic Excitability at a Glutamatergic Synapse. Neuron 2008, 60, 642–656. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alvarado, J.C.; Fuentes-Santamaría, V.; Jareño-Flores, T.; Blanco, J.L.; Juiz, J.M. Normal variations in the morphology of auditory brainstem response (ABR) waveforms: A study in wistar rats. Neurosci. Res. 2012, 73, 302–311. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Schmittgen, T.D.; Livak, K.J. Analyzing real-time PCR data by the comparative C(T) method. Nat. Protoc. 2008, 3, 1101–1108. [Google Scholar] [CrossRef] [PubMed]
- Henderson, Z.; Lu, C.B.; Janzsó, G.; Matto, N.; McKinley, C.E.; Yanagawa, Y.; Halasy, K. Distribution and role of Kv3.1b in neurons in the medial septum diagonal band complex. Neuroscience 2010, 166, 952–969. [Google Scholar] [CrossRef] [PubMed]
- Clarkson, C.; Juíz, J.M.; Merchán, M.A. Long-term regulation in calretinin staining in the rat inferior colliculus after unilateral auditory cortical ablation. J. Comp. Neurol. 2010, 518, 4261–4276. [Google Scholar] [CrossRef]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 2012, 9, 676. [Google Scholar] [CrossRef] [Green Version]
- Juiz, J.M.; Rueda, J.; Merchán, J.A.; Sala, M.L. The effects of kainic acid on the cochlear ganglion of the rat. Hear. Res. 1989, 40, 65–74. [Google Scholar] [CrossRef] [Green Version]
- Illing, R.-B.; Horváth, M.; Laszig, R. Plasticity of the auditory brainstem: Effects of cochlear ablation on GAP-43 immunoreactivity in the rat. J. Comp. Neurol. 1997, 382, 116–138. [Google Scholar] [CrossRef]
- Ridler, T.; Calvard, S. Picture Thresholding Using an Iterative Selection Method. IEEE Trans. Syst. Man Cybern. 1978, 8, 630–632. [Google Scholar]
- Zack, G.W.; Rogers, W.E.; Latt, S.A. Automatic measurement of sister chromatid exchange frequency. J. Histochem. Cytochem. 1977, 25, 741–753. [Google Scholar] [CrossRef] [PubMed]
- Löhrke, S.; Friauf, E. Developmental distribution of the glutamate receptor subunits KA2, GluR6/7, and delta 1/2 in the rat medial nucleus of the trapezoid body. A quantitative image analysis. Cell Tissue Res. 2002, 308, 19–33. [Google Scholar] [CrossRef] [PubMed]
- Overbeck, G.W.; Church, M.W. Effects of tone burst frequency and intensity on the auditory brainstem response (ABR) from albino and pigmented rats. Hear. Res. 1992, 59, 129–137. [Google Scholar] [CrossRef]
- Manis, P.B.; Marx, S.O. Outward currents in isolated ventral cochlear nucleus neurons. J. Neurosci. 1991, 11, 2865–2880. [Google Scholar] [CrossRef] [Green Version]
- Rothman, J.S.; Manis, P.B. Differential Expression of Three Distinct Potassium Currents in the Ventral Cochlear Nucleus. J. Neurophysiol. 2003, 89, 3070–3082. [Google Scholar] [CrossRef]
- Wang, Y.; O’Donohue, H.; Manis, P. Short-term plasticity and auditory processing in the ventral cochlear nucleus of normal and hearing-impaired animals. Hear. Res. 2011, 279, 131–139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bortone, D.S.; Mitchell, K.; Manis, P.B. Developmental time course of potassium channel expression in the rat cochlear nucleus. Hear. Res. 2006, 211, 114–125. [Google Scholar] [CrossRef]
- Kuenzel, T.; Wirth, M.J.; Luksch, H.; Wagner, H.; Mey, J. Increase of Kv3.1b expression in avian auditory brainstem neurons correlates with synaptogenesis in vivo and in vitro. Brain Res. 2009, 1302, 64–75. [Google Scholar] [CrossRef]
- Leao, R.N.; Sun, H.; Svahn, K.; Berntson, A.; Youssoufian, M.; Paolini, A.G.; Fyffe, R.E.W.; Walmsley, B. Topographic organization in the auditory brainstem of juvenile mice is disrupted in congenital deafness. J. Physiol. 2006, 571, 563–578. [Google Scholar] [CrossRef] [PubMed]
- Rubel, E.W.; Parks, T.N.; Zirpel, L. Assembling, connecting and maintaining the cochlear nucleus. In Plasticity of the Auditory System; Parks, T.N., Rubel, E.W., Fay, R.R., Eds.; Springer Handbook of Auditory Research; Springer Science: New York, NY, USA, 2004; pp. 8–48. [Google Scholar]
- Shore, S.E.; Roberts, L.E.; Langguth, B. Maladaptive plasticity in tinnitus- triggers, mechanisms and treatment. Nat. Rev. Neurol. 2016, 12, 150–160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, S.; Mulders, W.H.A.M.; Rodger, J.; Robertson, D. Changes in neuronal activity and gene expression in guinea-pig auditory brainstem after unilateral partial hearing loss. Neuroscience 2009, 159, 1164–1174. [Google Scholar] [CrossRef] [PubMed]
- Gao, P.P.; Zhang, J.W.; Fan, S.-J.; Sanes, D.H.; Wu, E.X. Auditory midbrain processing is differentially modulated by auditory and visual cortices: An auditory fMRI study. NeuroImage 2015, 123, 22–32. [Google Scholar] [CrossRef] [PubMed]
- Markovitz, C.D.; Tang, T.T.; Lim, H.H. Tonotopic and localized pathways from primary auditory cortex to the central nucleus of the inferior colliculus. Front. Neural Circuits 2013, 7, 77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clarkson, C.; Herrero-Turrión, M.J.; Merchán, M.A. Cortical Auditory Deafferentation Induces Long-Term Plasticity in the Inferior Colliculus of Adult Rats: Microarray and qPCR Analysis. Front. Neural Circuits 2012, 6, 86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Target Protein | Immunogen | Description | Dilution |
---|---|---|---|
Kv1.1 | GST fusion protein amino acid 416–495 (Intracellular C-terminus) of mouse Kv1.1 | Polyclonal rabbit, APC009, Alomone (RRID: AB_2040144) | IHC 1:500 WB 1:300 |
Calretinin | Recombinant human calretinin containing a 6-his tag at the N-terminal | Polyclonal rabbit, 7697, Swant (RRID: AB_2619710) | IHC 1:2000 WB 1:105 |
Kv3.1b | Fusion protein amino acids 437–585 (cytoplasmic C-terminus) of rat Kv3.1b | Monoclonal mouse, 75-041, NIH NeuroMab facility, UC Davis (RRID: AB_2131480) | IHC 1:100 WB 1:200 |
α-tubulin | Native chick brain microtubules. | Monoclonal mouse, CP06, Calbiochem-Millipore (RRID: AB_2617116) | WB 1:2000 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Poveda, C.M.; Valero, M.L.; Pernia, M.; Alvarado, J.C.; Ryugo, D.K.; Merchan, M.A.; Juiz, J.M. Expression and Localization of Kv1.1 and Kv3.1b Potassium Channels in the Cochlear Nucleus and Inferior Colliculus after Long-Term Auditory Deafferentation. Brain Sci. 2020, 10, 35. https://doi.org/10.3390/brainsci10010035
Poveda CM, Valero ML, Pernia M, Alvarado JC, Ryugo DK, Merchan MA, Juiz JM. Expression and Localization of Kv1.1 and Kv3.1b Potassium Channels in the Cochlear Nucleus and Inferior Colliculus after Long-Term Auditory Deafferentation. Brain Sciences. 2020; 10(1):35. https://doi.org/10.3390/brainsci10010035
Chicago/Turabian StylePoveda, Clara M., Maria L. Valero, Marianny Pernia, Juan C. Alvarado, David K. Ryugo, Miguel A. Merchan, and Jose M. Juiz. 2020. "Expression and Localization of Kv1.1 and Kv3.1b Potassium Channels in the Cochlear Nucleus and Inferior Colliculus after Long-Term Auditory Deafferentation" Brain Sciences 10, no. 1: 35. https://doi.org/10.3390/brainsci10010035
APA StylePoveda, C. M., Valero, M. L., Pernia, M., Alvarado, J. C., Ryugo, D. K., Merchan, M. A., & Juiz, J. M. (2020). Expression and Localization of Kv1.1 and Kv3.1b Potassium Channels in the Cochlear Nucleus and Inferior Colliculus after Long-Term Auditory Deafferentation. Brain Sciences, 10(1), 35. https://doi.org/10.3390/brainsci10010035