Boosting Slow Oscillations during Sleep to Improve Memory Function in Elderly People: A Review of the Literature
Abstract
:1. Introduction
2. Sleep and Memory Consolidation
3. Sleep-Dependent Memory Consolidation in Older Adults
4. Current Approaches to Improve Memory Function in Elderly Population Enhancing Slow Oscillations during Sleep
4.1. Acoustic Stimulation
4.2. so-tDCS
5. Conclusions
6. Future Directions
Author Contributions
Funding
Conflicts of Interest
References
- Wilckens, K.A.; Ferrarelli, F.; Walker, M.P.; Buysse, D.J. Slow-wave activity enhancement to improve Cognition. Trends Neurosci. 2018, 41, 470–482. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Gruber, R. Can slow-wave sleep enhancement improve memory? A review of current approaches and cognitive outcomes. Yale J. Biol. Med. 2019, 92, 63–80. [Google Scholar] [PubMed]
- Grimaldi, D.; Papalambros, N.A.; Zee, P.C.; Malkani, R.G. Neurostimulation techniques to enhance sleep and improve cognition in aging. Neurobiol. Dis. 2020, 104865. [Google Scholar] [CrossRef] [PubMed]
- Rasch, B.; Born, J. About sleep’s role in memory. Physiol. Rev. 2013, 93, 681–766. [Google Scholar] [CrossRef]
- Peigneux, P.; Fogel, S.; Smith, C. Memory processing in relation to sleep. In Principles and Practice of Sleep Medicine, 6th ed.; Kryger, M., Roth, T., Dement, B., Eds.; Elsevier: Philadelphia, PA, USA, 2017; pp. 229–238. [Google Scholar]
- Diekelmann, S.; Born, J. The memory function of sleep. Nat. Rev. Neurosci. 2010, 11, 114–126. [Google Scholar] [CrossRef]
- Klinzing, J.G.; Niethard, N.; Born, J. Mechanisms of systems memory consolidation during sleep. Nat. Neurosci. 2019, 22, 1598–1610. [Google Scholar] [CrossRef]
- Staresina, B.P.; Bergmann, T.O.; Bonnefond, M.; van der Meij, R.; Jensen, O.; Deuker, L.; Elger, C.E.; Axmacher, N.; Fell, J. Hierarchical nesting of slow oscillations, spindles and ripples in the human hippocampus during sleep. Nat. Neurosci. 2015, 18, 1679–1686. [Google Scholar] [CrossRef] [Green Version]
- Tononi, G.; Cirelli, C. Sleep function and synaptic homeostasis. Sleep Med. Rev. 2006, 10, 49–62. [Google Scholar] [CrossRef]
- Gui, W.J.; Li, H.J.; Guo, Y.H.; Peng, P.; Lei, X.; Yu, J. Age-related differences in sleep-based memory consolidation: A meta-analysis. Neuropsychologia 2017, 97, 46–55. [Google Scholar] [CrossRef]
- Ohayon, M.M.; Carskadon, M.A.; Guilleminault, C.; Vitiello, M.V. Meta-analysis of quantitative sleep parameters from childhood to old age in healthy individuals: Developing normative sleep values across the human lifespan. Sleep 2004, 27, 1255–1273. [Google Scholar] [CrossRef]
- Bliwise, D.L.; Scullin, M.K. Normal aging. In Principles and Practice of Sleep Medicine, 6th ed.; Kryger, M., Roth, T., Dement, B., Eds.; Elsevier: Philadelphia, PA, USA, 2017; pp. 25–38. [Google Scholar]
- Bliwise, D.L.; Foley, D.J.; Vitiello, M.V.; Ansari, F.P.; Ancoli-Israel, S.; Walsh, J.K. Nocturia and disturbed sleep in the elderly. Sleep Med. 2009, 10, 540–548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crowley, K. Sleep and sleep disorders in older adults. Neuropsychol. Rev. 2011, 21, 41–53. [Google Scholar] [CrossRef]
- Pace-Schott, E.F.; Spencer, R.M. Age-related changes in the cognitive function of sleep. Prog. Brain Res. 2011, 191, 75–89. [Google Scholar] [CrossRef] [PubMed]
- Humm, C. Sleep patterns in older people. Nurs. Times 2001, 97, 40–41. [Google Scholar]
- Bliwise, D.L. Sleep in normal aging and dementia. Sleep 1993, 16, 40–81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carrier, J.; Viens, I.; Poirier, G.; Robillard, R.; Lafortune, M.; Vandewalle, G.; Martin, N.; Barakat, M.; Paquet, J.; Filipini, D.; et al. Sleep slow wave changes during the middle years of life. Eur. J. Neurosci. 2011, 33, 758–766. [Google Scholar] [CrossRef]
- De Gennaro, L.; Ferrara, M. Sleep spindles: An overview. Sleep Med. Rev. 2003, 7, 423–440. [Google Scholar] [CrossRef]
- Fogel, S.; Martin, N.; Lafortune, M.; Barakat, M.; Debas, K.; Laventure, S.; Latreille, V.; Gagnon, J.F.; Doyon, J.; Carrier, J.; et al. NREM sleep oscillations and brain plasticity in aging. Front. Neurol. 2012, 3, 176. [Google Scholar] [CrossRef] [Green Version]
- Pace-Schott, E.F.; Spencer, R.M. Sleep-dependent memory consolidation in healthy aging and mild cognitive impairment. Curr. Top. Behav. Neurosci. 2015, 25, 307–330. [Google Scholar] [CrossRef]
- Backhaus, J.; Born, J.; Hoeckesfeld, R.; Fokuhl, S.; Hohagen, F.; Junghanns, K. Midlife decline in declarative memory consolidation is correlated with a decline in slow wave sleep. Learn. Mem. 2007, 14, 336–341. [Google Scholar] [CrossRef] [Green Version]
- Scullin, M.K. Sleep, memory, and aging: The link between slow-wave sleep and episodic memory changes from younger to older adults. Psychol. Aging 2013, 28, 105–114. [Google Scholar] [CrossRef] [PubMed]
- Baran, B.; Mantua, J.; Spencer, R.M. Age-related changes in the sleep-dependent reorganization of declarative memories. J. Cogn. Neurosci. 2016, 28, 792–802. [Google Scholar] [CrossRef] [PubMed]
- Harand, C.; Bertran, F.; Doidy, F.; Guenole, F.; Desgranges, B.; Eustache, F.; Rauchs, G. How aging affects sleep-dependent memory consolidation? Front. Neurol. 2012, 3, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Westerberg, C.E.; Florczak, S.M.; Weintraub, S.; Mesulam, M.M.; Marshall, L.; Zee, P.C.; Paller, K.A. Memory improvement via slow-oscillatory stimulation during sleep in older adults. Neurobiol. Aging 2015, 36, 2577–2586. [Google Scholar] [CrossRef] [Green Version]
- Westerberg, C.E.; Mander, B.A.; Florczak, S.M.; Weintraub, S.; Mesulam, M.M.; Zee, P.C.; Paller, K.A. Concurrent impairments in sleep and memory in amnestic mild cognitive impairment. J. Int. Neuropsychol. Soc. 2012, 18, 490–500. [Google Scholar] [CrossRef] [Green Version]
- Mander, B.A.; Rao, V.; Lu, B.; Saletin, J.M.; Lindquist, J.R.; Ancoli-Israel, S.; Jagust, W.; Walker, M.P. Prefrontal atrophy, disrupted NREM slow waves and impaired hippocampal-dependent memory in aging. Nat. Neurosci. 2013, 16, 357–364. [Google Scholar] [CrossRef]
- Murphy, M.; Riedner, B.A.; Huber, R.; Massimini, M.; Ferrarelli, F.; Tononi, G. Source modeling sleep slow waves. Proc. Natl. Acad. Sci. USA 2009, 106, 1608–1613. [Google Scholar] [CrossRef] [Green Version]
- Mander, B.A.; Winer, J.R.; Walker, M.P. Sleep and human aging. Neuron 2017, 94, 19–36. [Google Scholar] [CrossRef] [Green Version]
- Helfrich, R.F.; Mander, B.A.; Jagust, W.J.; Knight, R.T.; Walker, M.P. Old brains come uncoupled in sleep: Slow wave-spindle synchrony, brain atrophy, and forgetting. Neuron 2018, 97, 221–230.e4. [Google Scholar] [CrossRef] [Green Version]
- Bellesi, M.; Riedner, B.A.; Garcia-Molina, G.N.; Cirelli, C.; Tononi, G. Enhancement of sleep slow waves: Underlying mechanisms and practical consequences. Front. Syst. Neurosci. 2014, 8, 208. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Liu, D.; Li, X.; Ma, J.; Zhang, J.; Fang, J. Pink noise: Effect on complexity synchronization of brain activity and sleep consolidation. J. Theor. Biol. 2012, 306, 68–72. [Google Scholar] [CrossRef] [PubMed]
- Ngo, H.V.; Claussen, J.C.; Born, J.; Mölle, M. Induction of slow oscillations by rhythmic acoustic stimulation. J. Sleep Res. 2013, 22, 22–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simor, P.; Steinbach, E.; Nagy, T.; Gilson, M.; Farthouat, J.; Schmitz, R.; Gombos, F.; Ujma, P.P.; Pamula, M.; Bódizs, R.; et al. Lateralized rhythmic acoustic stimulation during daytime NREM sleep enhances slow waves. Sleep 2018, 41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cellini, N.; Mednick, S.C. Stimulating the sleeping brain: Current approaches to modulating memory-related sleep physiology. J. Neurosci. Methods 2019, 316, 125–136. [Google Scholar] [CrossRef]
- Ngo, H.V.; Martinetz, T.; Born, J.; Mölle, M. Auditory closed-loop stimulation of the sleep slow oscillation enhances memory. Neuron 2013, 78, 545–553. [Google Scholar] [CrossRef] [Green Version]
- Fattinger, S.; de Beukelaar, T.T.; Ruddy, K.L.; Volk, C.; Heyse, N.C.; Herbst, J.A.; Hahnloser, R.H.R.; Wenderoth, N.; Huber, R. Deep sleep maintains learning efficiency of the human brain. Nat. Commun. 2017, 8, 15405. [Google Scholar] [CrossRef] [Green Version]
- Cox, R.; Korjoukov, I.; de Boer, M.; Talamini, L.M. Sound asleep: Processing and retention of slow oscillation phase-targeted stimuli. PLoS ONE 2014, 9, e101567. [Google Scholar] [CrossRef] [Green Version]
- Santostasi, G.; Malkani, R.; Riedner, B.; Bellesi, M.; Tononi, G.; Paller, K.A.; Zee, P.C. Phase-locked loop for precisely timed acoustic stimulation during sleep. J. Neurosci. Methods 2016, 259, 101–114. [Google Scholar] [CrossRef] [Green Version]
- Papalambros, N.A.; Santostasi, G.; Malkani, R.G.; Braun, R.; Weintraub, S.; Paller, K.A.; Zee, P.C. Acoustic enhancement of sleep slow oscillations and concomitant memory improvement in older adults. Front. Hum. Neurosci. 2017, 11, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Marshall, L.; Mölle, M.; Hallschmid, M.; Born, J. Transcranial direct current stimulation during sleep improves declarative memory. J. Neurosci. 2004, 24, 9985–9992. [Google Scholar] [CrossRef] [Green Version]
- Papalambros, N.A.; Weintraub, S.; Chen, T.; Grimaldi, D.; Santostasi, G.; Paller, K.A.; Zee, P.C.; Malkani, R.G. Acoustic enhancement of sleep slow oscillations in mild cognitive impairment. Ann. Clin. Transl. Neurol. 2019, 6, 1191–1201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Busse, A.; Angermeyer, M.C.; Riedel-Heller, S.G. Progression of mild cognitive impairment to dementia: A challenge to current thinking. Br. J. Psychiatry 2006, 189, 399–404. [Google Scholar] [CrossRef]
- Hita-Yañez, E.; Atienza, M.; Gil-Neciga, E.; Cantero, J.L. Disturbed sleep patterns in elders with mild cognitive impairment: The role of memory decline and ApoE ε4 genotype. Curr. Alzheimer Res. 2012, 9, 290–297. [Google Scholar] [CrossRef] [PubMed]
- Hita-Yañez, E.; Atienza, M.; Cantero, J.L. Polysomnographic and subjective sleep markers of mild cognitive impairment. Sleep 2013, 36, 1327–1334. [Google Scholar] [CrossRef]
- Gorgoni, M.; Lauri, G.; Truglia, I.; Cordone, S.; Sarasso, S.; Scarpelli, S.; Mangiaruga, A.; D’Atri, A.; Tempesta, D.; Ferrara, M.; et al. Parietal fast sleep spindle density decrease in Alzheimer’s disease and amnesic mild cognitive impairment. Neural Plast. 2016, 2016, 8376108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weintraub, S.; Dikmen, S.S.; Heaton, R.K.; Tulsky, D.S.; Zelazo, P.D.; Slotkin, J.; Carlozzi, N.E.; Bauer, P.J.; Wallner-Allen, K.; Fox, N.; et al. The cognition battery of the NIH Toolbox for assessment of neurological and behavioral function: Validation in an adult sample. J. Int. Neuropsychol. Soc. 2014, 20, 567–578. [Google Scholar] [CrossRef] [Green Version]
- Schneider, J.; Lewis, P.A.; Koester, D.; Born, J.; Ngo, H.V. Susceptibility to auditory closed-loop stimulation of sleep slow oscillations changes with age. BioRxiv 2019. [Google Scholar] [CrossRef] [Green Version]
- Iber, C.; Ancoli-Israel, S.; Chesson, A.L.; Quan, S.F. The AASM Manual for the Scoring of Sleep and Associated Events: Rules Terminology and Technical Specifications, 1st ed.; American Academy of Sleep Medicine: Westchester, IL, USA, 2007. [Google Scholar]
- Marshall, L.; Helgadottir, H.; Molle, M.; Born, J. Boosting slow oscillations during sleep potentiates memory. Nature 2006, 444, 610–613. [Google Scholar] [CrossRef]
- Göder, R.; Baier, P.C.; Beith, B.; Baecker, C.; Seeck-Hirschner, M.; Junghanns, K.; Marshall, L. Effects of transcranial direct current stimulation during sleep on memory performance in patients with schizophrenia. Schizophr. Res. 2013, 144, 153–154. [Google Scholar] [CrossRef]
- Antonenko, D.; Diekelmann, S.; Olsen, C.; Born, J.; Mölle, M. Napping to renew learning capacity: Enhanced encoding after stimulation of sleep slow oscillations. Eur. J. Neurosci. 2013, 37, 1142–1151. [Google Scholar] [CrossRef]
- Barham, M.P.; Enticott, P.G.; Conduit, R.; Lum, J.A. Transcranial electrical stimulation during sleep enhances declarative (but not procedural) memory consolidation: Evidence from a meta-analysis. Neurosci. Biobehav. 2016, 63, 65–77. [Google Scholar] [CrossRef] [PubMed]
- Marshall, L.; Kirov, R.; Brade, J.; Mölle, M.; Born, J. Transcranial electrical currents to probe EEG brain rhythms and memory consolidation during sleep in humans. PLoS ONE 2011, 6, e16905. [Google Scholar] [CrossRef] [PubMed]
- Eggert, T.; Dorn, H.; Sauter, C.; Nitsche, M.A.; Bajbouj, M.; Danker-Hopfe, H. No effects of slow oscillatory transcranial direct current stimulation (tDCS) on sleep-dependent memory consolidation in healthy elderly subjects. Brain Stimul. 2013, 6, 938–945. [Google Scholar] [CrossRef] [PubMed]
- Ladenbauer, J.; Külzow, N.; Passmann, S.; Antonenko, D.; Grittner, U.; Tamm, S.; Flöel, A. Brain stimulation during an afternoon nap boosts slow oscillatory activity and memory consolidation in older adults. Neuroimage 2016, 142, 311–323. [Google Scholar] [CrossRef] [PubMed]
- Ladenbauer, J.; Ladenbauer, J.; Külzow, N.; de Boor, R.; Avramova, E.; Grittner, U.; Flöel, A. Promoting sleep oscillations and their functional coupling by transcranial stimulation enhances memory consolidation in mild cognitive impairment. J. Neurosci. 2017, 37, 7111–7124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paßmann, S.; Külzow, N.; Ladenbauer, J.; Antonenko, D.; Grittner, U.; Tamm, S.; Flöel, A. Boosting slow oscillatory activity using tDCS during early nocturnal slow wave sleep does not improve memory consolidation in healthy older adults. Brain Stimul. 2016, 9, 730–739. [Google Scholar] [CrossRef]
- Drosopoulos, S.; Schulze, C.; Fischer, S.; Born, J. Sleep’s function in the spontaneous recovery and consolidation of memories. J. Exp. Psychol. Gen. 2007, 136, 169–183. [Google Scholar] [CrossRef]
- Barbeau, E.; Didic, M.; Tramoni, E.; Felician, O.; Joubert, S.; Sontheimer, A.; Ceccaldi, M.; Poncet, M. Evaluation of visual recognition memory in MCI patients. Neurology 2004, 62, 1317–1322. [Google Scholar] [CrossRef]
- Wolk, D.A.; Signoff, E.D.; Dekosky, S.T. Recollection and familiarity in amnestic mild cognitive impairment: A global decline in recognition memory. Neuropsychologia 2008, 46, 1965–1978. [Google Scholar] [CrossRef] [Green Version]
- Bennett, I.J.; Golob, E.J.; Parker, E.S.; Starr, A. Memory evaluation in mild cognitive impairment using recall and recognition tests. J. Clin. Exp. Neuropsychol. 2006, 28, 1408–1422. [Google Scholar] [CrossRef] [Green Version]
- Navarrete, M.; Schneider, J.; Ngo, H.V.; Valderrama, M.; Casson, A.J.; Lewis, P.A. Examining the optimal timing for closed loop auditory stimulation of slow wave sleep in young and older adults. Sleep 2019, zsz315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kirov, R.; Weiss, C.; Siebner, H.R.; Born, J.; Marshall, L. Slow oscillation electrical brain stimulation during waking promotes EEG theta activity. Proc. Natl. Acad. Sci. USA 2009, 106, 15460–15465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gigli, G.L.; Placidi, F.; Diomedi, M.; Maschio, M.; Silvestri, G.; Scalise, A.; Marciani, M.G. Sleep in healthy elderly subjects: A 24-hour ambulatory polysomnographic study. Int. J. Neurosci. 1996, 85, 263–271. [Google Scholar] [CrossRef] [PubMed]
- Xie, L.; Kang, H.; Xu, Q.; Chen, M.J.; Liao, Y.; Thiyagarajan, M.; O’Donnell, J.; Christensen, D.J.; Nicholson, C.; Iliff, J.J.; et al. Sleep drives metabolite clearance from the adult brain. Science 2013, 342, 373–377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hardy, J.; Selkoe, D.J. The amyloid hypothesis of Alzheimer’s disease: Progress and problems on the road to therapeutics. Science 2002, 297, 353–356. [Google Scholar] [CrossRef] [Green Version]
- Mander, B.A.; Winer, J.R.; Jagust, W.J.; Walker, M.P. Sleep: A novel mechanistic pathway, biomarker, and treatment target in the pathology of Alzheimer’s Disease? Trends Neurosci. 2016, 39, 552–566. [Google Scholar] [CrossRef] [Green Version]
- Ju, Y.S.; Ooms, S.J.; Sutphen, C.; Macauley, S.L.; Zangrilli, M.A.; Jerome, G.; Fagan, A.M.; Mignot, E.; Zempel, J.M.; Claassen, J.A.H.R.; et al. Slow wave sleep disruption increases cerebrospinal fluid amyloid-β levels. Brain 2017, 140, 2104–2111. [Google Scholar] [CrossRef]
- Cordone, S.; Annarumma, L.; Rossini, P.M.; De Gennaro, L. Sleep and β-amyloid deposition in alzheimer disease: Insights on mechanisms and possible innovative treatments. Front. Pharmacol. 2019, 10, 695. [Google Scholar] [CrossRef] [Green Version]
- Debellemaniere, E.; Chambon, S.; Pinaud, C.; Thorey, V.; Dehaene, D.; Léger, D.; Chennaoui, M.; Arnal, P.J.; Galtier, M.N. Performance of an ambulatory dry-EEG device for auditory closed-loop stimulation of sleep slow oscillations in the home environment. Front. Hum. Neurosci. 2018, 12, 88. [Google Scholar] [CrossRef]
- Garcia-Molina, G.; Tsoneva, T.; Jasko, J.; Steele, B.; Aquino, A.; Baher, K.; Pastoor, S.; Pfundtner, S.; Ostrowski, L.; Miller, B.; et al. Closed-loop system to enhance slow-wave activity. J. Neural. Eng. 2018, 15, 066018. [Google Scholar] [CrossRef]
- Diep, C.; Ftouni, S.; Manousakis, J.E.; Nicholas, C.L.; Drummond, S.P.A.; Anderson, C. Acoustic slow wave sleep enhancement via a novel, automated device improves executive function in middle-aged men. Sleep 2020, 43. [Google Scholar] [CrossRef] [PubMed]
- Bayer, L.; Constantinescu, I.; Perrig, S.; Vienne, J.; Vidal, P.P.; Mühlethaler, M.; Schwartz, S. Rocking synchronizes brain waves during a short nap. Curr. Biol. 2011, 21, R461–R462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perrault, A.A.; Khani, A.; Quairiaux, C.; Kompotis, K.; Franken, P.; Muhlethaler, M.; Schwartz, S.; Bayer, L. Whole-night continuous rocking entrains spontaneous neural oscillations with benefits for sleep and memory. Curr. Biol. 2019, 29, 402–411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perl, O.; Arzi, A.; Sela, L.; Secundo, L.; Holtzman, Y.; Samnon, P.; Oksenberg, A.; Sobel, N.; Hairston, I.S. Odors enhance slow-wave activity in non-rapid eye movement sleep. J. Neurophysiol. 2016, 115, 2294–2302. [Google Scholar] [CrossRef] [Green Version]
- McCormick, D.A.; Bal, T. Sleep and arousal: Thalamocortical mechanisms. Annu. Rev. Neurosci. 1997, 20, 185–215. [Google Scholar] [CrossRef] [Green Version]
- Carskadon, M.A.; Herz, R.S. Minimal olfactory perception during sleep: Why odor alarms will not work for humans. Sleep 2004, 27, 402–405. [Google Scholar]
- Massimini, M.; Ferrarelli, F.; Esser, S.K.; Riedner, B.A.; Huber, R.; Murphy, M.; Peterson, M.J.; Tononi, G. Triggering sleep slow waves by transcranial magnetic stimulation. Proc. Natl. Acad. Sci. USA 2007, 104, 8496–8501. [Google Scholar] [CrossRef] [Green Version]
- Jones, A.P.; Choe, J.; Bryant, N.B.; Robinson, C.S.H.; Ketz, N.A.; Skorheim, S.W.; Combs, A.; Lamphere, M.L.; Robert, B.; Gill, H.A.; et al. Dose-dependent effects of closed-loop tACS delivered during slow-wave oscillations on memory consolidation. Front. Neurosci. 2018, 12, 867. [Google Scholar] [CrossRef]
- Ketz, N.; Jones, A.P.; Bryant, N.B.; Clark, V.P.; Pilly, P.K. Closed-loop slow-wave tACS improves sleep-dependent long-term memory generalization by modulating endogenous oscillations. J. Neurosci. 2018, 38, 7314–7326. [Google Scholar] [CrossRef] [Green Version]
- Ali, M.M.; Sellers, K.K.; Fröhlich, F. Transcranial alternating current stimulation modulates large-scale cortical network activity by network resonance. J. Neurosci. 2013, 33, 11262–11275. [Google Scholar] [CrossRef]
- Cellini, N.; Shimizu, R.E.; Connolly, P.M.; Armstrong, D.M.; Hernandez, L.T.; Polakiewicz, A.G.; Estrada, R.; Aguilar-Simon, M.; Weisend, M.P.; Mednick, S.C.; et al. Short duration repetitive transcranial electrical stimulation during sleep enhances declarative memory of facts. Front. Hum. Neurosci. 2019, 13, 123. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, R.E.; Connolly, P.M.; Cellini, N.; Armstrong, D.M.; Hernandez, L.T.; Estrada, R.; Aguilar, M.; Weisend, M.P.; Mednick, S.C.; Simons, S.B.; et al. Closed-loop targeted memory reactivation during sleep improves spatial navigation. Front. Hum. Neurosci. 2018, 12, 28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lustenberger, C.; Boyle, M.R.; Alagapan, S.; Mellin, J.M.; Vaughn, B.V.; Fröhlich, F. Feedback-controlled transcranial alternating current stimulation reveals a functional role of sleep spindles in motor memory consolidation. Curr. Biol. 2016, 26, 2127–2136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Antony, J.W.; Paller, K.A. Using oscillating sounds to manipulate sleep spindles. Sleep 2017, 40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ngo, H.V.; Seibold, M.; Boche, D.C.; Mölle, M.; Born, J. Insights on auditory closed-loop stimulation targeting sleep spindles in slow oscillation up-states. J. Neurosci. Methods 2019, 316, 117–124. [Google Scholar] [CrossRef] [PubMed]
Study | Population | Stimulation Type | Stimulation Time Window | Stimulation Parameters | Electrophysiological Outcomes | Cognitive Outcomes |
---|---|---|---|---|---|---|
Papalambros et al., 2017 [41] | 13 healthy subjects (mean 75.2 years; range 60–84) | PLL acoustic stimulation | Overnight | Stimulus: 50 ms pink noise (30–50 dB) Procedure: Blocks of five pulses (ISI mean 1.2 s), alternated with stimulation-free blocks (∼6 s) Period: NREM sleep of the entire night | ↑ ERP amplitude increase ↑ SWA (stimulation vs. stimulation-free blocks) ↑ spindle density and amplitude | ↑ WPAT WPAT memory improvement positively correlated with SWA increment in stimulation vs. stimulation-free blocks |
Papalambros et al., 2019 [43] | 9 aMCI subjects (mean 72 years; range 62–86) | PLL acoustic stimulation | Overnight | Stimulus: 50 ms pink noise (30–50 dB) Procedure: Blocks of five pulses (ISI ∼1 s), alternated with stimulation-free blocks (∼6 s) Period: NREM sleep of the entire night | ↑ ERP amplitude increase ↑ SO activity (stimulation vs. stimulation-free blocks) ↑ SWA (stimulation vs. stimulation-free blocks) | ↔ WPAT ↔ NIHTB Overnight performance change in WPAT positively correlated with SWA and SO activity increment in stimulation vs. stimulation-free blocks |
Schneider et al., 2019 [49] | 17 healthy subjects (mean 55.7 years; range 49–63) | CL acoustic stimulation | Overnight | Stimulus: 50 ms pink noise (mean 54.5 dB) Procedure: Two pulses (ISI mean 1091 ms), followed by 2.5 s without stimulation Period: 3.5 hours from the first stable NREM sleep | ↑ ERP amplitude increase ↔ SO activity ↑ fast spindle activity phase-locked to induced SO up-states | ↓ WPAT ↔ SFTT ↔ Picture encoding |
Eggert et al., 2013 [56] | 26 healthy subjects (mean 69.1 years; range 60–90) | so-tDCS | Overnight | Stimulus: Anodal current sinusoidally oscillating at 0.75 Hz between zero and 260 μA (current density, 0.331 mA/cm2), delivered on F3 and F4 Procedure: 5 five-min stimulation blocks, alternated by fixed 1-min stimulation-free blocks (8 s current ramping period at the beginning/end of the stimulation blocks) Period: From the first NREM sleep | ↔ SO activity ↑ Wake in stimulation-free blocks ↓ NREM stage 3 in stimulation-free blocks | ↔ WPAT ↔ SFTT |
Westerberg et al., 2015 [26] | 19 healthy subjects (mean 73.4 years; range 65–85) | so-tDCS | Nap | Stimulus: Anodal current sinusoidally oscillating at 0.75 Hz between zero and 260 μA (current density, 0.517 mA/cm2), delivered on F7 and F8 Procedure: 5 five-min stimulation blocks, alternated by fixed 1-min stimulation-free blocks Period: From the first stable NREM sleep stage 2 | ↑ SO activity ↓ central fast spindle density | ↑ WPAT ↔ Fact recognition task ↔ Object-priming task |
Ladenbauer et al., 2016 [57] | 18 healthy subjects (mean 65 years) | so-tDCS | Nap | Stimulus: Anodal current sinusoidally oscillating at 0.75 Hz between zero and 260 μA (current density, 0.522 mA/cm2), delivered on F3 and F4 Procedure: 3–5 five-min stimulation blocks, alternated by (at least) 100 s stimulation-free blocks Period: From the first stable NREM sleep stage 2, ensuring to start the subsequent stimulation blocks only during stage 2–4 | ↑ SO activity ↑ fast spindle activity and density | ↔ WPAT ↔ SFTT ↔ Visuo-spatial task (location memory) ↑ Visuo-spatial task (visual memory) |
Ladenbauer et al., 2017 [58] | 16 aMCI subjects (mean 71 years; range 53–81) | so-tDCS | Nap | Stimulus: Anodal current sinusoidally oscillating at 0.75 Hz between zero and 262.5 μA (current density, 0.522 mA/cm2), delivered on F3 and F4 Procedure: 3–5 five-min stimulation blocks, alternated by (at least) 100 s stimulation-free blocks Period: From the first stable NREM sleep stage 2, ensuring to start the subsequent stimulation blocks only during stage 2–4 | ↑ SO activity ↑ fast and slow spindle activity ↑ SO-fast spindle activity phase amplitude coupling ↑ spindle activity phase-locked to SO up-states ↑ NREM stage 2 in stimulation-free blocks | ↔ WPAT ↔ SFTT ↔ Visuo-spatial task (location memory) ↑ Visuo-spatial task (visual memory) Overnight visual memory improvement positively correlated with increment in the SO-fast spindle activity coupling |
Paßmann et al., 2016 [59] | 21 healthy subjects (mean 65 years) | so-tDCS | Overnight | Stimulus: Anodal current sinusoidally oscillating at 0.75 Hz between zero and 260 μA (current density, 0.522 mA/cm2), delivered on F3 and F4 Procedure: 5 five-min stimulation blocks, alternated by (at least) 100 s stimulation-free blocks Period: From the first stable NREM sleep stage 2, ensuring to start the subsequent stimulation blocks only during stage 2–4 | ↑ SO activity ↑ fast and slow spindle activity ↓ NREM stage 4 | ↔ WPAT ↔ SFTT ↔ Visuo-spatial task (location memory) ↓ Visuo-spatial task (visual memory) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salfi, F.; D’Atri, A.; Tempesta, D.; De Gennaro, L.; Ferrara, M. Boosting Slow Oscillations during Sleep to Improve Memory Function in Elderly People: A Review of the Literature. Brain Sci. 2020, 10, 300. https://doi.org/10.3390/brainsci10050300
Salfi F, D’Atri A, Tempesta D, De Gennaro L, Ferrara M. Boosting Slow Oscillations during Sleep to Improve Memory Function in Elderly People: A Review of the Literature. Brain Sciences. 2020; 10(5):300. https://doi.org/10.3390/brainsci10050300
Chicago/Turabian StyleSalfi, Federico, Aurora D’Atri, Daniela Tempesta, Luigi De Gennaro, and Michele Ferrara. 2020. "Boosting Slow Oscillations during Sleep to Improve Memory Function in Elderly People: A Review of the Literature" Brain Sciences 10, no. 5: 300. https://doi.org/10.3390/brainsci10050300
APA StyleSalfi, F., D’Atri, A., Tempesta, D., De Gennaro, L., & Ferrara, M. (2020). Boosting Slow Oscillations during Sleep to Improve Memory Function in Elderly People: A Review of the Literature. Brain Sciences, 10(5), 300. https://doi.org/10.3390/brainsci10050300