Speech–Brain Frequency Entrainment of Dyslexia with and without Phonological Deficits
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Procedure
2.3. Speech Paradigm
2.4. Data Analysis
2.4.1. EEG Preprocessing
2.4.2. Coherence Analysis
2.4.3. Statistical Analysis
3. Results
3.1. Behavioural Data
3.2. Speech–Brain Eeg Frequency Entrainment
3.2.1. Deficiency of Delta-Frequency Entrainment in the Left Auditory Cortex of Dyslexics with More Pronounced Phonological Deficits
3.2.2. Beta-Frequency Entrainment in the Right Auditory Cortex of Dyslexics with More Pronounced Phonological Deficits
3.2.3. Right-Hemispheric Gamma-Entrainment to the Phonemic Frequencies at 30 Hz in Dyslexics
3.2.4. Strength of the Multi-Frequency Entrainment in Concordance with Psychometric Indicators
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Vellutino, F.R.; Fletcher, J.M.; Snowling, M.J.; Scanlon, D.M. Specific reading disability (dyslexia): What have we learned in the past four decades? J. Child Psychol. Psychiatry 2004, 45, 2–40. [Google Scholar] [CrossRef] [PubMed]
- Van Ermingen-Marbach, M.; Grande, M.; Pape-Neumann, J.; Sass, K.; Heim, S. Distinct neural signatures of cognitive subtypes of dyslexia with and without phonological deficits. NeuroImage Clin. 2013, 2, 477–490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coltheart, M.; Rastle, K.; Perry, C.; Langdon, R.; Ziegler, J.C. DRC: A dual route cascaded model of visual word recognition and reading aloud. Psychol. Rev. 2001, 108, 204–256. [Google Scholar] [CrossRef]
- Castles, A.; Coltheart, M. Varieties of developmental dyslexia. Cognition 1993, 47, 149–180. [Google Scholar] [CrossRef]
- Funnell, E. Phonological processes in reading: New evidence from acquired dyslexia. Br. J. Psychol. 1983, 74, 159–180. [Google Scholar] [CrossRef]
- Siegel, L.S. The development of reading. In Advances in Child Development and Behavior; Reese, H.W., Ed.; Academic Press: San Diego, CA, USA, 1993; Volume 24, pp. 63–97. [Google Scholar]
- Ebrahimi, L.; Pouretemad, H.; Khatibi, A.; Stein, J.F. Magnocellular Based Visual Motion Training Improves Reading in Persian. Sci. Rep. 2019, 9, 1–10. [Google Scholar] [CrossRef]
- Patterson, K.; Hodges, J.R. Deterioration of word meaning: Implications for reading. Neuropsychologia 1992, 30, 1025–1040. [Google Scholar] [CrossRef]
- Hodges, J.R.; Patterson, K. Semantic dementia: A unique clinicopathological syndrome. Lancet Neurol. 2007, 6, 1004–1014. [Google Scholar] [CrossRef]
- Buchholz, J.; Davies, A.M.A. Adults with dyslexia demonstrate space-based and object-based covert attention deficits: Shifting attention to the periphery and shifting attention between objects in the left visual field. Brain Cognit. 2005, 57, 30–34. [Google Scholar] [CrossRef] [PubMed]
- Bosse, M.-L.; Tainturier, M.J.; Valdois, S. Developmental dyslexia: The visual attention span deficit hypothesis. Cognition 2007, 104, 198–230. [Google Scholar] [CrossRef] [Green Version]
- Peyrin, C.; Lallier, M.; Valdois, S. Visual attention span brain mechanisms in normal and dyslexic readers. In Neuropsychology and Cognition of Language: Behavioural, Neuropsychological and Neuroimaging Studies of Oral and Written Language; Baciu, M., Ed.; Research Signpost: Kerala, India, 2008; pp. 22–40. [Google Scholar]
- Valdois, S.; Peyrin, C.; Baciu, M. The neurobiological correlates of developmental dyslexia. In Some Aspects of Speech and the Brain; Fuchs, S., Loevenbruck, H., Pape, D., Perrier, P., Eds.; Peter Lang Verlag: Frankfurt am Main, Germany, 2009; pp. 141–162. [Google Scholar]
- Dubois, M.; Kyllingsbaek, S.; Prado, C.; Musca, S.C.; Peiffer, E.; Lassus-Sangosse, D.; Valdois, S. Fractionating the multi-character processing deficit in developmental dyslexia: Evidence from two case studies. Cortex 2010, 46, 717–738. [Google Scholar] [CrossRef] [PubMed]
- Stein, J. To see but not to read; the magnocellular theory of dyslexia. Trends Neurosci. 1997, 20, 147–152. [Google Scholar] [CrossRef]
- Vidyasagar, T.R. Visual attention and neural oscillations in reading and dyslexia: Are they possible targets for remediation? Neuropsychologia 2019, 130, 59–65. [Google Scholar] [CrossRef]
- Heim, S.; Tschierse, J.; Amunts, K.; Wilms, M.; Vossel, S.; Willmes, K.; Grabowska, A.; Huber, W. Cognitive subtypes of dyslexia. Acta Neurobiol. Exp. 2008, 68, 73–82. [Google Scholar]
- Heim, S.; Grande, M. Fingerprints of developmental dyslexia. Trends Neurosci. Educ. 2012, 1, 10–14. [Google Scholar] [CrossRef]
- Wilmer, J.B.; Richardson, A.J.; Chen, Y.; Stein, J.F. Two Visual Motion Processing Deficits in Developmental Dyslexia Associated with Different Reading Skills Deficits. J. Cognit. Neurosci. 2004, 16, 528–540. [Google Scholar] [CrossRef] [PubMed]
- Stein, J.F. Dyslexia: The Role of Vision and Visual Attention. Curr. Dev. Disord. Rep. 2014, 1, 267–280. [Google Scholar] [CrossRef] [Green Version]
- Stein, J.F. What is Developmental Dyslexia? Brain Sci. 2018, 8, 26. [Google Scholar] [CrossRef] [Green Version]
- Lalova, J.; Dushanova, J.; Kalonkina, A.; Tsokov, S.; Hristov, I.; Totev, T.; Stefanova, M. Vision and visual attention of children with developmental dyslexia. Psychol. Res. 2018, 21, 247–261. [Google Scholar]
- Cornelissen, P.L.; Hansen, P.C.; Hutton, J.L.; Evangelinou, V.; Stein, J.F. Magnocellular visual function and children’s single word reading. Vis. Res. 1998, 38, 471–482. [Google Scholar] [CrossRef]
- Facoetti, A.; Lorusso, M.L.; Paganoni, P.; Umiltà, C.; Mascetti, G.G. See more: The role of visuospatial attention in developmental dyslexia: Evidence from a rehabilitation study. Cognit. Brain Res. 2003, 15, 154–164. [Google Scholar] [CrossRef]
- Sperling, A.J.; Lu, Z.-L.; Manis, F.R.; Seidenberg, M.S. Selective magnocellular deficits in dyslexia: A “phantom contour” study. Neuropsychologia 2003, 41, 1422–1429. [Google Scholar] [CrossRef] [Green Version]
- Goodale, M.A.; Westwood, D.; Goodale, M.A. An evolving view of duplex vision: Separate but interacting cortical pathways for perception and action. Curr. Opin. Neurobiol. 2004, 14, 203–211. [Google Scholar] [CrossRef] [PubMed]
- Hickok, G. The cortical organization of speech processing: Feedback control and predictive coding the context of a dual-stream model. J. Commun. Disord. 2012, 45, 393–402. [Google Scholar] [CrossRef] [Green Version]
- Jobard, G.; Crivello, F.; Tzourio-Mazoyer, N. Evaluation of teh dual route theory of reading: A metanalysis of 35 neuroimaging studies. NeuroImage 2003, 20, 693–712. [Google Scholar] [CrossRef]
- Mechelli, A.; Gorno-Tempini, M.L.; Price, C.J. Neuroimaging Studies of Word and Pseudoword Reading: Consistencies, Inconsistencies, and Limitations. J. Cognit. Neurosci. 2003, 15, 260–271. [Google Scholar] [CrossRef]
- Wolf, M.; Bowers, P.G. The Double-Deficit Hypothesis for the Developmental Dyslexia. J. Educ. Psychol. 1999, 91, 415–438. [Google Scholar] [CrossRef]
- Boets, B.; De Beeck, H.P.O.; Vandermosten, M.; Scott, S.K.; Gillebert, C.R.; Mantini, D.; Bulthé, J.; Sunaert, S.; Wouters, J.; Ghesquière, P. Intact But Less Accessible Phonetic Representations in Adults with Dyslexia. Science 2013, 342, 1251–1254. [Google Scholar] [CrossRef] [Green Version]
- Wimmer, H.; Schurz, M.; Sturm, D.; Richlan, F.; Klackl, J.; Kronbichler, M.; Ladurner, G. A dual-route perspective on poor reading in a regular orthography: An fMRI study. Cortex 2010, 46, 1284–1298. [Google Scholar] [CrossRef] [Green Version]
- Cao, F.; Bitan, T.; Chou, T.-L.; Burman, D.D.; Booth, J.R. Deficient orthographic and phonological representations in children with dyslexia revealed by brain activation patterns. J. Child Psychol. Psychiatry 2006, 47, 1041–1050. [Google Scholar] [CrossRef] [Green Version]
- Georgiewa, P.; Rzanny, R.; Gaser, C.; Gerhard, U.J.; Vieweg, U.; Freesmeyer, D.; Mentzel, H.; Kaiser, W.A.; Blanz, B. Phonological processing in dyslexic children: A study combining functional imaging and event related potentials. Neurosci. Lett. 2002, 318, 5–8. [Google Scholar] [CrossRef]
- Heim, S.; Grande, M.; Pape-Neumann, J.; Van Ermingen, M.; Meffert, E.; Grabowska, A.; Huber, W.; Amunts, K. Interaction of phonological awareness and ‘magnocellular’ processing during normal and dyslexic reading: Behavioural and fMRI investigations. Dyslexia 2010, 16, 258–282. [Google Scholar] [CrossRef] [PubMed]
- Hoeft, F.; McCandliss, B.D.; Black, J.M.; Gantman, A.; Zakerani, N.; Hulme, C.; Lyytinen, H.; Whitfield-Gabrieli, S.; Glover, G.H.; Reiss, A.L.; et al. Neural systems predicting long-term outcome in dyslexia. Proc. Natl. Acad. Sci. USA 2011, 108, 361–366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rüsseler, J.; Gerth, I.; Heldmann, M.; Münte, T. Audiovisual perception of natural speech is impaired in adult dyslexics: An ERP study. Neuroscience 2015, 287, 55–65. [Google Scholar] [CrossRef]
- Abrams, D.A.; Nicol, T.; Zecker, S.; Kraus, N. Abnormal cortical processing of the syllable rate of speech in poor readers. J. Neurosci. 2009, 29, 7686–7693. [Google Scholar] [CrossRef]
- Lehongre, K.; Ramus, F.; Villiermet, N.; Schwartz, D.; Giraud, A.-L. Altered Low-Gamma Sampling in Auditory Cortex Accounts for the Three Main Facets of Dyslexia. Neuron 2011, 72, 1080–1090. [Google Scholar] [CrossRef] [Green Version]
- Poelmans, H.; Luts, H.; Vandermosten, M.; Boets, B.; Ghesquière, P.; Wouters, J. Auditory Steady State Cortical Responses Indicate Deviant Phonemic-Rate Processing in Adults with Dyslexia. Ear Hear. 2012, 33, 134–143. [Google Scholar] [CrossRef]
- Lizarazu, M.; Lallier, M.; Molinaro, N.; Bourguignon, M.; Paz-Alonso, P.M.; Lerma-Usabiaga, G.; Carreiras, M. Developmental evaluation of atypical auditory sampling in dyslexia: Functional and structural evidence. Hum. Brain Mapp. 2015, 36, 4986–5002. [Google Scholar] [CrossRef] [Green Version]
- Saribay, S.; Noble, H.L.; Goswami, U. Neural Entrainment and Sensorimotor Synchronization to the Beat in Children with Developmental Dyslexia: An EEG Study. Front. Neurosci. 2017, 11, 360. [Google Scholar] [CrossRef]
- Giraud, A.-L.; Poeppel, D. Cortical oscillations and speech processing: Emerging computational principles and operations. Nat. Neurosci. 2012, 15, 511–517. [Google Scholar] [CrossRef] [Green Version]
- Poeppel, D. The neuroanatomic and neurophysiological infrastructure for speech and language. Curr. Opin. Neurobiol. 2014, 28, 142–149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giraud, A.-L.; Kleinschmidt, A.; Poeppel, D.; Lund, T.E.; Frackowiak, R.S.; Laufs, H. Endogenous Cortical Rhythms Determine Cerebral Specialization for Speech Perception and Production. Neuron 2007, 56, 1127–1134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghitza, O.; Greenberg, S. On the Possible Role of Brain Rhythms in Speech Perception: Intelligibility of Time-Compressed Speech with Periodic and Aperiodic Insertions of Silence. Phonetica 2009, 66, 113–126. [Google Scholar] [CrossRef] [PubMed]
- Morillon, B.; Lehongre, K.; Frackowiak, R.S.J.; Ducorps, A.; Kleinschmidt, A.; Poeppel, D.; Giraud, A.-L. Neurophysiological origin of human brain asymmetry for speech and language. Proc. Natl. Acad. Sci. USA 2010, 107, 18688–18693. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Power, A.J.; Colling, L.J.; Mead, N.; Barnes, L.; Goswami, U.C. Neural encoding of the speech envelope by children with developmental dyslexia. Brain Lang. 2016, 160, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Goswami, U. A temporal sampling framework for developmental dyslexia. Trends Cognit. Sci. 2011, 15, 3–10. [Google Scholar] [CrossRef]
- Arnal, L.H.; Doelling, K.B.; Poeppel, D. Delta–Beta Coupled Oscillations Underlie Temporal Prediction Accuracy. Cereb. Cortex 2015, 25, 3077–3085. [Google Scholar] [CrossRef] [Green Version]
- Giraud, K.; Démonet, J.F.; Habib, M.; Marquis, P.; Chauvel, P.; Liégeois-Chauvel, C. Auditory Evoked Potential Patterns to Voiced and Voiceless Speech Sounds in Adult Developmental Dyslexics with Persistent Deficits. Cereb. Cortex 2005, 15, 1524–1534. [Google Scholar] [CrossRef]
- Tallal, P.; Miller, S.; Fitch, R.H. Neurobiological Basis of Speech: A Case for the Preeminence of Temporal Processing. Ann. N. Y. Acad. Sci. 1993, 682, 27–47. [Google Scholar] [CrossRef]
- Hsieh, L.-T.; Ekstrom, A.D.; Ranganath, C. Neural Oscillations Associated with Item and Temporal Order Maintenance in Working Memory. J. Neurosci. 2011, 31, 10803–10810. [Google Scholar] [CrossRef] [Green Version]
- De Vos, A.; Vanvooren, S.; Vanderauwera, J.; Ghesquière, P.; Wouters, J. A longitudinal study investigating neural processing of speech envelope modulation rates in children with (a family risk for) dyslexia. Cortex 2017, 93, 206–219. [Google Scholar] [CrossRef] [PubMed]
- Molinaro, N.; Lizarazu, M.; Lallier, M.; Bourguignon, M.; Carreiras, M. Out-of-synchrony speech entrainment in developmental dyslexia. Hum. Brain Mapp. 2016, 37, 2767–2783. [Google Scholar] [CrossRef] [PubMed]
- Gross, J.; Hoogenboom, N.; Thut, G.; Schyns, P.; Panzeri, S.; Belin, P.; Garrod, S. Speech Rhythms and Multiplexed Oscillatory Sensory Coding in the Human Brain. PLoS Biol. 2013, 11, e1001752. [Google Scholar] [CrossRef]
- Raichev, P.; Geleva, T.; Valcheva, M.; Rasheva, M.; Raicheva, M. Protocol on Neurological and Neuropsychological Studies of Children with Specific Learning Disabilities. In The “Integrated Learning and Resource Teacher” Journal; Bogorov, I., Ed.; Publishing House: Sofia, Bulgaria, 2005. [Google Scholar]
- Sartori, G.; Remo, J.; Tressoldi, P.E. DDE-2, Battery for the Developmental Dyslexia and Evolutionary Disorders-2; 1995, updated and revised edition for the evaluation of dyslexia; Giunti O.S.: Florence, Italy, 2007. [Google Scholar]
- Matanova, V.; Todorova, E. DDE-2 Test Battery for Evaluation of Dyslexia of Development—Bulgarian Adaptation; OS Bulgaria Ltd.: Sofia, Bulgaria, 2013. [Google Scholar]
- Kalonkina, A.; Lalova, Y. Normative Indicators for the Test Battery for a Written Speech Assessment; Iossifova, R., Ed.; Rommel Publishing House: Sofia, Bulgaria, 2016; pp. 30–38. [Google Scholar]
- Raven, J. Research supplement No.1: The 1979 British standardisation of the standard progressive matrices and Mill Hill vocabulary scales, together with comparative data from earlier studies in the UK, US, Canada, Germany and Ireland. In Manual for Raven’s Progressive Matrices and Vocabulary Scales; Harcourt Assessment: San Antonio, TX, USA, 1981. [Google Scholar]
- Annett, M. A Classification of hand preference by association analysis. Br. J. Psychol. 1970, 61, 303–321. [Google Scholar] [CrossRef] [PubMed]
- Nikolova, T. Frequency Dictionary of the Bulgarian Conversational Language; Science and Art: Sofia, Bulgarian, 1987; Available online: https://miryan.org/glotta/cvetanka_nikolova_rechnik.html (accessed on 13 October 2014).
- Ríos-Herrera, W.A.; Olguín-Rodríguez, P.V.; Arzate-Mena, J.D.; Corsi-Cabrera, M.; Escalona, J.; Marín-García, A.; Ramos-Loyo, J.; Rivera, A.L.; Rivera-López, D.; Zapata-Berruecos, J.F.; et al. The Influence of EEG References on the Analysis of Spatio-Temporal Interrelation Patterns. Front. Neurosci. 2019, 13, 941. [Google Scholar] [CrossRef]
- Kay, S.M. Modern Spectral Estimation; Prentice-Hall: Englewood Cliffs, NJ, USA, 1988. [Google Scholar]
- Rabiner, L.R.; Gold, B. Theory and Application of Digital Signal Processing; Prentice-Hall: Englewood Cliffs, NJ, USA, 1975. [Google Scholar]
- Welch, P. The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms. IEEE Trans. Audio Electroacoust. 1967, 15, 70–73. [Google Scholar] [CrossRef] [Green Version]
- Mason, D.M.; Newton, M.A. A Rank Statistics Approach to the Consistency of a General Bootstrap. Ann. Stat. 1992, 20, 1611–1624. [Google Scholar] [CrossRef]
- Lallier, M.; Donnadieu, S.; Berger, C.; Valdois, S. A case study of developmental phonological dyslexia: Is the attentional deficit in the perception of rapid stimuli sequences amodal? Cortex 2010, 46, 231–241. [Google Scholar] [CrossRef]
- Koessler, L.; Maillard, L.; Benhadid, A.; Vignal, J.; Felblinger, J.; Vespignani, H.; Braun, M. Automated cortical projection of EEG sensors: Anatomical correlation via the international 10–10 system. NeuroImage 2009, 46, 64–72. [Google Scholar] [CrossRef]
- Giacometti, P.; Perdue, K.L.; Diamond, S.G. Algorithm to find high density EEG scalp coordinates and analysis of their correspondence to structural and functional regions of the brain. J. Neurosci. Methods 2014, 229, 84–96. [Google Scholar] [CrossRef] [Green Version]
- Lurie, D.I.; Pasic, T.R.; Hockfield, S.J.; Rubel, E.W. Development of Cat-301 immunoreactivity in auditory brainstem nuclei of the gerbil. J. Comp. Neurol. 1997, 380, 319–334. [Google Scholar] [CrossRef]
- Hickok, G.; Poeppel, D. The cortical organization of speech processing. Nat. Rev. Neurosci. 2007, 8, 393–402. [Google Scholar] [CrossRef] [PubMed]
- Miller, L.M. Perceptual Fusion and Stimulus Coincidence in the Cross-Modal Integration of Speech. J. Neurosci. 2005, 25, 5884–5893. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leong, V.V.; Goswami, U.C. Acoustic-Emergent Phonology in the Amplitude Envelope of Child-Directed Speech. PLoS ONE 2015, 10, e0144411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greenberg, S.; Carvey, H.; Hitchcock, L.; Chang, S. Temporal properties of spontaneous speech—A syllable-centric perspective. J. Phon. 2003, 31, 465–485. [Google Scholar] [CrossRef] [Green Version]
- Overath, T.; McDermott, J.H.; Zarate, J.M.; Poeppel, D. The cortical analysis of speech-specific temporal structure revealed by responses to sound quilts. Nat. Neurosci. 2015, 18, 903–911. [Google Scholar] [CrossRef] [Green Version]
- Möttönen, R.; Van De Ven, G.M.; Watkins, K.E. Attention fine-tunes auditory-motor processing of speech sounds. J. Neurosci. 2014, 34, 4064–4069. [Google Scholar] [CrossRef] [Green Version]
- Luo, H.; Poeppel, D. Phase Patterns of Neuronal Responses Reliably Discriminate Speech in Human Auditory Cortex. Neuron 2007, 54, 1001–1010. [Google Scholar] [CrossRef] [Green Version]
- Lakatos, P.; Shah, A.S.; Knuth, K.H.; Ulbert, I.; Karmos, G.; Schroeder, C.E. An Oscillatory Hierarchy Controlling Neuronal Excitability and Stimulus Processing in the Auditory Cortex. J. Neurophysiol. 2005, 94, 1904–1911. [Google Scholar] [CrossRef] [Green Version]
- Ito, T.; Tiede, M.; Ostry, D.J. Somatosensory function in speech perception. Proc. Natl. Acad. Sci. USA 2009, 106, 1245–1248. [Google Scholar] [CrossRef] [Green Version]
- Chang, E.F.; Rieger, J.W.; Johnson, K.A.; Berger, M.S.; Barbaro, N.M.; Knight, R.T. Categorical speech representation in human superior temporal gyrus. Nat. Neurosci. 2010, 13, 1428–1432. [Google Scholar] [CrossRef] [PubMed]
- Panzeri, S.; Brunel, N.; Logothetis, N.K.; Kayser, C. Sensory neural codes using multiplexed temporal scales. Trends Neurosci. 2010, 33, 111–120. [Google Scholar] [CrossRef] [PubMed]
- Witton, C.; Talcott, J.; Hansen, P.; Richardson, A.; Griffiths, T.; Rees, A.; Stein, J.; Green, G. Sensitivity to dynamic auditory and visual stimuli predicts nonword reading ability in both dyslexic and normal readers. Curr. Biol. 1998, 8, 791–797. [Google Scholar] [CrossRef] [Green Version]
Test Battery | Controls | Less Phon. | Severe Phon. | Severe Phon. vs. Less Phon. |
---|---|---|---|---|
Mean ± s.d. | Mean ± s.d. | Mean ± s.d. | p | |
1. DDE-2 | ||||
1.1. Word reading | ||||
Accuracy | 106 ± 5.58 | 93.0 ± 13.29 | 78.5 ± 19.10 | 0.077 |
Speed | 132 ± 0.76 | 90.6 ± 11.12 | 79.9 ± 11.68 | 0.604 |
1.2. Nonword reading | ||||
Accuracy | 102 ± 4.65 | 87.9 ± 15.78 | 80.9 ± 19.57 | 0.167 |
Speed | 118 ± 0.68 | 92.9 ± 8.34 | 88.3 ± 10.99 | 0.206 |
1.3. Word writing | ||||
Accuracy | 115 ± 6.49 | 97.1 ± 10.36 | 73.6 ± 11.77 | 0.0001 *** |
1.4. Nonword writing | ||||
Accuracy | 104 ± 4.25 | 105.0 ± 9.31 | 78.4 ± 12.69 | 0.000 *** |
1.5. Dictation | ||||
Accuracy | 112 ± 4.82 | 101.7 ± 9.75 | 75.1 ± 9.79 | 0.0001 *** |
1.6. Homonyms | ||||
Accuracy | 112 ± 1.82 | 103.1 ± 10.54 | 91.2 ± 18.92 | 0.041 * |
1.7. Search for misspellings of words | ||||
Accuracy | 112 ± 4.45 | 110.5± 11.56 | 107.0 ± 17.65 | 0.526 |
2. Test battery “Reading abilities” | ||||
2.1. Phonological task ”without a first sound-letter” | ||||
Correct answers | 9.20 ± 1.87 | 6.86 ± 1.30 | 4.17 ± 2.78 | 0.002 ** |
Execution time | 34.60 ± 10.50 | 43.00 ± 13.92 | 82.06 ± 45.03 | 0.003 ** |
2.2. Phonological task ”without a last syllable” | ||||
Correct answers | 8.05 ± 2.08 | 7.13 ± 2.06 | 5.17 ± 2.69 | 0.030 * |
Execution time | 37.50 ± 8.80 | 41.80 ± 10.28 | 87.88 ± 50.74 | 0.002 ** |
2.3. Text reading | ||||
Correct answers | 129.41 ± 3.43 | 118.00 ± 9.84 | 121.29 ± 5.49 | 0.244 |
Execution time | 104.77 ± 29.00 | 122.73 ± 37.23 | 252.29 ± 183.74 | 0.012 * |
2.4. Dictation filling in a missing compound word | ||||
Correct sentences | 21.00 ± 5.85 | 14.46 ± 3.79 | 7.41 ± 5.22 | 0.0001 *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dushanova, J.; Lalova, Y.; Kalonkina, A.; Tsokov, S. Speech–Brain Frequency Entrainment of Dyslexia with and without Phonological Deficits. Brain Sci. 2020, 10, 920. https://doi.org/10.3390/brainsci10120920
Dushanova J, Lalova Y, Kalonkina A, Tsokov S. Speech–Brain Frequency Entrainment of Dyslexia with and without Phonological Deficits. Brain Sciences. 2020; 10(12):920. https://doi.org/10.3390/brainsci10120920
Chicago/Turabian StyleDushanova, Juliana, Yordanka Lalova, Antoaneta Kalonkina, and Stefan Tsokov. 2020. "Speech–Brain Frequency Entrainment of Dyslexia with and without Phonological Deficits" Brain Sciences 10, no. 12: 920. https://doi.org/10.3390/brainsci10120920
APA StyleDushanova, J., Lalova, Y., Kalonkina, A., & Tsokov, S. (2020). Speech–Brain Frequency Entrainment of Dyslexia with and without Phonological Deficits. Brain Sciences, 10(12), 920. https://doi.org/10.3390/brainsci10120920