Neurophysiological Vigilance Characterisation and Assessment: Laboratory and Realistic Validations Involving Professional Air Traffic Controllers
Abstract
:1. Introduction
1.1. Vigilance Concept: General Background
1.2. Current Key Research Points on Vigilance
1.3. Research on ATCOs and OOTL
1.4. The Study Rationale: Laboratory Models and Ecological Validation
2. Materials and Methods
2.1. Experiment 1
2.1.1. Experimental Group: Students
2.1.2. Experimental Protocol: Psychomotor Vigilance Task (PVT)
2.1.3. Data Recording and Signal Processing
2.2. Experiment 2
2.2.1. Experimental Group: Professional Air Traffic Controllers
2.2.2. Experimental Protocol: Air Traffic Management Simulation
2.2.3. Data Recording and Signal Processing
2.3. Performed Analysis
2.3.1. Vigilance Neurophysiological Characterisation
2.3.2. Vigilance Levels Discrimination: Machine-Learning Analysis
3. Results
3.1. PVT: Behavioural Results
3.2. PVT: Neurophysiological Results
3.3. PVT: Vigilance Discrimination and Classification Accuracy
3.4. PVT: Vigilance Index and Correlations
3.5. ATM: Neurophysiological Results
3.6. ATM: Vigilance Discrimination and Classification Accuracy
3.7. ATM: Vigilance Index and Correlations
4. Discussion
4.1. Summary of the Rationale of the Study
4.2. Considerations on Results
4.3. Recommendations for Future Experimental Studies
- First, we employed gel-based EEG electrodes to ensure low-impedance values over the entire experimental protocol and limit noise recording due to external interferences.
- Second, we started our study under highly controlled settings by choosing a laboratory environment, and a standard and controlled task for the vigilance assessment widely accepted and used in the scientific literature (e.g., psychomotor vigilance task (PVT)). The results derived from this study were then employed to design and evaluate the experiment in real settings.
- Third, we employed advanced signal processing techniques, starting with a conservative method (i.e., correcting the data through ICA) and then in a robust way (i.e., removing the epochs that cannot be corrected). In this regard, the average number of epochs removed from the EEG dataset was 18.5% ± 7.8% (mean ± standard deviation).
- Finally, we analysed the averaged PSDs values over a prolonged condition (1 min for the first experiment, 5 min for the second experiment) to mitigate the effects due to spurious outliers caused by casual events.
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Parasuraman, R.; Davies, E. The Psychology of Vigilance; Academic Press: New York, NY, USA; London, UK, 1982. [Google Scholar]
- MINIMA Consortium. D1.1 State-of-the-Art Report; Minima Website. Available online: http://www.minima-project.eu/ (accessed on 29 November 2019).
- Steriade, M. Coherent oscillations and short-term plasticity in corticothalamic networks. Trends Neurosci. 1999, 22, 337–345. [Google Scholar] [CrossRef]
- Posner, M. The attention system of the human brain. Ann. Neurosci. 1989, 13, 25–42. [Google Scholar] [CrossRef] [PubMed]
- Johnsen, H. Dichotic listening and sleep deprivation: Vigilance effects. Scand. J. Psychol. 2002, 43, 413–417. [Google Scholar] [CrossRef]
- Parasuraman, R. The Attentive Brain; MIT Press: Cambridge, MA, USA, 1998. [Google Scholar]
- Warm, J.S.; Parasuraman, R.; Matthews, G. Vigilance Requires Hard Mental Work and Is Stressful. Hum. Factors 2008, 50, 433–441. [Google Scholar] [CrossRef] [PubMed]
- Al-Shargie, F. Vigilance Decrement and Enhancement Techniques: A Review. Brain Sci. 2019, 9, 178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gartenberg, D.; Gunzelmann, G.; Hassanzadeh-Behbahai, S.; Trafton, J.G. Examining the Role of Task Requirements in the Magnitude of the Vigilance Decrement. Front. Psychol. 2018, 9, 1504. [Google Scholar] [CrossRef] [PubMed]
- Näsholm, E.; Rohlfing, S.; Sauer, J. Pirate stealth or inattentional blindness? The effects of target relevance and sustained attention on security monitoring for experienced and naïve operators. PLoS ONE 2014, 9, e86157. [Google Scholar] [CrossRef] [Green Version]
- Meuter, R.F.; Lacherez, P.F. When and why threats go undetected: Impacts of event rate and shift length on threat detection accuracy during airport baggage screening. Hum. Factors 2016, 58, 218–228. [Google Scholar] [CrossRef] [Green Version]
- Körber, M.; Cingel, A.; Zimmermann, M.; Bengler, K. Vigilance Decrement and Passive Fatigue Caused by Monotony in Automated Driving. Procedia Manuf. 2015, 3, 2403–2409. [Google Scholar] [CrossRef] [Green Version]
- Gill, G. Vigilance in cytoscreening: Looking without seeing. Adv. Med. Lab. Prof. 1996, 8, 14–15. [Google Scholar]
- Ko, L.-W.; Komarov, O.; Hairston, W.D.; Jung, T.-P.; Lin, C.-T. Sustained attention in real classroom settings: An eeg study. Front. Hum. Neurosci. 2017, 11, 388. [Google Scholar] [CrossRef] [PubMed]
- Reinerman-Jones, L.; Matthews, G.; Mercado, J.E. Detection tasks in nuclear power plant operation: Vigilance decrement and physiological workload monitoring. Saf. Sci. 2016, 88, 97–107. [Google Scholar] [CrossRef]
- Brookings, J.B.; Wilson, G.F.; Swain, C.R. Psychophysiological responses to changes in workload during simulated air trac control. Biol. Psychol. 1996, 42, 361–377. [Google Scholar] [CrossRef]
- Aricò, P.; Borghini, G.; Di Flumeri, G.; Colosimo, A.; Bonelli, S.; Golfetti, A.; Pozzi, S.; Imbert, J.P.; Granger, G.; Benhacene, R.; et al. Adaptive Automation Triggered by EEG-Based Mental Workload Index: A Passive Brain-Computer Interface Application in Realistic Air Traffic Control Environment. Front. Hum. Neurosci. 2016, 10, 539. [Google Scholar] [CrossRef] [Green Version]
- Mackworth, N.H. The breakdown of vigilance during prolonged visual search. Q. J. Exp. Psychol. 1948, 1, 6–21. [Google Scholar] [CrossRef]
- Helton, W.S. The abbreviate vigilance task and cerebral hemodynamics. J. Clin. Exp. Neuropsychol. 2007, 29, 545–552. [Google Scholar] [CrossRef]
- Pigeau, R.A. Vigilance latencies to aircraft detection among NORAD surveillance operators. Hum. Factors J. Hum. Factors Ergon. Soc. 1995, 37, 622–634. [Google Scholar] [CrossRef]
- Haubert, A. Relationship of Event-Related Potentials to the Vigilance decrement. Front. Psychol. 2018, 9, 237. [Google Scholar] [CrossRef]
- Loh, S. The validity of psychomotor vigilance tasks of less than 10-minutes duration. Behav. Res. Methods Instrum. Comput. 2004, 36, 339–346. [Google Scholar] [CrossRef] [Green Version]
- Pattyn, N.; Neyt, X.; Henderickx, D.; Soetens, E. Psychophysiological investigation of vigilance decrement: Boredom or cognitive fatigue? Physiol. Behav. 2008, 93, 369–378. [Google Scholar] [CrossRef]
- Lutz, A.; Slagter, H.A.; Rawlings, N.B.; Francis, A.D.; Greischar, L.L.; Davidson, R.J. Mental training enhances attentional stability: Neural and behavioral evidence. J. Neurosci. 2009, 29, 13418–13427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- MacLean, K.A.; Ferrer, E.; Aichele, S.R.; Bridwell, D.A.; Zanesco, A.P.; Jacobs, T.L.; King, B.G.; Rosenberg, E.L.; Sahdra, B.K.; Shaver, P.R. Intensive meditation training improves perceptual discrimination and sustained attention. Psychol. Sci. 2010, 21, 829–839. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ballester, R.; Huertas, F.; Molina, E.; Sanabria, D. Sport participation and vigilance in children: Influence of di erent sport expertise. J. Sport Health Sci. 2018, 7, 497–504. [Google Scholar] [CrossRef] [PubMed]
- McLellan, T.M.; Kamimori, G.H.; Voss, D.M.; Bell, D.G.; Cole, K.G.; Johnson, D. Caffeine maintains vigilance and improves run times during night operations for Special Forces. Aerosp. Med. Hum. Perform. 2005, 76, 647–654. [Google Scholar]
- Szalma, J.; Daly, T.; Teo, G.; Hancock, G.; Hancock, P. Training for vigilance on the move: A video game-based paradigm for sustained attention. J. Ergon. 2018, 61, 482–505. [Google Scholar] [CrossRef]
- Vangkilde, S.; Bundesen, C.; Coull, J.T. Prompt but inefficient: Nicotine di erentially modulates discrete components of attention. Psychopharmacology 2011, 218, 667–680. [Google Scholar] [CrossRef] [Green Version]
- Lieberman, H.R.; Falco, C.M.; Slade, S.S. Carbohydrate administration during a day of sustained aerobic activity improves vigilance, as assessed by a novel ambulatory monitoring device, and mood. Am. J. Clin. Nutr. 2002, 76, 120–127. [Google Scholar] [CrossRef] [Green Version]
- Hirano, Y.; Onozuka, M. Chewing and attention: A positive effect on sustained attention. Biomed Res. Int. 2015, 367026. [Google Scholar] [CrossRef]
- Johnson, A. Cognitive facilitation following intentional odor exposure. Sensors 2011, 11, 5469–5488. [Google Scholar] [CrossRef] [Green Version]
- Santarnecchi, E.; Polizzotto, N.R.; Godone, M.; Giovannelli, F.; Feurra, M.; Matzen, L.; Rossi, A.; Rossi, S. Frequency-dependent enhancement of fluid intelligence induced by transcranial oscillatory potentials. Curr. Biol. 2013, 23, 1449–1453. [Google Scholar] [CrossRef] [Green Version]
- Molloy, R.; Parasuraman, R. Monitoring an automated system for a single failure: Vigilance and task complexity effects. Hum. Factors J. Hum. Factors Ergon. Soc. 1996, 2, 311–322. [Google Scholar] [CrossRef]
- Hawley, J. Patriot fratricidies: The human dimension lessons of Operation Iraqi Freedom. FA J. 2006, 11, 18. [Google Scholar]
- B.E.A. Final Report on the Accident of the Flight AF 477 Rio de Janeiro-Paris; B.E.A.: Paris, France, 2012. [Google Scholar]
- Arico, P.; Borghini, G.; Di Flumeri, G.; Bonelli, S.; Golfetti, A.; Graziani, I.; Pozzi, S.; Imbert, J.-P.; Granger, G.; Benhacene, R.; et al. Human Factors and Neurophysiological Metrics in Air Traffic Control: A Critical Review. IEEE Rev. Biomed. Eng. 2017, 10, 250–263. [Google Scholar] [CrossRef]
- Normann, D.A. The Psychology of Everyday Things; Basic Books: New York, NY, USA, 1988. [Google Scholar]
- Jones, C.M. What Do We Know About High-Frequency Trading. In Columbia Business School Research Paper; Columbia Business School: New York, NY, USA, 2013. [Google Scholar]
- Parsons, H.M. Automation and the individual: Comprehensive and comparative views. Hum. Factors J. Hum. Factors Ergon. Soc. 1985, 27, 99–111. [Google Scholar] [CrossRef]
- ICAO. Annual Report of the ICAO Council: 2017; ICAO Website. Available online: https://www.icao.int/annual-report-2017/Pages/default.aspx (accessed on 29 November 2019).
- Di Flumeri, G.; De Crescenzio, F.; Berberian, B.; Ohneiser, O.; Kramer, J.; Aricò, P.; Borghini, G.; Babiloni, F.; Bagassi, S.; Piastra, S. BCI-based adaptive automation to prevent Out-of-the-loop phenomenon in Air Traffic Controllers dealing with automated systems. Frontiers (Boulder) 2019, 13, 296. [Google Scholar]
- Parasuraman, R.; Molloy, R. Performances consequences of automation induced “complacency”. Int. J. Aviat. Psychol. 1993, 3, 1–23. [Google Scholar] [CrossRef]
- Endsley, M.R.; Kiris, E.O. The out-of-the-loop performance problem and level of control in automation. Hum. Factors J. Hum. Factors Ergon. Soc. 1995, 37, 381–394. [Google Scholar] [CrossRef]
- Kaber, D.B.; Endsley, M.R. Out-of-the-loop performance problems and the use of intermediate levels of automation for improved control system functioning and safety. Process Saf. Prog. 1997, 16, 126–131. [Google Scholar] [CrossRef]
- Jones, E.E.; Carter-Sowell, A.R.; Kelly, J.R.; Williams, K.D. I’m out of the loop’: Ostracism through information exclusion. Group Process. Intergroup Relat. 2009, 12, 157–174. [Google Scholar] [CrossRef] [Green Version]
- Wiener, E.L. Application of Vigilance research: rare, medium or well done? Hum. Factors J. Hum. Factors Ergon. Soc. 1987, 29, 725–736. [Google Scholar] [CrossRef]
- Mosier, K. Cognitive and social psychological issues in flight crew/automation interaction. Hum. Perform. Autom. Syst. Curr. Res. Trends 1994, 191–197. [Google Scholar]
- Gerbert, K.; Kemmler, R. The causes of causes: Determinants and background variables of human factor incidents and accidents. Ergonomics 1986, 29, 1439–1453. [Google Scholar] [CrossRef] [PubMed]
- Dinges, D.F.; Powell, J.W. Microcomputer analyses of performance on a portable, simple visual RT task during sustained operations. Behav. Res. Methods Instrum. Comput. 1985, 17, 652–655. [Google Scholar] [CrossRef]
- Abad, V.C.; Guilleminault, C. Polysomnographic Evaluation of Sleep Disorders. In Aminoff’s Electrodiagnosis in Clinical Neurology; Elsevier BV: San Diego, CA, USA, 2012; pp. 727–762. [Google Scholar]
- Wewers, M.E.; Lowe, N.K. A critical review of visual analogue scales in the measurement of clinical phenomena. Res. Nurs. Health 1990, 13, 227–236. [Google Scholar] [CrossRef]
- Davies, D.R. Human Vigilance Performance; American Elsevier Publishing Company: New York, NY, USA, 1969. [Google Scholar]
- Baker, C.H. Consistency of Performance in Two Human Vigilance Task; McGraw-Hill: New York, NY, USA, 1963. [Google Scholar]
- Parasuraman, R. Consistency of individual differences in human vigilance performance: An abilities classification analysis. J. Appl. Psychol. 1976, 61, 486. [Google Scholar] [CrossRef]
- Arico, P.; Borghini, G.; Di Flumeri, G.; Sciaraffa, N.; Colosimo, A.; Babiloni, F. Passive BCI in Operational Environments: Insights, Recent Advances, and Future Trends. IEEE Trans. Biomed. Eng. 2017, 64, 1431–1436. [Google Scholar] [CrossRef]
- Moustafa, K.; Luz, S.; Longo, L. Assessment of mental workload: A comparison of machine learning methods and subjective assessment techniques. In Communications in Computer and Information Science; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Borghini, G.; Aricò, P.; Graziani, I.; Salinari, S.; Sun, Y.; Taya, F.; Bezerianos, A.; Thakor, N.V.; Babiloni, F. Quantitative Assessment of the Training Improvement in a Motor-Cognitive Task by Using EEG, ECG and EOG Signals. Brain Topogr. 2016, 29, 149–161. [Google Scholar] [CrossRef]
- Di Flumeri, G.; Borghini, G.; Aricò, P.; Sciaraffa, N.; Lanzi, P.; Pozzi, S.; Vignali, V.; Lantieri, C.; Bichicchi, A.; Simone, A.; et al. EEG-based mental workload neurometric to evaluate the impact of different traffic and road conditions in real driving settings. Front. Hum. Neurosci. 2018, 12, 509. [Google Scholar] [CrossRef] [Green Version]
- Borghini, G.; Aricò, P.; Di Flumeri, G.; Sciaraffa, N.; Colosimo, A.; Herrero, M.T.; Bezerianos, A.; Thakor, N.V.; Babiloni, F. A new perspective for the training assessment: Machine learning-based neurometric for augmented user’s evaluation. Front. Neurosci. 2017, 11, 325. [Google Scholar] [CrossRef]
- Aricò, P.; Borghini, G.; Di Flumeri, G.; Colosimo, A.; Pozzi, S.; Babiloni, F. A passive brain–computer interface application for the mental workload assessment on professional air traffic controllers during realistic air traffic control tasks. In Progress in Brain Research; Elsevier BV: Amsterdam, The Netherlands, 2016. [Google Scholar]
- MINIMA Consortium. D3.2 Evaluation Results; Minima Website. Available online: http://www.minima-project.eu/ (accessed on 29 November 2019).
- Byrne, E.A.; Parasuraman, R. Psychophysiology and adaptive automation. Biol. Psychol. 1996, 42, 249–268. [Google Scholar] [CrossRef]
- Klimesch, W. EEG alpha and theta oscillations reflect cognitive and memory performance: A review and analysis. Brain Res. Rev. 1999, 29, 169–195. [Google Scholar] [CrossRef]
- Lee, T.-W.; Girolami, M.; Sejnowski, T.J. Independent component analysis using an extended infomax algorithm for mixed subgaussian and supergaussian sources. Neural Comput. 1999, 11, 417–441. [Google Scholar] [CrossRef] [PubMed]
- Elul, R. Gaussian Behaviour of the Electroencephalogram: Changes during Performance of Mental Task. Science 1969, 164, 328–331. [Google Scholar] [CrossRef]
- Delorme, A.; Makeig, S. EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 2004, 134, 9–21. [Google Scholar] [CrossRef] [Green Version]
- Berberian, B.; Ohneiser, O.; de Crescenzio, F.; Babiloni, F.; di Flumeri, G.; Hasselberg, A. MINIMA project: Detecting and mitigating the negative impact of automation. In Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer: Cham, Switzerland, 2017. [Google Scholar]
- MINIMA Consortium. D2.1 Integrated Vigilance and Attention Controller; Minima Website. Available online: http://www.minima-project.eu/ (accessed on 29 November 2019).
- Thackray, R.I.; Jones, K.N.; Touchstone, R.M. Personality and physiological correlates of performance decrement on a monotonous task requiring sustained attention. Br. J. Psychol. 1974, 65, 351–358. [Google Scholar] [CrossRef]
- Di Flumeri, G.; Arico, P.; Borghini, G.; Colosimo, A.; Babiloni, F. A new regression-based method for the eye blinks artifacts correction in the EEG signal, without using any EOG channel. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, Orlando, FL, USA, 16–20 August 2016. [Google Scholar]
- Borghini, G.; Aricò, P.; Di Flumeri, G.; Babiloni, F. Industrial Neuroscience in Aviation: Evaluation of Mental States in Aviation Personnel; Springer: Berlin/Heidelberg, Germany, 2017; ISBN 978-3-319-58597-0. [Google Scholar]
- Draper, N.R.; Smith, H. Applied Regression Analysis. In Statistics and Causality; John Wiley & Sons: Hoboken, NJ, USA, 1998. [Google Scholar]
- Mandrekar, J.N. Receiver operating characteristic curve in diagnostic test assessment. J. Thorac. Oncol. 2010, 5, 1315–1316. [Google Scholar] [CrossRef] [Green Version]
- Bakdash, J.Z.; Marusich, L.R. Repeated measures correlation. Front. Psychol. 2017, 8, 456. [Google Scholar] [CrossRef] [Green Version]
- Sturm, W. Functional Anatomy of Intensity Aspect of Attemtion. Zeitschrift für Neuropsychol. 2003, 14, 181–190. [Google Scholar] [CrossRef]
- Masalonis, A.J.; Callaham, M.B.; Wanke, C.R. Dynamic density and complexity metrics for realtime traffic flow management. In Proceedings of the 5th USA/Europe Air Traffic Management R&D Seminar, Budapest, Hungary, 23–27 June 2003. [Google Scholar]
- Borghini, G.; Astolfi, L.; Vecchiato, G.; Mattia, D.; Babiloni, F. Measuring neurophysiological signals in aircraft pilots and car drivers for the assessment of mental workload, fatigue and drowsiness. Neurosci. Biobehav. Rev. 2014, 44, 58–75. [Google Scholar] [CrossRef] [PubMed]
- Roach, G.D.; Dawson, D.; Lamond, N. Can a shorter psychomotor vigilance task be used as a reasonable substitute for the ten-minute psychomotor vigilance task? Chronobiol. Int. 2006, 23, 1379–1387. [Google Scholar] [CrossRef] [PubMed]
- Fruhstorfer, H.; Bergström, R. Human vigilance and auditory evoked responses. Electroencephalogr. Clin. Neurophysiol. 1969, 27, 346–355. [Google Scholar] [CrossRef]
- Wei, J.; Ke, Y.; Sun, C.; An, X.; Qi, H.; Ming, D.; Zhou, P. The timing of theta phase synchronization accords with vigilant attention. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, Seogwipo, Korea, 11–15 July 2017. [Google Scholar]
- Dockree, P.M.; Kelly, S.P.; Foxe, J.J.; Reilly, R.B.; Robertson, I.H. Optimal sustained attention is linked to the spectral content of background EEG activity: Greater ongoing tonic alpha (∼10 Hz) power supports successful phasic goal activation. Eur. J. Neurosci. 2007, 25, 900–907. [Google Scholar] [CrossRef] [PubMed]
- Borghini, G.; Aricò, P.; Di Flumeri, G.; Cartocci, G.; Colosimo, A.; Bonelli, S.; Golfetti, A.; Imbert, J.P.; Granger, G.; Benhacene, R.; et al. EEG-Based Cognitive Control Behaviour Assessment: An Ecological study with Professional Air Traffic Controllers. Sci. Rep. 2017, 7, 547. [Google Scholar] [CrossRef] [PubMed]
- KumarAhirwal, M.; Londhe, N.D. Power Spectrum Analysis of EEG Signals for Estimating Visual Attention. Int. J. Comput. Appl. 2012, 42, 34–40. [Google Scholar] [CrossRef]
- Kim, J.H.; Kim, D.W.; Im, C.H. Brain Areas Responsible for Vigilance: An EEG Source Imaging Study. Brain Topogr. 2017, 30, 343–351. [Google Scholar] [CrossRef]
- Jensen, O.; Kaiser, J.; Lachaux, J.-P. Human gamma-frequency oscillations associated with attention and memory. Trends Neurosci. 2007, 30, 317–324. [Google Scholar] [CrossRef]
- Minguillon, J.; Lopez-Gordo, M.A.; Pelayo, F. Trends in EEG-BCI for daily-life: Requirements for artifact removal. Biomed. Signal Process. Control 2017, 31, 407–418. [Google Scholar] [CrossRef]
- Lopez-Gordo, M.A.; Sanchez-Morillo, D.; Valle, F.P. Dry EEG Electrodes. Sensors 2014, 14, 12847–12870. [Google Scholar] [CrossRef]
- Di Flumeri, G.; Aricò, P.; Borghini, G.; Sciaraffa, N.; Di Florio, A.; Babiloni, F. The dry revolution: evaluation of three different eeg dry electrode types in terms of signal spectral features, mental states classification and usability. Sensors 2019, 19, 1365. [Google Scholar] [CrossRef] [Green Version]
- Aricò, P.; Borghini, G.; Di Flumeri, G.; Sciaraffa, N.; Babiloni, F. Passive BCI beyond the lab: Current trends and future directions. Physiol. Meas. 2018, 39, 08TR02. [Google Scholar] [CrossRef]
EEG Channels Configuration | Number of Channels |
---|---|
All-Channels (AllCh) | 31 |
High Vigilance – Low Vigilance (HV-LV) | 21 |
Laboratory (LAB) | 19 |
2-Channels (2Ch) | 2 |
EEG Channels Configuration | Number of Channels |
---|---|
All-Channels (AllCh) | 13 |
High Vigilance – Low Vigilance (HV-LV) | 11 |
Laboratory (LAB) | 9 |
2-Channels (2Ch) | 2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sebastiani, M.; Di Flumeri, G.; Aricò, P.; Sciaraffa, N.; Babiloni, F.; Borghini, G. Neurophysiological Vigilance Characterisation and Assessment: Laboratory and Realistic Validations Involving Professional Air Traffic Controllers. Brain Sci. 2020, 10, 48. https://doi.org/10.3390/brainsci10010048
Sebastiani M, Di Flumeri G, Aricò P, Sciaraffa N, Babiloni F, Borghini G. Neurophysiological Vigilance Characterisation and Assessment: Laboratory and Realistic Validations Involving Professional Air Traffic Controllers. Brain Sciences. 2020; 10(1):48. https://doi.org/10.3390/brainsci10010048
Chicago/Turabian StyleSebastiani, Marika, Gianluca Di Flumeri, Pietro Aricò, Nicolina Sciaraffa, Fabio Babiloni, and Gianluca Borghini. 2020. "Neurophysiological Vigilance Characterisation and Assessment: Laboratory and Realistic Validations Involving Professional Air Traffic Controllers" Brain Sciences 10, no. 1: 48. https://doi.org/10.3390/brainsci10010048
APA StyleSebastiani, M., Di Flumeri, G., Aricò, P., Sciaraffa, N., Babiloni, F., & Borghini, G. (2020). Neurophysiological Vigilance Characterisation and Assessment: Laboratory and Realistic Validations Involving Professional Air Traffic Controllers. Brain Sciences, 10(1), 48. https://doi.org/10.3390/brainsci10010048