Toward Improving Diagnostic Strategies in Chronic Disorders of Consciousness: An Overview on the (Re-)Emergent Role of Neurophysiology
Abstract
:1. Introduction
2. Literature Review
2.1. Methods
2.2. Electroencephalogram Assessment
2.3. Evoked Potentials
2.4. Pain
2.5. Sleep
2.6. Non-Invasive Brain Stimulation
3. Authors’ Point of View
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Vithoulkas, G.; Muresanu, D.F. Conscience and consciousness, a definition. J. Med. Life 2014, 7, 104–108. [Google Scholar] [PubMed]
- Tononi, G.; Edelman, G.M. Consciousness and complexity. Science 1998, 282, 1846–1851. [Google Scholar] [CrossRef] [PubMed]
- Tononi, G. An information integration theory of consciousness. BMC Neurosci. 2004, 5, 42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laureys, S.; Celesia, G.G.; Cohadon, F.; Lavrijsen, J.; León-Carrión, J.; Sannita, W.G.; Sazbon, L.; Schmutzhard, E.; von Wild, K.R.; Zeman, A.; et al. European Task Force on Disorders of Consciousness. Unresponsive wakefulness syndrome, a new name for the vegetative state or apallic syndrome. BMC Med. 2010, 8, 68. [Google Scholar] [CrossRef] [Green Version]
- Raichle, M.E.; Snyder, A.Z. Intrinsic Brain Activity and Consciousness. In The Neurology of Consciousness; Laureys, S., Tononi, G., Eds.; Elsevier Academic Press: Cambridge, MA, USA, 2008; p. 81. [Google Scholar]
- Giacino, J.T.; Ashwal, S.; Childs, N.; Cranford, R.; Jennett, B.; Katz, D.I.; Kelly, J.P.; Rosenberg, J.H.; Whyte, J.; Zafonte, R.D.; et al. The minimally conscious state, definition and diagnostic criteria. Neurology 2002, 58, 349–353. [Google Scholar] [CrossRef]
- Bruno, M.A.; Vanhaudenhuyse, A.; Thibaut, A.; Moonen, G.; Laureys, S. From unresponsive wakefulness to minimally conscious PLUS and functional locked-in syndromes, recent advances in our understanding of disorders of consciousness. J. Neurol. 2011, 258, 1373–1384. [Google Scholar] [CrossRef]
- Schiff, N.D. Recovery of consciousness after brain injury, a mesocircuit hypothesis. Trends Neurosci. 2010, 33, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Formisano, R.; D’Ippolito, M.; Risetti, M.; Riccio, A.; Falletta Caravasso, C.; Catani, S.; Rizza, F.; Forcina, A.; Buzzi, M.G. Vegetative state, minimally conscious state, akinetic mutism and Parkinsonism as a continuum of recovery from disorders of consciousness, an exploratory and preliminary study. Funct. Neurol. 2011, 26, 1–10. [Google Scholar]
- Formisano, R.; D’Ippolito, M.; Catani, S. Functional locked-in syndrome as recovery phase of vegetative state. Brain Injury 2013, 27, 1332. [Google Scholar] [CrossRef]
- Formisano, R.; Pistoia, F.; Sarà, M. Disorders of consciousness, A taxonomy to be changed? Brain Injury 2011, 25, 638. [Google Scholar] [CrossRef]
- Giacino, J.; Zasler, N.D. Outcome after severe traumatic brain injury, coma, the vegetative state, and the minimally responsive state. J. Head Trauma Rehabil. 1995, 10, 40–56. [Google Scholar] [CrossRef]
- Bruno, M.A.; Soddu, A.; Demertzi, A.; Laureys, S.; Gosseries, O.; Schnakers, C.; Boly, M.; Noirhomme, Q.; Thonnard, M.; Chatelle, C.; et al. Disorders of consciousness: Moving from passive to resting state and active paradigms. Cogn. Neurosci. 2010, 1, 193–203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bodien, Y.G.; Chatelle, C.; Edlow, B.L. Functional Networks in Disorders of Consciousness. Semin. Neurol. 2017, 37, 485–502. [Google Scholar] [PubMed]
- Heine, L.; Di Perri, C.; Soddu, A.; Gomez, F.; Laureys, S.; Demertzi, A. Imaging Correlations in Non-communicating Patients. In Clinical Neurophysiology in Disorders of Consciousness; Rossetti, A.O., Laureys, S., Eds.; Springer-Verlag: Wien, Austria, 2015; pp. 149–157. [Google Scholar]
- Demertzi, A.; Laureys, S. Where in the brain is pain? Evaluating painful experiences in non-communicative patients. In I Know What You Are Thinking, Brain Imaging and Mental Privacy; Oxford University Press: Oxford, UK, 2012; p. 7. [Google Scholar]
- Owen, A.M.; Coleman, M.R.; Boly, M.; Davis, M.H.; Laureys, S.; Pickard, J.D. Detecting awareness in the vegetative state. Science 2006, 313, 1402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monti, M.M.; Vanhaudenhuyse, A.; Coleman, M.R.; Boly, M.; Pickard, J.D.; Tshibanda, L.; Owen, A.M.; Laureys, S. Willful modulation of brain activity in disorders of consciousness. N. Engl. J. Med. 2010, 362, 579–589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boly, M.; Faymonville, M.E.; Schnakers, C.; Peigneux, P.; Lambermont, B.; Phillips, C.; Lancellotti, P.; Luxen, A.; Lamy, M.; Moonen, G.; et al. Perception of pain in the minimally conscious state with PET activation, an observational study. Lancet Neurol. 2008, 7, 1013–1020. [Google Scholar] [CrossRef]
- Cruse, D.; Chennu, S.; Fernández-Espejo, D.; Payne, W.L.; Young, G.B.; Owen, A.M. Detecting awareness in the vegetative state, electroencephalographic evidence for attempted movements to command. PLoS ONE 2012, 7, e49933. [Google Scholar] [CrossRef]
- Laureys, S.; Antoine, S.; Boly, M.; Elincx, S.; Faymonville, M.E.; Berré, J.; Sadzot, B.; Ferring, M.; De Tiège, X.; van Bogaert, P.; et al. Brain function in the vegetative state. Acta Neurol. Belg. 2002, 102, 177–185. [Google Scholar]
- Demertzi, A.; Gómez, F.; Crone, J.S.; Vanhaudenhuyse, A.; Tshibanda, L.; Noirhomme, Q.; Thonnard, M.; Charland-Verville, V.; Kirsch, M.; Laureys, S.; et al. Multiple fMRI system-level baseline connectivity is disrupted in patients with consciousness alterations. Cortex 2014, 52, 35–46. [Google Scholar] [CrossRef]
- Heine, L.; Soddu, A.; Gómez, F.; Vanhaudenhuyse, A.; Tshibanda, L.; Thonnard, M.; Charland-Verville, V.; Kirsch, M.; Laureys, S.; Demertzi, A.; et al. Resting state networks and consciousness, alterations of multiple resting state network connectivity in physiological, pharmacological, and pathological consciousness States. Front. Psychol. 2012, 3, 295. [Google Scholar]
- Smith, S.M.; Fox, P.T.; Miller, K.L.; Glahn, D.C.; Fox, P.M.; Mackay, C.E.; Filippini, N.; Watkins, K.E.; Toro, R.; Laird, A.R.; et al. Correspondence of the brain’s functional architecture during activation and rest. Proc. Natl. Acad. Sci. USA 2009, 106, 13040–13045. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beckmann, C.F.; DeLuca, M.; Devlin, J.T.; Smith, S.M. Investigations into resting-state connectivity using independent component analysis. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2005, 360, 1001–1013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Perri, C.; Bahri, M.A.; Amico, E.; Thibaut, A.; Heine, L.; Antonopoulos, G.; Charland-Verville, V.; Wannez, S.; Gomez, F.; Hustinx, R.; et al. Neural correlates of consciousness in patients who have emerged from a minimally conscious state, a cross-sectional multimodal imaging study. Lancet Neurol. 2016, 15, 830–842. [Google Scholar] [CrossRef]
- Demertzi, A.; Whitfield-Gabrieli, S. Intrinsic brain activity and consciousness. In The Neurology of Consciousness, 2nd ed.; Laureys, S., Gosseries, O., Tononi, G., Eds.; Elsevier Academic Press: Cambridge, MA, USA, 2015. [Google Scholar]
- Demertzi, A.; Soddu, A.; Laureys, S. Consciousness supporting networks. Curr. Opin. Neurobiol. 2013, 23, 239–244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Demertzi, A.; Vanhaudenhuyse, A.; Brédart, S.; Heine, L.; di Perri, C.; Laureys, S. Looking for the self in pathological unconsciousness. Front. Hum. Neurosci. 2013, 7, 538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raichle, M.E.; MacLeod, A.M.; Snyder, A.Z.; Powers, W.J.; Gusnard, D.A.; Shulman, G.L. A default mode of brain function. Proc. Natl. Acad. Sci. USA 2001, 98, 676–682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Demertzi, A.; Antonopoulos, G.; Heine, L.; Voss, H.U.; Crone, J.S.; de Los Angeles, C.; Bahri, M.A.; Di Perri, C.; Vanhaudenhuyse, A.; Charland-Verville, V.; et al. Intrinsic functional connectivity differentiates minimally conscious from unresponsive patients. Brain 2015, 138, 2619–2631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boly, M.; Faymonville, M.E.; Peigneux, P.; Lambermont, B.; Damas, P.; Del Fiore, G.; Degueldre, C.; Franck, G.; Luxen, A.; Lamy, M.; et al. Auditory processing in severely brain injured patients, differences between the minimally conscious state and the persistent vegetative state. Arch. Neurol. 2004, 61, 233–238. [Google Scholar] [CrossRef]
- Laureys, S.; Faymonville, M.E.; Degueldre, C.; Fiore, G.D.; Damas, P.; Lambermont, B.; Janssens, N.; Aerts, J.; Franck, G.; Luxen, A.; et al. Auditory processing in the vegetative state. Brain 2000, 123, 1589–1601. [Google Scholar] [CrossRef]
- Laureys, S.; Faymonville, M.E.; Luxen, A.; Lamy, M.; Franck, G.; Maquet, P. Restoration of thalamocortical connectivity after recovery from persistent vegetative state. Lancet 2000, 355, 1790–1791. [Google Scholar] [CrossRef] [Green Version]
- Owen, A.M.; Menon, D.K.; Johnsrude, I.S.; Bor, D.; Scott, S.K.; Manly, T.; Williams, E.J.; Mummery, C.; Pickard, J.D. Detecting residual cognitive function in persistent vegetative state. Neurocase 2002, 8, 394–403. [Google Scholar] [CrossRef] [PubMed]
- Menon, D.; Owen, A.; Williams, E.; Minhas, P.; Allen, C.; Boniface, S.; Pickard, J. Cortical processing in persistent vegetative state. Wolfson Brain Imaging Centre Team. Lancet 1998, 352, 200. [Google Scholar] [CrossRef]
- Naro, A.; Russo, M.; Leo, A.; Bramanti, P.; Quartarone, A.; Calabrò, R.S. A Single Session of Repetitive Transcranial Magnetic Stimulation over the Dorsolateral Prefrontal Cortex in Patients with Unresponsive Wakefulness Syndrome: Preliminary Results. Neurorehabil. Neural Repair 2015, 29, 603–613. [Google Scholar] [CrossRef] [PubMed]
- Naro, A.; Leo, A.; Buda, A.; Manuli, A.; Bramanti, A.; Bramanti, P.; Calabrò, R.S. Unravelling motor networks in patients with chronic disorders of consciousness, A promising minimally invasive approach. Brain Res. 2015, 1646, 262–268. [Google Scholar] [CrossRef] [PubMed]
- Naro, A.; Bramanti, A.; Leo, A.; Bramanti, P.; Calabrò, R.S. Metaplasticity: A Promising Tool to Disentangle Chronic Disorders of Consciousness Differential Diagnosis. Int. J. Neural Syst. 2018, 28, 1750059. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laureys, S.; Pellas, F.; Van Eeckhout, P.; Ghorbel, S.; Schnakers, C.; Perrin, F.; Berré, J.; Faymonville, M.E.; Pantke, K.H.; Damas, F.; et al. The locked-in syndrome: What is it like to be conscious but paralyzed and voiceless? Prog. Brain Res. 2005, 150, 495–511. [Google Scholar]
- Klimesch, W.; Schack, B.; Schabus, M.; Doppelmayr, M.; Gruber, W.; Sauseng, P. Phase-locked alpha and theta oscillations generate the P1-N1 complex and are related to memory performance. Brain Res. Cogn. Brain Res. 2004, 19, 302–316. [Google Scholar] [CrossRef]
- Hughes, J.R. Limitations of the EEG in coma and brain death. Ann. N. Y. Acad. Sci. 1978, 315, 121–136. [Google Scholar] [CrossRef]
- Bonfiglio, L.; Piarulli, A.; Olcese, U.; Andre, P.; Arrighi, P.; Frisoli, A.; Rossi, B.; Bergamasco, M.; Carboncini, M.C. Spectral parameters modulation and source localization of blink-related alpha and low-beta oscillations differentiate minimally conscious state from vegetative state/unresponsive wakefulness syndrome. PLoS ONE 2014, 9, e93252. [Google Scholar] [CrossRef]
- Danze, F.; Brule, J.F.; Haddad, K. Chronic vegetative state after severe head injury: Clinical study, electrophysiological investigations and CT scan in 15 cases. Neurosurg. Rev. 1989, 12, 477–499. [Google Scholar] [CrossRef]
- Lehembre, R.; Marie-Aurelie, B.; Vanhaudenhuyse, A.; Chatelle, C.; Cologan, V.; Leclercq, Y.; Soddu, A.; Macq, B.; Laureys, S.; Noirhomme, Q. Resting-state EEG study of comatose patients: A connectivity and frequency analysis to find differences between vegetative and minimally. Funct. Neurol. 2012, 27, 41–47. [Google Scholar] [PubMed]
- Babiloni, C.; Sarà, M.; Vecchio, F.; Pistoia, F.; Sebastiano, F.; Onorati, P.; Albertini, G.; Pasqualetti, P.; Cibelli, G.; Buffo, P.; et al. Cortical sources of resting-state alpha rhythms are abnormal in persistent vegetative state patients. Clin. Neurophysiol. 2009, 120, 719–729. [Google Scholar] [CrossRef] [PubMed]
- Naro, A.; Bramanti, P.; Leo, A.; Cacciola, A.; Bramanti, A.; Manuli, A.; Calabrò, R.S. Towards a method to differentiate chronic disorder of consciousness patients’ awareness, the low-resolution brain electromagnetic tomography analysis. J. Neurol. Sci. 2016, 368, 178–183. [Google Scholar] [CrossRef] [PubMed]
- Estraneo, A.; Loreto, V.; Guarino, I.; Boemia, V.; Paone, G.; Moretta, P.; Trojano, L. Standard EEG in diagnostic process of prolonged disorders of consciousness. Clin. Neurophysiol. 2016, 127, 2379–2385. [Google Scholar] [CrossRef] [PubMed]
- Bonfiglio, L.; Olcese, U.; Rossi, B.; Frisoli, A.; Arrighi, P.; Greco, G.; Carozzo, S.; Andre, P.; Bergamasco, M.; Carboncini, M.C. Cortical source of blink-related delta oscillations and their correlation with levels of consciousness. Hum. Brain Mapp. 2013, 34, 2178–2189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coleman, M.R.; Menon, D.K.; Fryer, T.D.; Pickard, J.D. Neurometabolic coupling in the vegetative and minimally conscious states: Preliminary findings. J. Neurol. Neurosurg. Psychiatry 2005, 76, 432–434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lechinger, J.; Bothe, K.; Pichler, G.; Michitsch, G.; Donis, J.; Klimesch, W.; Schabus, M. CRS-R score in disorders of consciousness is strongly related to spectral EEG at rest. J. Neurol. 2013, 260, 2348–2356. [Google Scholar] [CrossRef]
- Schnakers, C.; Majerus, S.; Laureys, S. Bispectral analysis of electroencephalogram signals during recovery from coma: Preliminary findings. Neuropsychol. Rehabil. 2005, 15, 381–388. [Google Scholar] [CrossRef] [Green Version]
- Schnakers, C.; Ledoux, D.; Majerus, S.; Damas, P.; Damas, F.; Lambermont, B.; Lamy, M.; Boly, M.; Vanhaudenhuyse, A.; Moonen, G.; et al. Diagnostic and prognostic use of bispectral index in coma, vegetative state and related disorders. Brain Injury 2008, 22, 926–931. [Google Scholar] [CrossRef]
- Pollonini, L.; Pophale, S.; Situ, N.; Wu, M.H.; Frye, R.E.; Leon-Carrion, J.; Zouridakis, G. Information communication networks in severe traumatic brain injury. Brain Topogr. 2010, 23, 221–226. [Google Scholar] [CrossRef]
- Sara, M.; Pistoia, F. Complexity loss in physiological time series of patients in a vegetative state. Nonlinear Dyn. Psychol. Life Sci. 2010, 14, 1–13. [Google Scholar]
- Sarà, M.; Pistoia, F.; Pasqualetti, P.; Sebastiano, F.; Onorati, P.; Rossini, P.M. Functional isolation within the cerebral cortex in the vegetative state: A nonlinear method to predict clinical outcomes. Neurorehabil. Neural Repair 2011, 25, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Chennu, S.; Annen, J.; Wannez, S.; Thibaut, A.; Chatelle, C.; Cassol, H.; Martens, G.; Schnakers, C.; Gosseries, O.; Menon, D.; et al. Brain networks predict metabolism, diagnosis and prognosis at the bedside in disorders of consciousness. Brain 2017, 140, 2120–2132. [Google Scholar] [CrossRef] [PubMed]
- Varotto, G.; Fazio, P.; Rossi Sebastiano, D.; Duran, D.; D’Incerti, L.; Parati, E.; Sattin, D.; Leonardi, M.; Franceschetti, S.; Panzica, F. Altered resting state effective connectivity in long-standing vegetative state patients: An EEG study. Clin. Neurophysiol. 2014, 125, 63–68. [Google Scholar] [CrossRef] [PubMed]
- Gosseries, O.; Schnakers, C.; Ledoux, D.; Vanhaudenhuyse, A.; Bruno, M.A.; Demertzi, A.; Noirhomme, Q.; Lehembre, R.; Damas, P.; Goldman, S.; et al. Automated EEG entropy measurements in coma, vegetative state/unresponsive wakefulness syndrome and minimally conscious state. Funct. Neurol. 2011, 26, 25–30. [Google Scholar] [PubMed]
- Marinazzo, D.; Gosseries, O.; Boly, M.; Ledoux, D.; Rosanova, M.; Massimini, M.; Noirhomme, Q.; Laureys, S. Directed information transfer in scalp electroencephalographic recordings: Insights on disorders of consciousness. Clin. EEG Neurosci. 2014, 45, 33–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- King, J.R.; Sitt, J.D.; Faugeras, F.; Rohaut, B.; El Karoui, I.; Cohen, L.; Naccache, L.; Dehaene, S. Information sharing in the brain indexes consciousness in noncommunicative patients. Curr. Biol. 2013, 23, 1914–1919. [Google Scholar] [CrossRef] [Green Version]
- Cacciola, A.; Naro, A.; Milardi, D.; Bramanti, A.; Malatacca, L.; Spitaleri, M.; Leo, A.; Muscoloni, A.; Cannistraci, C.V. Functional Brain Network Topology Discriminates between Patients with Minimally Conscious State and Unresponsive Wakefulness Syndrome. J. Clin. Med. 2019, 8, 306. [Google Scholar] [CrossRef] [Green Version]
- Song, M.; Zhang, Y.; Cui, Y.; Yang, Y.; Jiang, T. Brain Network Studies in Chronic Disorders of Consciousness: Advances and Perspectives. Neurosci. Bull. 2018, 34, 592–604. [Google Scholar] [CrossRef] [Green Version]
- Engemann, D.A.; Raimondo, F.; King, J.-R.; Rohaut, B.; Louppe, G.; Faugeras, F.; Annen, J.; Cassol, H.; Gosseries, O.; Fernandez-Slezak, D.; et al. Robust EEG-based cross-site and cross-protocol classification of states of consciousness. Brain 2018, 141, 3179–3192. [Google Scholar] [CrossRef] [Green Version]
- Estraneo, A.; Loreto, V.; Moretta, P.; Guarino, I.; Boemia, V.; Paone, G.; Pascarella, A.; Trojano, L. Diagnostic value of standard eeg in prolonged disorders of consciousness. Clin. Neurophysiol. 2016, 127, e152. [Google Scholar] [CrossRef]
- Fingelkurts, A.A.; Fingelkurts, A.A.; Bagnato, S.; Boccagni, C.; Galardi, G. EEG oscillatory states as neuro-phenomenology of consciousness as revealed from patients in vegetative and minimally conscious states. Conscious. Cognit. 2012, 21, 149–169. [Google Scholar] [CrossRef] [PubMed]
- Fingelkurts, A.A.; Fingelkurts, A.A.; Bagnato, S.; Boccagni, C.; Galardi, G. The value of spontaneous eeg oscillations in distinguishing patients in vegetative and minimally conscious states. Suppl. Clin. Neurophysiol. 2013, 62, 81–99. [Google Scholar] [PubMed]
- Gosseries, O.; Vanhaudenhuyse, A.; Bruno, M.-A.; Demertzi, A.; Schnakers, C.; Boly, M.M.; Maudoux, A.; Moonen, G.; Laureys, S. Disorders of consciousness: Coma, Vegetative and Minimally Conscious States. In States of Consciousness; Cvetkovic, D., Cosic, I., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 29–55. [Google Scholar]
- Höller, Y.; Bergmann, J.; Thomschewski, A.; Kronbichler, M.; Höller, P.; Crone, J.S.; Schmid, E.V.; Butz, K.; Nardone, R.; Trinka, E. Comparison of EEG-features and classification methods for motor imagery in patients with disorders of consciousness. PLoS ONE 2013, 8, e80479. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khanmohammadi, S.; Laurido-Soto, O.; Eisenman, L.N.; Kummer, T.T.; Ching, S. Intrinsic network reactivity differentiates levels of consciousness in comatose patients. Clin. Neurophysiol. 2018, 129, 2296–2305. [Google Scholar] [CrossRef] [PubMed]
- Piarulli, A.; Bergamasco, M.; Thibaut, A.; Cologan, V.; Gosseries, O.; Laureys, S. EEG ultradian rhythmicity differences in disorders of consciousness during wakefulness. J. Neurol. 2016, 263, 1746–1760. [Google Scholar] [CrossRef] [Green Version]
- Miller, A.; Sleigh, J.W.; Barnard, J.; Steyn-Ross, D.A. Does bispectral analysis of the electroencephalogram add anything but complexity? Br. J. Anaesth. 2004, 92, 8–13. [Google Scholar] [CrossRef] [Green Version]
- Schorr, B.; Schlee, W.; Arndt, M.; Bender, A. Coherence in resting-state EEG as a predictor for the recovery from unresponsive wakefulness syndrome. J. Neurol. 2016, 263, 937–953. [Google Scholar] [CrossRef]
- Stefan, S.; Schorr, B.; Lopez-Rolon, A.; Kolassa, I.-T.; Shock, J.P.; Rosenfelder, M.; Heck, S.; Bender, A. Consciousness indexing and outcome prediction with resting-state EEG in severe disorders of consciousness. Brain Topogr. 2018, 31, 848–862. [Google Scholar] [CrossRef]
- Wu, D.-Y.; Cai, G.; Zorowitz, R.D.; Yuan, Y.; Wang, J.; Song, W.-Q. Measuring interconnection of the residual cortical functional islands in persistent vegetative state and minimal conscious state with EEG nonlinear analysis. Clin. Neurophysiol. 2011, 122, 1956–1966. [Google Scholar] [CrossRef]
- Sitt, J.D.; King, J.R.; El Karoui, I.; Rohaut, B.; Faugeras, F.; Gramfort, A.; Cohen, L.; Sigman, M.; Dehaene, S.; Naccache, L. Large scale screening of neural signatures of consciousness in patients in a vegetative or minimally conscious state. Brain 2014, 137, 2258–2270. [Google Scholar] [CrossRef] [PubMed]
- Leon-Carrion, J.; Leon-Dominguez, U.; Pollonini, L.; Wu, M.H.; Frye, R.E.; Dominguez-Morales, M.R.; Zouridakis, G. Synchronization between the anterior and posterior cortex determines consciousness level in patients with traumatic brain injury (TBI). Brain Res. 2012, 1476, 22–30. [Google Scholar] [CrossRef] [PubMed]
- Thul, A.; Lechinger, J.; Donis, J.; Michitsch, G.; Pichler, G.; Kochs, E.F.; Jordan, D.; Ilg, R.; Schabus, M. EEG entropy measures indicate decrease of cortical information processing in disorders of consciousness. Neurophysiol. Clin. 2016, 127, 1419–1427. [Google Scholar] [CrossRef] [PubMed]
- Ragazzoni, A.; Cincotta, M.; Giovannelli, F.; Cruse, D.; Young, G.B.; Miniussi, C.; Rossi, S. Clinical neurophysiology of prolonged disorders of consciousness, From diagnostic stimulation to therapeutic neuromodulation. Clin. Neurophysiol. 2017, 128, 1629–1646. [Google Scholar] [CrossRef] [Green Version]
- Naro, A.; Bramanti, A.; Leo, A.; Cacciola, A.; Manuli, A.; Bramanti, P.; Calabrò, R.S. Shedding new light on disorders of consciousness diagnosis: The dynamic functional connectivity. Cortex 2018, 103, 316–328. [Google Scholar] [CrossRef]
- Cavinato, M.; Volpato, C.; Silvoni, S.; Sacchetto, M.; Merico, A.; Piccione, F. Event-related brain potential modulation in patients with severe brain damage. Clin. Neurophysiol. 2011, 122, 719–724. [Google Scholar] [CrossRef]
- De Biase, S.; Gigli, G.L.; Lorenzut, S.; Bianconi, C.; Sfreddo, P.; Rossato, G.; Basaldella, F.; Fuccaro, M.; Corica, A. The importance of polysomnography in the evaluation of prolonged disorders of consciousness: Sleep recordings more adequately correlate than stimulus-related evoked potentials with patients’ clinical status. Sleep Med. 2014, 15, 393–400. [Google Scholar] [CrossRef]
- Fischer, C.; Luaute, J.; Dominique, M. Event-related potentials (MMN and novelty P3) in permanent vegetative or minimally conscious states. Clin. Neurophysiol. 2010, 121, 1032–1042. [Google Scholar] [CrossRef]
- Kotchoubey, B.; Lang, S.; Mezger, G.; Schmalohr, D.; Schneck, M.; Semmler, A.; Bostanov, V.; Birbaumer, N. Information processing in severe disorders of consciousness: Vegetative state and minimally conscious state. Clin. Neurophysiol. 2005, 116, 2441–2453. [Google Scholar] [CrossRef]
- Ragazzoni, A.; Pirulli, C.; Veniero, D.; Feurra, M.; Cincotta, M.; Giovannelli, F.; Chiaramonti, R.; Lino, M.; Rossi, S.; Miniussi, C. Vegetative versus minimally conscious states: A study using TMS-EEG, sensory and event-related potentials. PLoS ONE 2013, 8, e57069. [Google Scholar] [CrossRef]
- Wu, D.-Y.; Cai, G.; Yuan, Y.; Lin, L.; Li, G.-Q.; Song, W.-Q.; Wang, M.B. Application of nonlinear dynamics analysis in assessing unconsciousness: A preliminary study. Clin. Neurophysiol. 2011, 122, 490–498. [Google Scholar] [CrossRef] [PubMed]
- Fellinger, R.; Klimesch, W.; Schnakers, C.; Perrin, F.; Freunberger, R.; Gruber, W.; Gruber, W.; Laureys, S.; Schabus, M. Cognitive processes in disorders of consciousness as revealed by EEG time-frequency analyses. Clin. Neurophysiol. 2011, 122, 2177–2184. [Google Scholar] [CrossRef] [PubMed]
- Perrin, F.; Schnakers, C.; Schabus, M.; Degueldre, C.; Goldman, S.; Brédart, S.; Faymonville, M.E.; Lamy, M.; Moonen, G.; Luxen, A.; et al. Brain response to one’s own name in vegetative state, minimally conscious state and locked-in syndrome. Arch. Neurol. 2006, 63, 562–569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kotchoubey, B.; Lotze, M. Instrumental methods in the diagnostics of locked-in syndrome. Restor. Neurol. Neurosci. 2013, 31, 25–40. [Google Scholar] [CrossRef]
- Bai, Y.; Xia, X.; Li, X. A Review of Resting-State Electroencephalography Analysis in Disorders of Consciousness. Front. Neurol. 2017, 8, 471. [Google Scholar] [CrossRef] [Green Version]
- Risetti, M.; Formisano, R.; Toppi, J.; Quitadamo, L.R.; Bianchi, L.; Astolfi, L.; Cincotti, F.; Mattia, D. On ERPs detection in disorders of consciousness rehabilitation. Front. Hum. Neurosci. 2013, 7, 775. [Google Scholar] [CrossRef]
- Liberati, G.; Hünefeldt, T.; Olivetti Belardinelli, M. Questioning the dichotomy between vegetative state and minimally conscious state: A review of the statistical evidence. Front. Hum. Neurosci. 2014, 8, 865. [Google Scholar] [CrossRef] [Green Version]
- Bareham, C.A.; Allanson, J.; Roberts, N.; Hutchinson, P.; Pickard, J.D.; Menon, D.K.; Chennu, S. Longitudinal Bedside Assessments of Brain Networks in Disorders of Consciousness: Case Reports from the Field. Front. Neurol. 2018, 9, 676. [Google Scholar] [CrossRef] [Green Version]
- Ward, L.M. Synchronous neural oscillations and cognitive processes. Trends Cogn. Sci. 2003, 7, 553–559. [Google Scholar] [CrossRef]
- Höller, Y.; Thomschewski, A.; Bergmann, J.; Kronbichler, M.; Crone, J.S.; Schmid, E.V.; Butz, K.; Höller, P.; Nardone, R.; Trinka, E. Connectivity biomarkers can differentiate patients with different levels of consciousness. Clin. Neurophysiol. 2014, 125, 1545–1555. [Google Scholar] [CrossRef]
- Naro, A.; Leo, A.; Cannavò, A.; Buda, A.; Bruno, R.; Salviera, C.; Bramanti, P.; Calabrò, R.S. Audiomotor Integration in Minimally Conscious State, Proof of Concept! Neural. Plast. 2015, 2015, 391349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naro, A.; Leo, A.; Filoni, S.; Bramanti, P.; Calabrò, R.S. Visuo-motor integration in unresponsive wakefulness syndrome: A piece of the puzzle towards consciousness detection? Restor. Neurol. Neurosci. 2015, 33, 447–460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grossberg, S. Filling-in the forms, Surface and boundary interactions in visual cortex. In Filling-in: From Perceptual Completion to Cortical Reorganization; Pessoa, L., De Weerd, P., Eds.; Oxford University Press: Oxford, UK, 2003; pp. 123–150. [Google Scholar]
- Humphreys, G.W.; Riddoch, M.J. Attention to within-object and between-object spatial representations: Multiple sites for visual selection. Cogn. Neuropsychol. 1994, 11, 207–241. [Google Scholar] [CrossRef]
- Katsuki, F.; Constantinidis, C. Early involvement of prefrontal cortex in visual bottom-up attention. Nat. Neurosci. 2012, 15, 1160–1166. [Google Scholar] [CrossRef]
- Monti, M.M.; Pickard, J.D.; Owen, A.M. Visual cognition in disorders of consciousness, from V to top-down attention. Hum. Brain Mapp. 2013, 34, 1245–1253. [Google Scholar] [CrossRef]
- Pistoia, F.; Sacco, S.; Stewart, J.; Sarà, M.; Carolei, A. Disorders of Consciousness: Painless or Painful Conditions? Evidence from Neuroimaging Studies. Brain Sci. 2016, 6, 47. [Google Scholar] [CrossRef] [Green Version]
- Chatelle, C.; Majerus, S.; Whyte, J.; Laureys, S.; Schnakers, C. A sensitive scale to assess nociceptive pain in patients with disorders of consciousness. J. Neurol. Neurosurg. Psychiatry 2012, 83, 1233–1237. [Google Scholar] [CrossRef] [Green Version]
- De Tommaso, M.; Navarro, J.; Lanzillotti, C.; Ricci, K.; Buonocunto, F.; Livrea, P.; Lancioni, G.E. Cortical responses to salient nociceptive and not nociceptive stimuli in vegetative and minimal conscious state. Front. Hum. Neurosci. 2015, 9, 17. [Google Scholar] [CrossRef] [Green Version]
- De Tommaso, M.; Navarro, J.; Ricci, K.; Lorenzo, M.; Lanzillotti, C.; Colonna, F.; Livrea, P. Pain in prolonged disorders of consciousness: Laser evoked potentials findings in patients with vegetative and minimally conscious states. Brain Injury 2013, 27, 962–972. [Google Scholar] [CrossRef]
- De Salvo, S.; Naro, A.; Bonanno, L.; Russo, M.; Muscarà, N.; Bramanti, P.; Marino, S. Assessment of nociceptive system in vegetative and minimally conscious state by using laser evoked potentials. Brain Injury 2015, 29, 1467–1474. [Google Scholar] [CrossRef]
- Naro, A.; Russo, M.; Leo, A.; Rifici, C.; Pollicino, P.; Bramanti, P.; Calabrò, R.S. Cortical responsiveness to nociceptive stimuli in patients with chronic disorders of consciousness: Do C-fiber laser evoked potentials have a role? PLoS ONE 2015, 10, e0144713. [Google Scholar] [CrossRef] [PubMed]
- Mouraux, A.; Iannetti, G.D. Nociceptive laser-evoked brain potentials do not reflect nociceptive-specific neural activity. J. Neurophysiol. 2009, 101, 3258–3269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garcia-Larrea, L.; Frot, M.; Valeriani, M. Brain generators of laser- evoked potentials, from dipoles to functional significance. Neurophysiol. Clin. 2003, 33, 279–292. [Google Scholar] [CrossRef] [PubMed]
- Iannetti, G.D.; Zambreanu, L.; Cruccu, G.; Tracey, I. Operculo-insular Cortex encodes pain intensity at the earliest stages of cortical processing as indicated by amplitude of laser-evoked potentials in humans. Neuroscience 2005, 131, 199–208. [Google Scholar] [CrossRef] [PubMed]
- Huang, G.; Xiao, P.; Hu, L.; Hung, Y.S.; Zhang, Z. Single-trial laser-evoked potentials feature extraction for prediction of pain perception. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2013, 2013, 4207–4210. [Google Scholar] [PubMed] [Green Version]
- Calabrò, R.S.; Naro, A. Paving the way for disorders of consciousness diagnosis and prognosis: The role of cardiac autonomic response and beyond. Clin. Neurophysiol. 2018, 129, 1049–1050. [Google Scholar] [CrossRef]
- Leo, A.; Naro, A.; Cannavò, A.; Pisani, L.R.; Bruno, R.; Salviera, C.; Bramanti, P.; Calabrò, R.S. Could autonomic system assessment be helpful in disorders of consciousness diagnosis? A neurophysiological study. Exp. Brain Res. 2016, 234, 2189–2199. [Google Scholar] [CrossRef]
- Gross, J.; Schnitzler, A.; Timmermann, L.; Ploner, M. Gamma oscillations in human primary somatosensory cortex reflect pain perception. PLoS Biol. 2007, 5, e133. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.G.; Hu, L.; Hung, Y.S.; Mouraux, A.; Iannetti, G.D. Gamma-band oscillations in the primary somatosensory cortex, a direct and obligatory correlate of subjective pain intensity. J. Neurosci. 2012, 32, 7429–7438. [Google Scholar] [CrossRef] [Green Version]
- Naro, A.; Leo, A.; Cannavò, A.; Buda, A.; Bramanti, P.; Calabrò, R.S. Do unresponsive wakefulness syndrome patients feel pain? Role of laser-evoked potential-induced gamma-band oscillations in detecting cortical pain processing. Neuroscience 2016, 317, 141–148. [Google Scholar] [CrossRef]
- Cologan, V.; Schabus, M.; Ledoux, D.; Moonen, G.; Maquet, P.; Laureys, S. Sleep in disorders of consciousness. Sleep Med. Rev. 2010, 14, 97–105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Isono, M.; Wakabayashi, Y.; Fujiki, M.M.; Kamida, T.; Kobayashi, H. Sleep cycle in patients in a state of permanent unconsciousness. Brain Injury 2002, 16, 705–712. [Google Scholar] [CrossRef] [PubMed]
- Chéliout-Heraut, F.; Rubinsztajn, R.; Ioos, C.; Estournet, B. Prognostic value of evoked potentials and sleep recordings in the prolonged comatose state of children. Preliminary data. Neurophysiol. Clin. 2001, 31, 283–292. [Google Scholar] [CrossRef]
- Oksenberg, A.; Gordon, C.; Arons, E.; Sazbon, L. Phasic activities of rapid eye movement sleep in vegetative state patients. Sleep 2001, 24, 703–706. [Google Scholar] [CrossRef]
- Rossi Sebastiano, D.; Visani, E.; Panzica, F.; Sattin, D.; Bersano, A.; Nigri, A.; Franceschetti, S. Sleep patterns associated with the severity of impairment in a large cohort of patients with chronic disorders of consciousness. Clin. Neurophysiol. 2018, 129, 687–693. [Google Scholar] [CrossRef]
- Malinowska, U.; Chatelle, C.; Bruno, M.-A.; Noirhomme, Q.; Laureys, S.; Durka, P.J. Electroencephalographic profiles for differentiation of disorders of consciousness. Biomed. Eng. Online 2013, 12, 109. [Google Scholar] [CrossRef] [Green Version]
- Pisani, L.R.; Naro, A.; Leo, A.; Arico, I.; Pisani, F.; Silvestri, R.; Bramanti, P.; Calabrò, R.S. Repetitive transcranial magnetic stimulation induced slow wave activity modification: A possible role in disorder of consciousness differential diagnosis? Conscious. Cogn. 2015, 38, 1–8. [Google Scholar] [CrossRef]
- Forgacs, P.B.; Conte, M.M.; Fridman, E.A.; Voss, H.U.; Victor, J.D.; Schiff, N.D. Preservation of electroencephalographic organization in patients with impaired consciousness and imaging-based evidence of command-following. Ann. Neurol. 2014, 76, 869–879. [Google Scholar] [CrossRef] [Green Version]
- Pavlov, Y.G.; Gais, S.; Muller, F.; Schonauer, M.; Schapers, B.; Born, J.; Kotchoubey, B. Night sleep in patients with vegetative state. J. Sleep Res. 2017, 7, 266. [Google Scholar] [CrossRef] [Green Version]
- Cologan, V.; Drouot, X.; Parapatics, S.; Delorme, A.; Gruber, G.; Moonen, G.; Laureys, S. Sleep in the unresponsive wakefulness syndrome and minimally conscious state. J. Neurotrauma 2013, 30, 339–346. [Google Scholar] [CrossRef]
- Arnaldi, D.; Terzaghi, M.; Cremascoli, R.; De Carli, F.; Maggioni, G.; Pistarini, C.; Laureys, S. The prognostic value of sleep patterns in disorders of consciousness in the sub-acute phase. Clin. Neurophysiol. 2016, 127, 1445–1451. [Google Scholar] [CrossRef] [PubMed]
- Aricò, I.; Naro, A.; Pisani, L.R.; Leo, A.; Muscarà, N.; De Salvo, S.; Silvestri, R.; Bramanti, P.; Calabrò, R.S. Could combined sleep and pain evaluation be useful in the diagnosis of disorders of consciousness (DOC)? Preliminary findings. Brain Injury 2016, 30, 159–163. [Google Scholar] [CrossRef] [PubMed]
- Rosanova, M.; Fecchio, M.; Casarotto, S.; Sarasso, S.; Casali, A.G.; Pigorini, A.; Comanducci, A.; Seregni, F.; Devalle, G.; Citerio, G.; et al. Sleep-like cortical OFF-periods disrupt causality and complexity in the brain of unresponsive wakefulness syndrome patients. Nat. Commun. 2018, 9, 4427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bagnato, S.; Boccagni, C.; Sant’angelo, A.; Fingelkurts, A.A.; Fingelkurts, A.A.; Galardi, G. Emerging from an unresponsive wakefulness syndrome, brain plasticity has to cross a threshold level. Neurosci. Biobehav. Rev. 2013, 37, 2721–2736. [Google Scholar] [CrossRef] [PubMed]
- Naro, A.; Bramanti, P.; Leo, A.; Russo, M.; Calabrò, R.S. Transcranial alternating current stimulation in patients with chronic disorder of consciousness, a possible way to cut the diagnostic gordian knot? Brain Topogr. 2016, 29, 623–644. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Xia, X.; Kang, J.; Yang, Y.; He, J.; Li, X. TDCS modulates cortical excitability in patients with disorders of consciousness. Neuroimage Clin. 2017, 15, 702–709. [Google Scholar] [CrossRef] [PubMed]
- Estraneo, A.; Pascarella, A.; Moretta, P.; Masotta, O.; Fiorenza, S.; Chirico, G.; Crispino, E.; Loreto, V.; Trojano, L. Repeated transcranial direct current stimulation in prolonged disorders of consciousness: A double-blind cross-over study. J. Neurol. Sci. 2017, 375, 464–470. [Google Scholar] [CrossRef]
- He, F.; Wu, M.; Meng, F.; Hu, Y.; Gao, J.; Chen, Z.; Bao, W.; Liu, K.; Luo, B.; Pan, G. Effects of 20Hz repetitive transcranial magnetic stimulation on disorders of consciousness: A resting-state electroencephalography study. Neural Plast. 2018, 2018, 5036184. [Google Scholar] [CrossRef]
- Manganotti, P.; Formaggio, E.; Storti, S.F.; Fiaschi, A.; Battistin, L.; Tonin, P.; Piccione, F.; Cavinato, M. Effect of high-frequency repetitive transcranial magnetic stimulation on brain excitability in severely brain-injured patients in minimally conscious or vegetative state. Brain Stimul. 2013, 6, 913–921. [Google Scholar] [CrossRef]
- Naro, A.; Calabrò, R.S.; Russo, M.; Leo, A.; Pollicino, P.; Quartarone, A.; Bramanti, P. Can transcranial direct current stimulation be useful in differentiating unresponsive wakefulness syndrome from minimally conscious state patients? Restor. Neurol. Neurosci. 2015, 33, 159–176. [Google Scholar] [CrossRef]
- Piccione, F.; Cavinato, M.; Manganotti, P.; Formaggio, E.; Storti, S.F.; Battistin, L.; Cagnin, A.; Tonin, P.; Dam, M. Behavioral and neurophysiological effects of repetitive transcranial magnetic stimulation on the minimally conscious state: A case study. Neurorehabil. Neural Repair 2011, 25, 98–102. [Google Scholar] [CrossRef] [PubMed]
- Xia, X.; Bai, Y.; Zhou, Y.; Yang, Y.; Xu, R.; Gao, X.; Li, X.; He, J. Effects of 10 Hz repetitive transcranial magnetic stimulation of the left dorsolateral prefrontal cortex in disorders of consciousness. Front. Neurol. 2017, 8, 182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, Y.; Zhang, T.; Chen, A.C.N. Repetitive transcranial magnetic stimulation for the recovery of stroke patients with disturbance of consciousness. Brain Stimul. 2015, 8, 674–675. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Song, W.; Du, J.; Huo, S.; Shan, G.; Li, R. Transcranial direct current stimulation in patients with prolonged disorders of consciousness: Combined behavioral and event-related potential evidence. Front. Neurol. 2017, 8, 620. [Google Scholar] [CrossRef] [Green Version]
- Naro, A.; Leo, A.; Manuli, A.; Cannavò, A.; Bramanti, A.; Bramanti, P.; Calabrò, R.S. How far can we go in chronic disorders of consciousness differential diagnosis? The use of neuromodulation in detecting internal and external awareness. Neuroscience 2017, 349, 165–173. [Google Scholar] [CrossRef]
- Naro, A.; Leo, A.; Bramanti, P.; Calabrò, R.S. Moving Toward Conscious Pain Processing Detection in Chronic Disorders of Consciousness, Anterior Cingulate Cortex Neuromodulation. J. Pain 2015, 16, 1022–1031. [Google Scholar] [CrossRef] [Green Version]
- Naro, A.; Calabrò, R.S.; Pollicino, P.; Lombardo, C.; Bramanti, P. Unexpected recovery from a vegetative state or misdiagnosis? Lesson learned from a case report. NeuroRehabilitation 2017, 41, 735–738. [Google Scholar] [CrossRef] [Green Version]
- Naro, A.; Russo, M.; Leo, A.; Cannavò, A.; Manuli, A.; Bramanti, A.; Bramanti, P.; Calabrò, R.S. Cortical connectivity modulation induced by cerebellar oscillatory transcranial direct current stimulation in patients with chronic disorders of consciousness, a marker of covert cognition? Clin. Neurophysiol. 2016, 127, 1845–1854. [Google Scholar] [CrossRef]
- Casarotto, S.; Comanducci, A.; Rosanova, M.; Sarasso, S.; Fecchio, M.; Napolitani, M.; Massimini, M. Stratification of unresponsive patients by an independently validated index of brain complexity. Ann. Neurol. 2016, 80, 718–729. [Google Scholar] [CrossRef] [Green Version]
- Casali, A.G.; Gosseries, O.; Rosanova, M.; Boly, M.; Sarasso, S.; Casali, K.R.; Casarotto, S.; Bruno, M.A.; Laureys, S.; Tononi, G.; et al. A theoretically based index of consciousness independent of sensory processing and behavior. Sci. Transl. Med. 2013, 5, 198ra105. [Google Scholar] [CrossRef]
- Rosanova, M.; Gosseries, O.; Casarotto, S.; Boly, M.; Casali, A.G.; Bruno, M.A.; Massimini, M. Recovery of cortical effective connectivity and recovery of consciousness in vegetative patients. Brain J. Neurol. 2012, 135, 1308–1320. [Google Scholar] [CrossRef] [PubMed]
- Sarasso, S.; Rosanova, M.; Casali, A.G.; Casarotto, S.; Fecchio, M.; Boly, M.; Massimini, M. Quantifying cortical EEG responses to TMS in (un)consciousness. Clin. EEG Neurosci. 2014, 45, 40–49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bai, Y.; Xia, X.; Kang, J.; Yin, X.; Yang, Y.; He, J.; Li, X. Evaluating the Effect of Repetitive Transcranial Magnetic Stimulation on Disorders of Consciousness by Using TMS-EEG. Front. Neurosci. 2016, 10, 473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferrarelli, F.; Massimini, M.; Sarasso, S.; Casali, A.; Riedner, B.A.; Angelini, G.; Pearce, R.A. Breakdown in cortical effective connectivity during midazolam-induced loss of consciousness. Proc. Natl. Acad. Sci. USA 2010, 107, 2681–2686. [Google Scholar] [CrossRef] [Green Version]
- Storm, J.F.; Boly, M.; Casali, A.G.; Massimini, M.; Olcese, U.; Pennartz, C.M.A.; Wilke, M. Consciousness Regained: Disentangling Mechanisms, Brain Systems, and Behavioral Responses. J. Neurosci. 2017, 37, 10882–10893. [Google Scholar] [CrossRef]
- Naro, A.; Milardi, D.; Cacciola, A.; Cannavò, A.; Manuli, A.; Bramanti, A.; Bramanti, P.; Calabrò, R.S. What Do We Know About the Influence of the Cerebellum on Walking Ability? Promising Findings from Transcranial Alternating Current Stimulation. Cerebellum 2017, 16, 859–867. [Google Scholar] [CrossRef]
- Fingelkurts, A.A.; Fingelkurts, A.A.; Bagnato, S.; Boccagni, C.; Galardi, G. Dissociation of vegetative and minimally conscious patients based on brain operational architectonics, factor of etiology. Clin. EEG Neurosci. 2013, 44, 209–220. [Google Scholar] [CrossRef]
- Pignat, J.M.; Mauron, E.; Jöhr, J.; Gilart de Keranflec’h, C.; Van De Ville, D.; Preti, M.G.; Meskaldji, D.E.; Hömberg, V.; Laureys, S.; Draganski, B. Outcome prediction of consciousness disorders in the acute stage based on the complementary motor behavioural tool. PLoS ONE 2016, 11, e0156882. [Google Scholar] [CrossRef]
- Lancioni, G.E.; Bosco, A.; Olivetti Belardinelli, M.; Singh, N.N.; O’Reilly, M.F.; Sigafoos, J.; Buonocunto, F.; Navarro, J.; Lanzilotti, C.; D’Amico, F. Assessing learning as a possible sign of consciousness in post-coma persons with minimal responsiveness. Front. Hum. Neurosci. 2014, 8, 25. [Google Scholar] [CrossRef] [Green Version]
- Monti, M.M. Cognition in the vegetative state. Annu. Rev. Clin. Psychol. 2012, 8, 431–454. [Google Scholar] [CrossRef] [Green Version]
- Cortese, M.D.; Riganello, F.; Arcuri, F.; Pugliese, M.E.; Lucca, L.F.; Dolce, G.; Sannita, W.G. Coma Recovery Scale-R, variability in the disorder of consciousness. BMC Neurol. 2015, 15, 186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dolce, G.; Arcuri, F.; Carozzo, S.; Cortese, M.D.; Greco, P.; Lucca, L.F.; Pignolo, L.; Pugliese, M.E.; Riganello, F. Care and neurorehabilitation in the disorder of consciousness, a model in progress. Sci. World J. 2015, 2015, 463829. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gilutz, Y.; Lazary, A.; Karpin, H.; Vatine, J.J.; Misha, T.; Fortinsky, H.; Sharon, H. Detailed behavioral assessment promotes accurate diagnosis in patients with disorders of consciousness. Front. Hum. Neurosci. 2015, 9, 87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giacino, J.T.; Katz, D.I.; Schiff, N.D.; Whyte, J.; Ashman, E.J.; Ashwal, S.; Barbano, R.; Hammond, F.M.; Laureys, S.; Ling, G.S.F.; et al. Comprehensive Systematic Review Update Summary: Disorders of Consciousness: Report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology; the American Congress of Rehabilitation Medicine; and the National Institute on Disability, Independent Living, and Rehabilitation Research. Arch. Phys. Med. Rehabil. 2018, 99, 1710–1719. [Google Scholar] [PubMed]
Technique | Availability | Ease of Application | Analysis Complexity | Information on Brain Connectivity | Diagnostic Utility |
---|---|---|---|---|---|
resting state EEG | high | high | moderate-high | significant | allows differentiating UWS/MCS but not identifying fLIS unless using advanced analyses (dWPLI, graph theoretic network lagged-phase synchronization, network parameters) |
short-latency EPs | high | high | low | low | do not allow clear UWS/MCS differentiation but can be useful concerning prognosis |
long-latency EPs (ERPs) | high | high | moderate-high | moderate | allows differentiating UWS/MCS but not identifying fLIS unless using advanced analyses (lagged-phase synchronization and network parameters following NIBS) or dedicated stimulation approaches (e.g., VMI and AMI) |
TMS-EEG | low | low | high | significant | allows differentiating UWS/MCS and identifying fLIS by using advanced analyses |
sleep assessment | moderate | moderate | moderate | moderate | is more useful concerning prognosis than differential diagnosis, as sleep patterns are significantly related to outcome |
pain assessment | low-moderate | moderate | moderate | moderate | allows differentiating UWS/MCS and identifying fLIS unless assessing the cognitive components of the evoked responses and using advanced analyses (e.g., LEPs single features, GBO, response to TMS) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Billeri, L.; Filoni, S.; Russo, E.F.; Portaro, S.; Militi, D.; Calabrò, R.S.; Naro, A. Toward Improving Diagnostic Strategies in Chronic Disorders of Consciousness: An Overview on the (Re-)Emergent Role of Neurophysiology. Brain Sci. 2020, 10, 42. https://doi.org/10.3390/brainsci10010042
Billeri L, Filoni S, Russo EF, Portaro S, Militi D, Calabrò RS, Naro A. Toward Improving Diagnostic Strategies in Chronic Disorders of Consciousness: An Overview on the (Re-)Emergent Role of Neurophysiology. Brain Sciences. 2020; 10(1):42. https://doi.org/10.3390/brainsci10010042
Chicago/Turabian StyleBilleri, Luana, Serena Filoni, Emanuele Francesco Russo, Simona Portaro, David Militi, Rocco Salvatore Calabrò, and Antonino Naro. 2020. "Toward Improving Diagnostic Strategies in Chronic Disorders of Consciousness: An Overview on the (Re-)Emergent Role of Neurophysiology" Brain Sciences 10, no. 1: 42. https://doi.org/10.3390/brainsci10010042
APA StyleBilleri, L., Filoni, S., Russo, E. F., Portaro, S., Militi, D., Calabrò, R. S., & Naro, A. (2020). Toward Improving Diagnostic Strategies in Chronic Disorders of Consciousness: An Overview on the (Re-)Emergent Role of Neurophysiology. Brain Sciences, 10(1), 42. https://doi.org/10.3390/brainsci10010042