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Abstract: Human facial expressions are regarded as a vital indicator of one’s emotion and intention,
and even reveal the state of health and wellbeing. Emotional states have been associated with
information processing within and between subcortical and cortical areas of the brain, including the
amygdala and prefrontal cortex. In this study, we evaluated the relationship between spontaneous
human facial affective expressions and multi-modal brain activity measured via non-invasive and
wearable sensors: functional near-infrared spectroscopy (fNIRS) and electroencephalography (EEG)
signals. The affective states of twelve male participants detected via fNIRS, EEG, and spontaneous
facial expressions were investigated in response to both image-content stimuli and video-content
stimuli. We propose a method to jointly evaluate fNIRS and EEG signals for affective state detection
(emotional valence as positive or negative). Experimental results reveal a strong correlation between
spontaneous facial affective expressions and the perceived emotional valence. Moreover, the affective
states were estimated by the fNIRS, EEG, and fNIRS + EEG brain activity measurements. We show
that the proposed EEG + fNIRS hybrid method outperforms fNIRS-only and EEG-only approaches.
Our findings indicate that the dynamic (video-content based) stimuli triggers a larger affective
response than the static (image-content based) stimuli. These findings also suggest joint utilization of
facial expression and wearable neuroimaging, fNIRS, and EEG, for improved emotional analysis and
affective brain–computer interface applications.

Keywords: functional near-infrared spectroscopy (fNIRS); electroencephalography (EEG); facial
emotion recognition; brain–computer interface (BCI)

1. Introduction

The face has long been considered as a window with a view to our emotions [1]. Facial
expressions are regarded as one of the most natural and efficient cues enabling people to interact
and communicate with others in a nonverbal manner [2]. With the systematic analysis of facial
expression [3], the link between facial expression and emotion has been demonstrated empirically
in psychology literature [1,4]. Decades of behavioral research revealed that facial expression carries
information for a wide-range of phenomena, from psychopathology to consumer preferences [5–7].
The recent advances in electronics and computational technologies allow recording facial expressions
at increasingly high resolutions and advanced the analysis performance. A better understanding of
facial expressions can contribute to human-computer interactions and emerging practical applications
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that employ facial expression recognition, such as in education, entertainment, interactive games,
clinical diagnostics, and many others.

When and how to capture spontaneous facial expressions, as well as the methods to interpret
associated mental states and the underlying neurological mechanisms are growing research areas [8–10].
In this study, we extended our previous work [11] to investigate the relationship between spontaneous
human facial emotion analysis and brain signals generated due to reactions to both static (image)
and dynamic (video) stimuli. We jointly analyze the affective states by using multimodal brain
activity measurements. The facial emotion recognition method utilizes image processing and pattern
recognition and classification to decode the universal emotion types [12]. Namely, these primitive
emotions are anger, disgust, fear, happiness, sadness, and surprise [13]. Facial expressions can be
coded by the facial action coding system (FACS) which describes an expression through the action units
(AU) of individual muscles [14]. Although facial expression descriptions may be precise, automatic
recognition of the emotions behind specific facial expressions from images remains a challenge without
the availability of context information [10]. Some existing image classification methods have achieved
high recognition rates for facial emotions based on benchmarked databases containing a variety of
posed facial emotions [15,16]. However, these datasets are built from images of subjects performing
exaggerated expressions that are quite different than spontaneous and natural presentations [17].

The neural mechanisms of emotion processing have been a fundamental research area in cognitive
neuroscience and psychiatry in part due to clinical applications relating to mood disorders [18,19].
Researchers have shown that neurophysiological changes are induced by non-consciously perceived
emotional stimuli [20]. In particular, prefrontal cortex (PFC) has been identified as an important
region that facilitates emotion regulation and, as a result, functional neuroimaging of PFC has been
used to investigate neural correlates of emotion processing [21–25]. Findings from these studies
have suggested that monitoring PFC activity using non-invasive neuroimaging approaches, including
functional near-infrared spectroscopy (fNIRS) [26] and electroencephalography (EEG) [27], presents an
opportunity for automatic emotion recognition. These tools enable measuring the brain activity in
natural everyday settings with minimal restrictions on participants during measurement. Hence, they
are ideal tools for the Neuroergonomics approach [28–30] that is focusing on studying the brain with
real/realistic settings as opposed to artificial lab settings. Findings from these tools can be used for
mapping the brain function as well as decoding mental states.

fNIRS is a non-invasive and portable neuroimaging method that can quantify the changes of
cerebral oxygenated and deoxygenated hemoglobin concentrations using near-infrared light attenuation.
fNIRS measures cortical hemodynamic response similarly to functional magnetic resonance imaging
(fMRI), but without limitations and restrictions on the subject such as staying in a supine position
within a confined space or exposure to loud noises [31]. As a portable and cost-effective functional
neuroimaging modality, fNIRS is uniquely suitable to study cognition and emotion processing-related
brain activities due to relatively high spatial resolution and a practical sensory setup [22,31–34].
EEG is a non-invasive, portable, and widely adopted neuroimaging technique used to detect brain
electrophysiological patterns. It measures electrical potentials through electrodes placed on the scalp.
Due to its high temporal resolution, EEG is an ideal candidate for monitoring event-related brain
dynamics. Furthermore, EEG has been widely used to investigate the brain signals implicated in
emotion processing [35,36]. It has been reported that asymmetric brain activity in frontal region is a
key biomarker observed for emotional stimuli using EEG, fNIRS and fMRI [37–40]. Davidson et al.
proposed that activity differences between the left and right PFC hemisphere as acquired by EEG were
associated with the processing of positive and negative affects [41]. According to this view of frontal
asymmetry, the left prefrontal cortex is thought to be associated with positive affect, and the right
prefrontal cortex activity is related to negative affect [42].

The measurement of neural correlates of cognitive and affective processes using concurrent
EEG and fNIRS, multimodal functional neuroimaging, has seen growing interest [43–46]. As fNIRS
and EEG measure complementary aspects of brain activity (hemodynamic and electrophysiological,
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respectively), a hybrid brain data incorporates more information and enabling higher mental decoding
accuracy [43] confirming earlier findings [47]. Specifically, in [43] we showed that body physiological
measures (heart rate and breathing) did not contribute any new information to fNIRS + EEG based
classification of cognitive workload. Another recent study reported in [48] utilized fNIRS and EEG as
well as with autonomic nervous system measures, including skin conductance responses and heart rate,
for emotion analysis. Authors reported strong effects observed in fNIRS and EEG when comparing
positive and negative valence. And, they confirmed prefrontal lateralization for valence. Finally, heart
rate didn’t show any effect, but skin conductance response demonstrated a difference although no
comparison was done if this adds to EEG or fNIRS. In a more recent study, authors used prefrontal
cortex based fNIRS signals recording during emotional video clips to recognize different positive
emotions [49]. In this study, we investigated spontaneous facial affective expressions and brain activity
simultaneously recorded using both fNIRS and EEG modalities for affective state estimation. The block
diagram of the system is displayed in Figure 1.
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Figure 1. Framework of assessing the spontaneous affective status in brain through comparing brain
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Vector Machine; EEG: electroencephalography.

This paper highlights the benefits of multimodal wearable neuroimaging using ultra-portable
battery-operated and wireless sensors that allows for the untethered measurement of participants,
ad potentially can be used in everyday settings. The major contributions of the paper are summarized
as follows:

a. To the best of our knowledge, this is the first attempt to explore the relationship between
spontaneous human facial affective states and relevant brain activity by simultaneously using
fNIRS, EEG, and facial expressions registered in captured video.
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b. The spontaneous facial affective expressions recorded by a video camera are demonstrated
to be in line with the affective states coded by brain activities. This is consistent with
Neuroergonomics [30] and mobile brain/body imaging approaches [50].

c. The experimental results show that the proposed multimodal technique outperforms methods
using a subset of these signal types for the same task.

The remainder of the paper is organized as follows. Section 2 details the approach and methods
as well as the experimental design used in the study. Section 3 reviews analytical details and presents
the results. Then, the discussion and concluding remarks are given in the last section of the paper.

2. Materials and Methods

2.1. Participants

Twelve male participants (age: µ = 27.58, σ = 4.81) volunteered for the study. Each participant
gave written informed consent prior to participation in this study. We have opted to recruit only male
participants in this study in order to eliminate the confounding factor of menstrual cycle phases’ impact
on emotion processing in female volunteers [51–54]. Participants all self-identified as right-handed
and self-reported to have no history of mental illnesses or drug abuse, and were compensated for their
time. The study was conducted in accordance with the Declaration of Helsinki and approved by the
Institutional Review Board of the New Jersey Institute of Technology.

2.2. Experimental Protocol

Each participant was assigned to complete two tasks according to the experimental protocol
shown in Figure 2. In the first task, each participant was asked to watch twenty videos with various
emotional content. Each video lasted 10–17 s such that the participant can recognize the type of
affect. After watching a video, the participant answered two simple questions (e.g., Were you able
to watch the video carefully? What were you seeing?) in order to verify he understood the video
content. In addition, each participant was asked to evaluate the type of affect (positive or negative)
and the degree of the affect using a ten-point Likert scale (ranging from 1 = extremely negative to
10 = extremely positive) in response to a set of affective states. It is worth noting that the participant
did not know the video contents in advance. The advantage of this experimental procedure is that
each participant naturally gives the final ratings in the absence of prior knowledge. In the second task,
each participant was asked to observe twenty emotional images from Nencki Affective Picture System
(NAPS) [55]. Each image was displayed for five seconds. Analogously, the participant answered two
simple questions about the image content after observing the image.
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Figure 2. Experimental protocol.

Each participant was instructed in the experimental procedure in detail before performing the
experiment. Participants were asked to sit on a comfortable chair facing a computer screen in a quiet
room. Both fNIRS and EEG sensors were placed on the participant’s forehead and scalp, respectively.
There was no contact between these two hardware pieces. During the experiment, participants facial
reactions to the stimuli were video recorded by a webcam. Each participant was required to minimize
his head movements during the experiment in order to avoid signal artifacts from head movement.
The experimental environment is shown in Figure 3. The study has been approved by the Institutional
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Review Broad of New Jersey Institute of Technology. Before the experiment, each participant was
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2.3. Brain Data Acquisition

The neuroimaging systems used in this study consisted of two commercial products: a wireless
fNIRS Model 1100W system (www.fnirdevices.com) and an Emotiv EPOC headset (www.emotiv.com).
A compact and battery-operated wireless mini-fNIRS system was used to monitor the prefrontal cortex
of the participant as shown in Figure 4. The system measures cortical oxygenation changes during
the task and is composed of three modules: a sensor pad that holds near-infrared light sources and
detectors to enable a fast placement of 4 optodes (2 light wavelengths channels and an ambient channel
per optode), control box hardware for sampling all channels at 4 Hz, and a computer that runs COBI
Studio software [56] that controls data collection and receives the data wirelessly from the hardware.
More information about the device and data collection procedures was reported in [31].
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wireless box containing battery, and sensor pad [31].

The Emotiv EPOC headset shown in Figure 5 acquired 128 Hz EEG signals by measuring electrical
differences on the scalp, and then transmitted the signals wirelessly to a Windows PC. The system
measures the electrical potentials of the scalp caused by neurons firing. The cap has 14 electrodes
located over 10–20 system positions AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8, and AF4

www.fnirdevices.com
www.emotiv.com
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using 2 reference electrodes. The saline-soaked felt pad is used to reduce electrical resistance between
the skin and the electrodes. Low electrode impedances are achieved using saline solution as indicated
by software.Brain Sci. 2020, 10, x FOR PEER REVIEW 6 of 20 
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2.4. Automatic Facial Emotion Recognition System

The automatic facial emotion recognition system proposed in [58] is used to identify the
spontaneous facial affective states. The system not only outperforms the state-of-the-art based
on the posed expressions but also provides satisfactory performance on spontaneous facial emotions.
The system has been used to read Chief Executive Officers’ (CEO) facial expressions to forecast firm
performance by only using recorded video signal [59]. It utilizes Regional Hidden Markov Model
(RHMM) as its classifier to train the states of three face regions: the eyebrows, eyes, and mouth, as
tabulated in Table 1. Since the biological information that describes a facial expression is mainly
registered in the movement of these three regions as sensed and quantified in frames of a video
sequence, it is natural to classify the states of each facial region rather than modeling the entire face.
Note from the table that the mouth region is slightly different from the eyebrows and eye regions.
In addition to the mouth itself, the lips corners are also important features. Considering a practical
application, this system can classify frames as they come into analysis. To describe the states of face
regions, 41 facial feature points are identified on each frame of video, as displayed in Figure 6. They are
comprised of 10 feature points on the eyebrows region, 12 points on the eyelids, 8 points on the mouth,
10 points on the corners of the lips, and one anchor feature point on the nose. The 2D coordinates of
facial feature points in various face regions are extracted to form corresponding observation sequences
for classification. As an example, Figure 7 displays the recognition rates for emotion types in each
frame as a function of frame index (time) in a video sequence.

Table 1. States of three face regions.

Face Regions Observable States

Eyebrows raise, fall, neutral

Eyes open, close, neutral

Mouth
Mouth open, close, neutral

Lips corners up, down, pull, pucker, neutral
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The system serves the needs of this study for three main reasons. First, the objective and
measurable response to a person’s emotions by the system is perceived as more natural, persuasive,
and trustworthy. This allows us to plausibly analyze the measured data. Second, the system can
recognize the various affective states of interest. Its last and most important advantage is that the
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system automatically analyzes and measures the live facial video data in a manner that is intuitive and
useful for different applications. It helps the user to take actions based on this analysis.

2.5. Stimuli Evaluation

The twenty emotional images used in the trials were obtained from the Nencki Affective Picture
System (NAPS) [55]. It is a standardized, wide-range, high-quality, realistic picture database that is
widely used for brain imaging studies. We selected ten positive-content images and ten negative-content
ones according to the given valence values [11]. Each image is classified explicitly with the attached
emotion type if over 50% of all participants express the same facial affect. Otherwise, it is classified as
an ambiguous image that is discarded [58]. Eventually, all images are classified explicitly. Therefore,
all of them are utilized for the experiments.

For the video-content part of the experiment, we selected twenty videos in English from
Youtube.com. They were evenly selected based on the contents (positive and negative) and length
(10–17 s). The positive content contains the funny or happy clips, e.g., dogs mimic human’s behaviors
like doing exercises, sitting and eating food, pushing the baby stroller, etc. The negative clips show
sadness, anger, or disgust, e.g., the people living in poverty, wars, memorial service, etc. The selected
videos were independently watched and evaluated by all twelve participants. To make sure the
video contents are consistent with participants’ spontaneous affective states, we did the similar initial
evaluation as an image assessment to classify all video clips as explicit or ambiguous video. Each
video is classified explicitly with the attached emotion type if over 50% of all participants express the
same facial affect. Otherwise, it is classified as an ambiguous video that is discarded. Eventually, all
selected video clips were classified explicitly and used in the following experiments.

2.6. Data Pre-Processing for Brain Activity and Facial Expression

EEG signals were passed through a low-pass filter with 30 Hz cutoff frequency. ICA analysis was
performed in EEGLAB, an open-source toolbox for analysis of single-trial EEG dynamics [60]. It was
used to detect and remove the artifacts in the raw EEG signals following the approach described in [61].
The average of the 5-s baseline brain signal before each trial was subtracted from the brain response
data for baseline adjustment. To capture the affective states (positive or negative) in different brain
regions, four frequency bands as Power Spectral Density (PSD) features were extracted from EEG
signals to identify brain patterns. The correlation between EEG spectral density in these frequency
bands and the spontaneous affective state were compared via 14 electrodes. Additional information
about correlations is included in the Appendix A.

A low-pass filter with 0.1 Hz cutoff frequency was used to achieve noise reduction in fNIRS
signals [26]. Motion artifacts were eliminated prior to extracting the features from fNIRS signals by
applying a fast Independent Component Analysis (ICA) [62]. The independent component was selected
through modeling the hemodynamic response. The modeled hemodynamic response represented the
expected hemodynamic response to the given stimulus calculated by convolving the stimulus function
and a canonical hemodynamic response function (HRF). The HRF [63] consists of a linear combination
of two Gamma functions as

h(t) = A(
tα1−1β1

α1e−β1t

Γ(α1)
− c

tα2−1β2
α2e−β2t

Γ(α2)

)
(1)

where A controls the amplitude, α and β control the shape and scale respectively, and c determines the
ratio of the response to undershoot. A t-test was used to select the independent component associated
with the hemodynamic response [64]. It is expected that the independent component with the highest
t-value is associated with the hemodynamic response to a given stimulus.

Inference of participants’ facial affective expressions is based on facial emotion recognition. Facial
affective expressions can be influenced by various factors including age, gender, race, time of day, and
the general health of the participant. To control for these factors, we calibrated our measurements
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over the first 5 s of facial expressions. During this 5 s calibration period, we computed the mean
measures of all emotion states. We then subtracted these mean measures from the remainder of facial
expressions for baseline adjustment [59]. The emotion type of a facial video clip v was recognized
by calculating the largest probability among Anger, Disgust, Fear, Happiness, Neutral, Sadness, and
Surprise expressed as

Pv
Emotion = max(Pi), v = 1, . . . , Nvideo, i = 1, . . . 7 (2)

where Nvideo is the total number of videos clips, each of which contains the participant’s facial response
to the stimulus. Pi is the probability of an emotion type that is obtained by summing the overall
probabilities of this emotion type in each frame of a video clip.

Happiness is coded as a positive affect and Anger, Disgust, Fear, and Sadness are regarded as
a negative affect. Since Surprise can be revealed as a result of positive or negative affect, it was not
used in this experiment. Neutral emotion is neither positive or negative affect, so it was not used in
the experiment, either. The ratings of both the positive and the negative affects for a video clip are
separately calculated by the system as

Pv
A f f ect = max

(
Ppos, Pneg

)
, v = 1, . . . , Nvideo,

subject to


Ppos=

PHappiness

PHappiness+max(PAnger, PDisgust, PFear, PSadness)

Pneg =
max(PAnger, PDisgust, PFear, PSadness)

PHappiness+max(PAnger, PDisgust, PFear, PSadness)

(3)

where Pv
A f f ect is the recognized affective state of the corresponding video clip. Figure 8 shows the

spontaneous facial affective states of a participant that are detected by system when he is watching
videos or images during experiments.

Brain Sci. 2020, 10, x FOR PEER REVIEW 9 of 20 

Happiness is coded as a positive affect and Anger, Disgust, Fear, and Sadness are regarded as a 
negative affect. Since Surprise can be revealed as a result of positive or negative affect, it was not used 
in this experiment. Neutral emotion is neither positive or negative affect, so it was not used in the 
experiment, either. The ratings of both the positive and the negative affects for a video clip are 
separately calculated by the system as 

௩ܲ
௧  = max ( ܲ௦, ܲ), v = 1, …, ௩ܰௗ , 

subject to ൞
ܲ௦ =  ಹೌೞೞ

ಹೌೞೞ ା୫ୟ୶(ಲೝ,   ವೞೠೞ,   ಷೌೝ,   ೄೌೞೞ) 

ܲ =  
୫ୟ୶ (ಲೝ, ವೞೠೞ, ಷೌೝ, ೄೌೞೞ)

ಹೌೞೞ ା୫ୟ୶(ಲೝ,   ವೞೠೞ,   ಷೌೝ,   ೄೌೞೞ)

 (3) 

where ௩ܲ
௧  is the recognized affective state of the corresponding video clip. Figure 8 shows the 

spontaneous facial affective states of a participant that are detected by system when he is watching 
videos or images during experiments. 

 
Figure 8. Recognition rates of emotion types as a function of frame index (time) in a video sequence. 

2.7. Feature Extraction 

The recorded data of raw fNIRS light intensity at two wavelengths (730 nm and 850 nm) is 
converted to the relative changes in hemodynamic responses in terms of oxy-hemoglobin (Hbo) and 
deoxy-hemoglobin (Hbr) using the modified Beer-Lambert Law [56]. Total hemoglobin concentration 
changes (Hbt), the sum of Hbo and Hbr and an estimate of the total blood volume, and the difference 
of Hbo and Hbr, the estimate of oxygenation change, were also calculated for each optode. We 
calculated the mean, median, standard deviation, maximum, minimum, and the range of maximum 
and minimum of four hemodynamic response signals as features, 4 × 4 × 6 = 96 fNIRS features for 
each trial. 

The spectral power of EEG signals in different bands has been used for emotion analysis [65]. 
The logarithms of the power spectral density (PSD) for theta (4Hz < f ≤ 8 Hz), slow alpha (8Hz < f ≤ 
10 Hz), alpha (8 Hz < f ≤ 12 Hz), and beta (12 Hz < f ≤ 30 Hz) bands are extracted from all 14 electrodes 
as features. In addition, the difference between the spectral power of all possible symmetrical pairs 
on the right and left hemisphere is extracted to measure the possible asymmetry in the brain activity 
due to the valance of emotional stimuli [41]. The asymmetry features were extracted from four 
symmetric pairs over four bands, AF3–AF4, F7–F8, F3–F4, and FC5–FC6. The total number of EEG 
features of a trial for 14 electrodes is 14 × 4 + 4 × 4 = 72. 

3. Results 

3.1. Preliminary Correlation Analysis 

Figure 8. Recognition rates of emotion types as a function of frame index (time) in a video sequence.

2.7. Feature Extraction

The recorded data of raw fNIRS light intensity at two wavelengths (730 nm and 850 nm) is
converted to the relative changes in hemodynamic responses in terms of oxy-hemoglobin (Hbo) and
deoxy-hemoglobin (Hbr) using the modified Beer-Lambert Law [56]. Total hemoglobin concentration
changes (Hbt), the sum of Hbo and Hbr and an estimate of the total blood volume, and the difference of
Hbo and Hbr, the estimate of oxygenation change, were also calculated for each optode. We calculated
the mean, median, standard deviation, maximum, minimum, and the range of maximum and minimum
of four hemodynamic response signals as features, 4 × 4 × 6 = 96 fNIRS features for each trial.
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The spectral power of EEG signals in different bands has been used for emotion analysis [65]. The
logarithms of the power spectral density (PSD) for theta (4 Hz < f≤ 8 Hz), slow alpha (8 Hz < f ≤ 10 Hz),
alpha (8 Hz < f ≤ 12 Hz), and beta (12 Hz < f ≤ 30 Hz) bands are extracted from all 14 electrodes as
features. In addition, the difference between the spectral power of all possible symmetrical pairs on
the right and left hemisphere is extracted to measure the possible asymmetry in the brain activity due
to the valance of emotional stimuli [41]. The asymmetry features were extracted from four symmetric
pairs over four bands, AF3–AF4, F7–F8, F3–F4, and FC5–FC6. The total number of EEG features of a
trial for 14 electrodes is 14 × 4 + 4 × 4 = 72.

3. Results

3.1. Preliminary Correlation Analysis

In this study, the correlation was calculated using the ground truth for all video and image trials
(the given affective labels on image stimuli and participants’ self-assessments on video stimuli) and the
facial affective states measured by the automatic facial emotion recognition system. The self-assessment
has been widely used to measure mental states in the literature [7,58]. The result in Figure 9 shows that
all participants’ face affective states show a positive correlation with those reported by participants
(p < 0.01). It complies with our hypothesis that the facial affective expression may reflect the affective
state in the mind. However, it is likely that the self-assessment provided by the participant is derived
from the participants’ recall or from second thoughts. In this section, we examine the relationship
between the facial affective expressions and mental states. In order to support the hypothesis, we build
the model for further analysis as detailed in this section.
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Moreover, we looked at the correlation of brain activities with the affective states. Please see
Appendix A Tables A1 and A2. The findings indicate that lower frequency band signals are more
highly correlated with positive affective states delivered by participants who are triggered by both
video and images. The correlation from the frontal head is slightly higher than that in posterior of the
head. The findings are in line with the previous work [66].

3.2. Affective State Detection from Brain Activity

There were forty trials (twenty images and twenty videos as mentioned in the section of Methods)
for each participant. Polynomial Support Vector Machine (SVM) was used for classification. fNIRS and
EEG features were concatenated to form a larger feature vector before feeding them into the model. For
comparison, we also applied the univariate modality of either fNIRS or EEG features for recognition of
the affective state. We applied a leave-one-out approach for training and testing. That is, the features
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of nineteen trials over all participants were extracted to train the model. The remaining one trial of
each participant was used for testing. The performance of the experiment was validated through
twenty-times iterations.

The method jointly using fNIRS and EEG features shows 0.75 accuracy of recognition
(image-content stimuli), which outperforms the techniques where only one of them is utilized
(0.63 for EEG and 0.62 for fNIRS). The same finding is observed from the experiment using video-content
stimuli (0.8 for EEG + fNIRS, 0.72 for fNIRS, and 0.62 for EEG). The recognition performance for
joint use of fNIRS and EEG along with the cases where only one is used are displayed in Figures 10
and 11 for image and video content type stimuli, respectively. This observation is consistent for
almost all trials. In some trials, univariate modality of EEG or fNIRS shows higher performance. We
observed that some participants reflected strongly to the stimuli while some participants showed
higher affective tolerance to the same stimuli. This finding is consistent with our pilot study. The
proposed multi-modal method performs over 10% better than the single-modality methods for the
same stimuli. The average performances of these three methods are compared in Figures 12 and 13
for image-content and video-content stimuli, respectively. The standard deviation error bars show
the variability of the performance for all trials. The area of receiver operating characteristic (ROC)
curve for EEG + fNIRS reaches 0.77 for image-content trials and 0.80 for video-content trials. The ROC
curves in Figures 14 and 15 also show that the performance for joint use of fNIRS and EEG exceeds the
approach using only one of them. The standard error and 95% confidence intervals are calculated in
Tables 2 and 3. In addition, we found that the proposed method recognizes the affective response to
video-content stimuli more accurately than those caused by image-content stimuli. It is likely that the
dynamic (video) stimuli provide more contextual information than static (image) ones.
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employed for all image-content trials.

Table 2. Performance comparisons of the proposed method (EEG + fNIRS) and the ones where only
EEG or fNIRS employed for all image-content trials.

Model Observation ROC Area Standard Error 95% Confidence Interval

EEG+fNIRS 240 0.77 0.02 0.74–0.80
fNIRS 240 0.63 0.03 0.57–0.69
EEG 240 0.62 0.02 0.58–0.66
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Table 3. Performance comparison of the proposed method (EEG + fNIRS) and the ones where only
EEG or fNIRS employed for all video-content trials.

Model Observation ROC Area Standard Error 95% Confidence Interval

EEG+fNIRS 240 0.80 0.03 0.75–0.85
fNIRS 240 0.66 0.03 0.61–0.71
EEG 240 0.62 0.02 0.58–0.66
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3.3. Similarity of Spontaneous Facial Affective States and Affective States Coded by the Brain Activity

To assess the spontaneous affective states estimated through brain activity, first we evaluate the
reliability of the automatic facial emotion recognition system that is used to recognize the participants’
facial reaction to the given stimulus. In order to achieve this, we calculated the affect recognition
accuracy of the system by comparing the detected results with the given labels on image stimuli and
participants’ self-assessment on video stimuli. The affect recognition rate of the system for each trial are
tabulated in Tables 4 and 5 for image and video-content trials, respectively. Ti, i = 1, . . . , 20 represents
the ith trial. The overall accuracy of the system reaches 0.74 (σ = 0.10) for image-content stimuli and
0.80 (σ = 0.10) for video. The results are satisfactory and indicate that the system performs well to
detect a person’s spontaneous facial expressions.

Table 4. Affect recognition rate of system for each image-content Trial.

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

0.92 0.75 0.67 0.75 0.83 0.75 0.67 0.83 0.83 0.83

T11 T12 T13 T14 T15 T16 T17 T18 T19 T20

0.67 0.75 0.67 0.5 0.75 0.75 0.92 0.75 0.67 0.58
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Table 5. Affect recognition rate of system for each video-content Trial.

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

0.83 0.67 0.83 0.59 0.92 0.83 0.67 0.83 0.92 1

T11 T12 T13 T14 T15 T16 T17 T18 T19 T20

0.75 0.83 0.83 0.83 0.83 0.83 0.67 0.92 0.67 0.83

Next, we estimated the degree of the similarity of spontaneous affective states expressed on
the face and those coded by brain activity (EEG + fNIRS). Similarity scores were calculated by the
correlation of spontaneous facial affect recognized by the system and the affective states translated by
participants’ brain signals across video-content and image-content trial per participant, respectively.
The results in Tables 6 and 7 show that the affective states expressed on face is correlated to that
delivered through brain triggered by both video and image stimuli, which is significant at p < 0.05.
That is, the spontaneous facial affective states can reflect the true brain affective responses to the stimuli.

Table 6. Correlation of spontaneous facial affect and affect state translated by participants’ brain signals
triggered by image stimuli.

Participant 1 Participant 2 Participant 3 Participant 4 Participant 5 Participant 6

phi coefficient 0.58 0.45 0.50 0.54 0.49 0.47
p value 0.008 0.045 0.023 0.013 0.027 0.036

Participant 7 Participant 8 Participant 9 Participant 10 Participant 11 Participant 12

phi coefficient 0.81 0.64 0.61 0.74 0.68 0.68
p value 0.000 0.002 0.004 0.000 0.001 0.001

Table 7. Correlation of spontaneous facial affect and affect state translated by participants’ brain signals
triggered by video stimuli.

Participant 1 Participant 2 Participant 3 Participant 4 Participant 5 Participant 6

phi coefficient 0.47 0.70 0.59 0.51 0.49 0.52
p value 0.036 0.001 0.006 0.020 0.027 0.018

Participant 7 Participant 8 Participant 9 Participant 10 Participant 11 Participant 12

phi coefficient 0.81 0.58 0.52 0.55 0.50 0.68
p value 0.000 0.008 0.018 0.011 0.023 0.001

4. Discussion

This study provides new insights for the exploration and analysis of spontaneous facial
affective expression associated with simultaneous multimodal brain activity in the form of two
wearable and portable neuroimaging techniques—fNIRS and EEG—that measure hemodynamic and
electrophysiological changes, respectively. We have demonstrated that affective states can be estimated
from human spontaneous facial expressions and brain activity via wearable sensors. The experimental
results are founded on the premise that the participant has no knowledge of stimuli prior to the
experiment. The spontaneous facial expressions of participants can be triggered by emotional stimuli.
Moreover, specific neural activity changes are found due to the perception of the emotional stimuli. In
addition, we found that video-content stimuli more readily induce the participants’ affective states than
image-content stimuli. This can be explained as dynamic (video) stimulus provides more contextual
information than a static (image) one. Compared to the static (image) stimuli, dynamic (video) ones
trigger enhanced emotion delivered by brain activity as also shown in [67].

In this study, the findings were derived from the combined analysis of cortical hemodynamic
and electrophysiological signals. The neural activities were measured by two non-invasive, wearable
and complementary neuroimaging techniques, fNIRS and EEG. The complementary nature of fNIRS
and EEG has been reported in the literature with multimodality studies [43,47,68–70]. Particularly,
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both of them have received considerable attention on emotion inference and emotional mapping on
brain activities [21,41,71]. The proposed hybrid method for affective state detection jointly using fNIRS
and EEG signals outperforms techniques that employ only EEG or only fNIRS. The same results are
observed using both video or image-content types of stimuli. The method jointly using fNIRS and
EEG features shows 0.8 accuracy (video-content stimuli) and 0.75 accuracy (image-content stimuli)
which outperforms the techniques where only one of them is utilized. The results here confirm earlier
multimodal fNIRS + EEG studies and highlight the complementary information content in both signal
streams [47].

The video stream to measure facial reactions to different stimuli offers prompt, objective,
and accurate recognition performance in continuous time. The regional facial features are highlighted
since they convey significant information relevant to expressions. It is natural to classify the states of
each facial region rather than considering the holistic features of the entire face for recognition [72].
The experimental results support our hypothesis by showing a high correlation between recognized
facial affective expressions and the ground truth for all trials (the given labels on image stimuli and
participant’s self-assessment on video stimuli).

The study described here provides important albeit preliminary information about wearable and
ultra-portable neuroimaging sensors. It is important to highlight the fact that EPOC EEG electrodes
are sensitive to external interference and non-brain signal sources such as muscle activity. Long, thick
hair of participants could prevent electrodes from touching the scalp properly in order to collect
“clean” brain signals. The challenging nature of measuring EEG signals may cause an adverse effect
on our analysis of the relationship of facial activities and the affective states translated by their brain
signals. Moreover, the fNIRS measures of the PFC hemodynamic response were used based on earlier
studies [21]; however, monitoring of other brain areas could increase the overall classification accuracy.
Finally, some prior work has shown that men and women differ in the neural mechanisms underlying
their expression of specific emotions [73]. It is noted that all subjects involved in this study were male.
However, future work may extend this study and its findings to all sexes.

The video sequences and images used in this study display short duration content, although all
participants stated that they were able to understand all stimuli. However, it is of interest to address
how the participants react to the content stimuli with longer durations in future studies. The findings
in this study indicate that the spontaneous facial affective expressions are interrelated to the measured
brain activity. It is likely that facial reactions to the longer duration-content stimuli might differ in
frequency. The audience’s physiological responses to two-hour long movies were measured in [74]
and revealed significant variations in affective states throughout the media. The extension of this work
might benefit the specific applications that require the feedback of longer-duration content such as
online education and entertainment. Also, the accuracy score per subject must be interpreted with
caution. In a two class and ten testing trials per class to fit with experimental constraints, classification
performance should be higher than 70% to be statistically significant (p < 0.05) [75,76]. Considering
both image-content and video-content, average performance of classifier with EEG + fNIRS passed
this limit. Further improvements with preprocessing methods and/or machine learning methodologies
could improve and optimize the classifier performance.

5. Conclusions

To the best of our knowledge, this is the first attempt to detect affective states by jointly using fNIRS,
EEG, and capture of facial expressions. The study reveals a strong correlation between spontaneous
facial affective expressions and the affective states delivered by brain activities. The experimental results
show that the proposed EEG + fNIRS multimodal method outperforms fNIRS-only and EEG-only
approaches. The experimental results confirm the feasibility of the proposed method. In addition, the
results highlight the reliability of spontaneous facial expression and use of wearable neuroimaging as
promising methodologies to serve for various practical applications in the future. As the sensors used
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in the study allow untethered and mobile measurements, the approach demonstrated can be readily
adapted in the future for measurements in real-world settings.
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Appendix A

To illustrate the affective states (positive or negative) in different brain regions, four frequency
bands as Power Spectral Density (PSD) features shown in Tables A1 and A2 extracted from EEG signals
to identify brain patterns. The tables show the correlation between EEG spectral density in selected
frequency bands and the spontaneous affective state conveyed from participants via 14 electrodes. The
finding indicates that lower frequency band signals is more highly correlated with positive affective
state delivered by participants who are triggered by both video and image. The correlation from
frontal head is slightly higher than that in posterior of head. The findings are in line with the previous
work [66].

Table A1. Correlation between EEG PSD frequency bands and ground truth after triggered by image
contents where the significant correlation (p value ≤ 0.05) is indicated with *.

Anterior Posterior Anterior

AF3 F7 F3 FC5 T7 P7 O1 O2 P8 T8 FC6 F4 F8 AF4

Theta 0.72 0.62 0.61 0.57 0.81 0.48 0.69 0.59 0.53 0.48 0.56 0.68 0.61 0.46

Slow
Alpha 0.69 0.59 0.61 0.56 0.80 0.47 0.68 0.59 0.53 0.48 0.55 0.68 0.60 0.46

Alpha 0.11 * 0.10 0.55 0.48 0.67 0.38 0.51 0.56 0.51 0.42 0.53 0.66 0.58 0.45

Beta −0.32 −0.24 −0.15 −0.32 −0.19 −0.21 −0.30 0.11 * 0.25 −0.13 0.10 0.24 0.20 0.25

* The correlation with p value >0.05.

Table A2. Correlation between EEG PSD frequency bands and ground truth after triggered by video
contents where the significant correlation (p value ≤ 0.05) is indicated with *.

Anterior Posterior Anterior

AF3 F7 F3 FC5 T7 P7 O1 O2 P8 T8 FC6 F4 F8 AF4

Theta 0.61 0.58 0.74 0.38 0.62 0.46 0.54 0.47 0.46 0.56 0.47 0.56 0.51 0.47

Slow
Alpha 0.60 0.56 0.73 0.37 0.62 0.46 0.53 0.46 0.46 0.55 0.46 0.55 0.51 0.46

Alpha 0.50 0.19 0.64 0.33 0.54 0.41 0.43 0.36 0.44 0.50 0.16 * 0.47 0.46 0.41

Beta −0.21 * −0.22 −0.41 −0.08 * −0.30 −0.09 −0.29 −0.23 0.18 −0.05 −0.54 −0.19 −0.09 −0.15

* The correlation with p value >0.05.
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