Clinical Severity and Calcium Metabolism in Patients with Bipolar Disorder
Abstract
:1. Introduction
2. Methods
2.1. Participants
2.2. Procedures and Measures
2.2.1. Socio-demographic and Clinical Characteristics
2.2.2. Assessment of Serum Parameters
2.2.3. Statistical Analyses
3. Results
3.1. Socio-Demographic Characteristics of the Sample
3.2. Univariate Analyses
3.3. Multivariate Analyses
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sassi, F.; Tamone, C.; D’amelio, P. Vitamin D: Nutrient, hormone, and immunomodulator. Nutrients 2018, 10, 1656. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Potts, J.T.; Gardella, T.J. Progress, paradox, and potential: Parathyroid hormone research over five decades. Ann. N. Y. Acad. Sci. 2007, 1117, 196–208. [Google Scholar] [CrossRef] [PubMed]
- Brown, E.M. The CaSR: Physiology, pathophysiology and CaR-based therapeutics. Subcell. Biochem. 2007, 45, 139–167. [Google Scholar]
- Walbert, T.; Jirikowski, G.F.; Prüfer, K. Distribution of 1.25-dihydroxyvitamin D3 receptor immunoreactivity in the limbic system of the rat. Horm. Metab. Res. 2001, 33, 525–531. [Google Scholar] [CrossRef] [PubMed]
- Brown, A.J.; Slatopolsky, E. Vitamin D analogs: Therapeutic applications and mechanisms for selectivity. Mol. Aspects Med. 2008, 29, 433–452. [Google Scholar] [CrossRef] [PubMed]
- Brand, S.J.; Moller, M.; Harvey, B.H. A Review of Biomarkers in Mood and Psychotic Disorders: A Dissection of Clinical vs. Preclinical Correlates. Curr. Neuropharmacol. 2015, 13, 324–368. [Google Scholar] [CrossRef] [Green Version]
- Cohen-Lahav, M.; Shany, S.; Tobvin, D.; Chaimovitz, C.; Douvdevani, A. Vitamin D decreases NFkappaB activity by increasing IkappaBalpha levels. Nephrol. Dial. Transplant 2006, 21, 889–897. [Google Scholar] [CrossRef] [Green Version]
- Mayne, P.E.; Burne, T.H.J. Vitamin D in Synaptic Plasticity, Cognitive Function, and Neuropsychiatric Illness. Trends Neurosci. 2019, 42, 293–306. [Google Scholar] [CrossRef]
- Mácová, L.; Bicíková, M.; Ostatníková, D.; Hill, M.; Stárka, L. Vitamin, D, neurosteroids and autism. Physiol. Res. 2017, 66, S333–S340. [Google Scholar] [CrossRef]
- Toescu, E.C.; Vreugdenhil, M. Calcium and normal brain ageing. Cell Calcium 2010, 47, 158–164. [Google Scholar] [CrossRef]
- Cermik, T.F.; Kaya, M.; Uğur-Altun, B.; Bedel, D.; Berkarda, S.; Yiğitbaşi, O.N. Regional cerebral blood flow abnormalities in patients with primary hyperparathyroidism. Neuroradiology 2007, 49, 379–385. [Google Scholar] [CrossRef]
- Brines, M.L.; Ling, Z.; Broadus, A.E. Parathyroid hormone-related protein protects against kainic acid excitotoxicity in rat cerebellar granule cells by regulating L-type channel calcium flux. Neurosci. Lett. 1999, 274, 13–16. [Google Scholar] [CrossRef]
- Murray, T.M.; Rao, L.G.; Divieti, P.; Bringhurst, F.R. Parathyroid hormone secretion and action: Evidence for discrete receptors for the carboxyl-terminal region and related biological actions of carboxyl- terminal ligands. Endocr. Rev. 2005, 26, 78–113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buell, J.S.; Dawson-Hughes, B. Vitamin D and neurocognitive dysfunction: Preventing “D”ecline? Mol. Aspects Med. 2008, 29, 415–422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murchison, D.; Griffith, W.H. Calcium Buffering Systems and Calcium Signaling in Aged Rat Basal Forebrain Neurons. Aging Cell. 2007, 6, 297–305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McGrath, J.J.; Féron, F.P.; Burne, T.H.J.; Mackay-Sim, A.; Eyles, D.W. Vitamin D3—Implications for brain development. J. Steroid Biochem. Mol. Boil. 2004, 89, 557–560. [Google Scholar] [CrossRef] [PubMed]
- Miller, A.H.; Raison, C.L. The role of inflammation in depression: From evolutionary imperative to modern treatment target. Nat. Rev. Immunol. 2016, 16, 22–34. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Y.; Huang, Y.; Huang, W. The effect of vitamin D supplement on negative emotions: A systematic review and meta-analysis. Depress. Anxiety 2020, 37, 549–564. [Google Scholar] [CrossRef]
- Rao, T.S.S.; Asha, M.R.; Ramesh, B.B.; Rao, K.S.J. Understanding nutrition, depression and mental illnesses. Indian J. Psychiatry 2008, 50, 77–82. [Google Scholar]
- Eyles, D.W.; Burne, T.H.J.; McGrath, J.J. Vitamin D, Effects on Brain Development, Adult Brain Function and the Links Between Low Levels of Vitamin D and Neuropsychiatric Disease. Front Neuroendocrinol. 2013, 34, 47–74. [Google Scholar] [CrossRef]
- Milenkovic, V.M.; Stanton, E.H.; Nothdurfter, C.; Rupprecht, R.; Wetzel, C.H. The role of chemokines in the pathophysiology of major depressive disorder. Int. J. Mol. Sci. 2019, 20, 2283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Altunsoy, N.; Yüksel, R.N.; Cingi Yirun, M.; Kılıçarslan, A.; Aydemir, Ç. Exploring the relationship between vitamin D and mania: Correlations between serum vitamin D levels and disease activity. Nord. J. Psychiatry 2018, 72, 221–225. [Google Scholar] [CrossRef]
- Naifar, M.; Maalej Bouali, M.; Guidara, W.; Ellouze, A.S.; Jmal, K.; Omri, S.; Messedi, M.; Zouari, L.; Elleuch, A.; Maalej, M.; et al. Bipolar disorder vulnerability: The vitamin D path. Can. J. Psychiatry 2020, 65, 184–192. [Google Scholar] [CrossRef]
- First, M.B.; Williams, J.B.W.; Karg, R.S.; Spitzer, R.L. Structured Clinical Interview for DSM-5 Disorders–Clinician Version (SCID-5-CV); American Psychiatric Association: Washington, DC, USA, 2016. [Google Scholar]
- Hamilton, M. A rating scale for depression. J. Neurol. Neurosurg. Psychiatry 1960, 23, 56–62. [Google Scholar] [CrossRef] [Green Version]
- Maier, W.; Buller, R.; Philipp, M.; Heuser, I. The Hamilton Anxiety Scale: Reliability, validity and sensitivity to change in anxiety and depressive disorders. J. Affect. Disord. 1988, 14, 61–68. [Google Scholar] [CrossRef]
- Young, R.C.; Biggs, J.T.; Ziegler, V.E.; Meyer, D.A. A rating scale for mania: Reliability, validity and sensitivity. Br. J. Psychiatry 1978, 133, 429–435. [Google Scholar] [CrossRef] [PubMed]
- Fico, G.; Luciano, M.; Sampogna, G.; Zinno, F.; Steardo, L.; Perugi, G.; Pompili, M.; Tortorella, A.; Volpe, U.; Fiorillo, A.; et al. Validation of the brief TEMPS-M temperament questionnaire in a clinical Italian sample of bipolar and cyclothymic patients. J. Affect. Disord. 2020, 260, 458–462. [Google Scholar] [CrossRef]
- Bernstein, D.P.; Stein, J.A.; Newcomb, M.D.; Walker, E.; Pogge, D.; Ahluvalia, T.; Stokes, J.; Handelsman, L.; Medrano, M.; Desmond, D.; et al. Development and validation of a brief screening version of the Childhood Trauma Questionnaire. Child Abus. Negl. 2003, 27, 169–190. [Google Scholar] [CrossRef]
- Zimmerman, M.; Morgan, T.A.; Stanton, K. The severity of psychiatric disorders. World Psychiatry 2018, 17, 258–275. [Google Scholar] [CrossRef] [Green Version]
- Isgren, A.; Sellgren, C.; Ekman, C.J.; Holmén-Larsson, J.; Blennow, K.; Zetterberg, H.; Jakobsson, J.; Landén, M. Markers of neuroinflammation and neuronal injury in bipolar disorder: Relation to prospective clinical outcomes. Brain. Behav. Immun. 2017, 65, 195–201. [Google Scholar] [CrossRef] [Green Version]
- Almeras, L.; Eyles, D.; Benech, P.; Laffite, D.; Villard, C.; Patatian, A.; Boucraut, J.; Mackay-Sim, A.; McGrath, J.; Féron, F. Developmental vitamin D deficiency alters brain protein expression in the adult rat: Implications for neuropsychiatric disorders. Proteomics 2007, 7, 769–780. [Google Scholar] [CrossRef]
- Brown, J.; Bianco, J.I.; McGrath, J.J.; Eyles, D.W. 1.25-Dihydroxyvitamin D3 induces nerve growth factor, promotes neurite outgrowth and inhibits mitosis in embryonic rat hippocampal neurons. Neurosci. Lett. 2003, 343, 139–143. [Google Scholar] [CrossRef]
- Eyles, D.; Brown, J.; Mackay-Sim, A.; McGrath, J.; Feron, F. Vitamin D3 and brain development. Neuroscience 2003, 118, 641–653. [Google Scholar] [CrossRef]
- Gil, Á.; Plaza-Diaz, J.; Mesa, M.D. Vitamin D: Classic and Novel Actions. Ann. Nutr. Metab. 2018, 72, 87–95. [Google Scholar] [CrossRef] [PubMed]
- Rosenblat, J.D.; McIntyre, R.S. Bipolar Disorder and Inflammation. Psychiatr. Clin. North Am. 2016, 39, 125–137. [Google Scholar] [CrossRef] [PubMed]
- Petrov, B.; Aldoori, A.; James, C.; Yang, K.; Algorta, G.P.; Lee, A.; Zhang, L.; Lin, T.; Al Awadhi, R.; Parquette, J.R.; et al. Bipolar disorder in youth is associated with increased levels of Vitamin D-binding protein. Transl. Psychiatry 2018, 8, 61. [Google Scholar] [CrossRef]
- Serafini, G.; Parisi, V.M.; Aguglia, A.; Amerio, A.; Sampogna, G.; Fiorillo, A.; Pompili, M.; Amore, M. Specific Inflammatory Profile Underlying Suicide Risk? Systematic Review of the Main Literature Findings. Int. J. Environ. Res. Public Health 2020, 17, 2393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manchia, M.; Maina, G.; Carpiniello, B.; Pinna, F.; Steardo, L.; D’Ambrosio, V.; Salvi, V.; Alda, M.; Tortorella, A.; Albert, U. Clinical correlates of age at onset distribution in bipolar disorder: A comparison between diagnostic subgroups. Int. J. Bipolar Disord. 2017, 5, 28. [Google Scholar] [CrossRef] [Green Version]
- Patrick, R.P.; Ames, B.N. Omega-3 Fatty Acids and Vitamin D May Control Brain Serotonin. Affecting Behavior and Psychiatric Disorders. J. Fed. Am. Soc. Exp. Biol. 2015, 6, 28. [Google Scholar] [CrossRef] [Green Version]
- Crockett, M.J. The neurochemistry of fairness: Clarifying the link between serotonin and prosocial behavior. Ann. N. Y. Acad. Sci. 2009, 1167, 76–86. [Google Scholar] [CrossRef]
- Crockett, M.J.; Clark, L.; Hauser, M.D.; Robbins, T.W. Serotonin selectively influences moral judgment and behavior through effects on harm aversion. Proc. Natl. Acad. Sci. USA 2010, 107, 17433–17438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Passamonti, L.; Crockett, M.J.; Apergis-Schoute, A.M.; Clark, L.; Rowe, J.B.; Calder, A.J.; Robbins, T.W. Effects of acute tryptophan depletion on prefrontal-amygdala connectivity while viewing facial signals of aggression. Biol. Psychiatry 2012, 71, 36–43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fikke, L.T.; Melinder, A.; Landrø, N.I. The effects of acute tryptophan depletion on impulsivity and mood in adolescents engaging in non-suicidal self-injury. Hum. Psychopharmacol. 2013, 28, 61–71. [Google Scholar] [CrossRef]
- Manchia, M.; Carpiniello, B.; Valtorta, F.; Comai, S. Serotonin Dysfunction. Aggressive Behavior, and Mental Illness: Exploring the Link Using a Dimensional Approach. ACS Chem. Neurosci. 2017, 8, 961–972. [Google Scholar] [CrossRef] [PubMed]
- Sampogna, G.; Del Vecchio, V.; Giallonardo, V.; Luciano, M.; Fiorillo, A. Diagnosis. Clinical Features, and Therapeutic Implications of Agitated Depression. Psychiatr. Clin. North Am. 2020, 43, 47–57. [Google Scholar] [CrossRef] [PubMed]
- Bruni, A.; Carbone, E.A.; Pugliese, V.; Aloi, M.; Calabrò, G.; Cerminara, G.; Segura-García, C.; De Fazio, P. Childhood adversities are different in Schizophrenic Spectrum Disorders. Bipolar Disorder and Major Depressive Disorder. BMC Psychiatry 2018, 18, 391. [Google Scholar] [CrossRef] [Green Version]
- Carbone, E.A.; Pugliese, V.; Bruni, A.; Aloi, M.; Calabrò, G.; Jaén-Moreno, M.J.; Segura-Garcia, C.; De Fazio, P. Adverse childhood experiences and clinical severity in bipolar disorder and schizophrenia: A transdiagnostic two-step cluster analysis. J. Affect. Disord. 2019, 259, 104–111. [Google Scholar] [CrossRef]
- Aldinger, F.; Schulze, T.G. Environmental factors, life events, and trauma in the course of bipolar disorder. Psychiatry Clin. Neurosci. 2017, 71, 6–17. [Google Scholar] [CrossRef]
- Aas, M.; Henry, C.; Andreassen, O.A.; Bellivier, F.; Melle, I.; Etain, B. The role of childhood trauma in bipolar disorders. Int. J. Bipolar Disord. 2016, 4, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Albert, U.; De Cori, D.; Aguglia, A.; Barbaro, F.; Lanfranco, F.; Bogetto, F.; Maina, G. Effects of maintenance lithium treatment on serum parathyroid hormone and calcium levels: A retrospective longitudinal naturalistic study. Neuropsychiatr. Dis. Treat. 2015, 11, 1785–1791. [Google Scholar] [CrossRef] [Green Version]
- Meehan, A.D.; Udumyan, R.; Kardell, M.; Landén, M.; Järhult, J.; Wallin, G. Lithium-Associated Hypercalcemia: Pathophysiology. Prevalence. Management. World J. Surg. 2018, 42, 415–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szalat, A.; Mazeh, H.; Freund, H.R. Lithium-associated hyperparathyroidism: Report of four cases and review of the literature. Eur. J. Endocrinol. 2009, 160, 317–323. [Google Scholar] [CrossRef] [Green Version]
- Luciano, M.; Janiri, D.; Fiorillo, A.; Sani, G. Clinical Picture. Temperament, and Personality of Patients with Mixed States. Psychiatr. Clin. North Am. 2020, 43, 15–26. [Google Scholar] [CrossRef] [PubMed]
- Alloy, L.B.; Nusslock, R. Reward-related cognitive vulnerability to bipolar spectrum disorders. World Psychiatry. 2018, 17, 102–103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janiri, D.; De Rossi, P.; Kotzalidis, G.D.; Girardi, P.; Koukopoulos, A.E.; Reginaldi, D.; Dotto, F.; Manfredi, G.; Jollant, F.; Gorwood, P.; et al. Psychopathological characteristics and adverse childhood events are differentially associated with suicidal ideation and suicidal acts in mood disorders. Eur. Psychiatry 2018, 53, 31–36. [Google Scholar] [CrossRef] [PubMed]
- Murru, A.; Verdolini, N.; Anmella, G.; Pacchiarotti, I.; Samalin, L.; Aedo, A.; Undurraga, J.; Goikolea, J.M.; Amann, B.L.; Carvalho, A.F.; et al. A 12-month prospective study on the time to hospitalization and clinical management of a cohort of bipolar type I and schizoaffective bipolar patients. Eur. Psychiatry 2019, 61, 1–8. [Google Scholar] [CrossRef]
- Lang, F.; Ma, K.; Leibrock, C. 1.25(OH)2D3 in Brain Function and Neuropsychiatric Disease. Neurosignals 2019, 27, 40–49. [Google Scholar]
- Khundmiri, S.J.; Murray, R.D.; Lederer, E. PTH and vitamin D. Compr. Physiol. 2016, 6, 561–601. [Google Scholar]
Sample (N = 199) | ||
---|---|---|
Socio-demographic Characteristics | Age, M (±SD) | 47.1 (±13.2) |
Gender, Male, N (%) | 98 (49.2) | |
Years of Education, M (±SD) | 13.3 (± 3.5) | |
Having Partner, Yes, N (%) | 52.8 (103) | |
Employed, Yes, N (%) | 55.4 (107) | |
Diagnosis of BD-I, N (%) | 54.8 (108) | |
Family History of Psychiatric Disorder, Yes N (%) | 69.8 (88) | |
Clinical Variables | Age of Onset, M (±SD) | 26.9 (±9.5) |
Age First Psychiatric Contact, M (±SD) | 29.8 (±9.9) | |
Age First Depressive Episode, M (±SD) | 27.7 (±9.1) | |
Age First Manic Episode, M (±SD) | 29.6 (±8.4) | |
Age First Hypomanic Episode, M (±SD) | 30.2 (±8.7) | |
Age First Mixed Episode, M (±SD) | 33.9 (±10.0) | |
Total Number of Depressive Episodes, M (±SD) | 5.7 (±6.0) | |
Total Number of Manic Episodes, M (±SD) | 3.6 (±3.2) | |
Total Number of Hypomanic Episodes, M (±SD) | 3.1 (±3.2) | |
Total Number of Episodes, M (±SD) | 10.9 (±10.4) | |
Total Number of Episodes during Last Year M (±SD) | 0.9 (±0.9) | |
Prevalent Polarity, Yes, N (%) | 26.5 (49) | |
Suicide Attempts, Yes, N (%) | 30.2 (60) | |
Number of Suicide Attempts, M (±SD) | 0.4 (±0.9) | |
Aggressive Behaviors, Yes, N (%) | 56.8 (112) | |
Psychotic Symptoms, Yes, N (%) | 42.3 (93) | |
Psychotic Symptoms during Depressive Episode, Yes, N (%) | 28.6 (57) | |
Psychotic Symptoms during Manic Episode, Yes, N (%) | 46.0 (92) | |
Seasonality, Yes, N (%) | 44.9 (89) | |
Treatment with Lithium, Yes, N (%) | 52.8 (105) | |
Total Number of Hospitalizations, M (±SD) | 0.7 (±0.9) | |
Illness Duration, M (±SD) | 20.0 (±12.4) | |
Untreated Illness Duration, M (±SD) | 2.8 (±5.6) | |
Course of Illness, Regular, N (%) | 63.5 (116) | |
Previous Se of Drugs, yes, N (%) | 25.6 (51) | |
Serum Variables, M (±SD) | PTH (pmol/L) | 45.6 (±21.6) |
Calcium (mg/dL) | 9.42 (±0.76) | |
25-OH-vitamin D (ng/mL) | 42.57 (±65.31) | |
B-TEMPS, M (±SD) | Depressive | 22.6 (±6.7) |
Hyperthymic | 19.1 (±6.1) | |
Anxious | 18.9 (±6.2) | |
Cyclothymic | 23.3 (±7.6) | |
Irritable | 18.9 (±8.1) | |
HAM-A, M (±SD) | Total Score | 4.7 (±7.2) |
HAM-D, M (±SD) | Total Score | 7.9 (±10.8) |
MRS, M (±SD) | Total Score | 4.6 (±8.4) |
Variables | Total Sample N = 199 | Mean | Standard Deviation | p | ||
---|---|---|---|---|---|---|
PTH | Diagnosis | BD-I | 108 | 52.26 | 22.02 | 0.000 |
BD-II | 91 | 36.87 | 17.85 | |||
Course of Illness | Regular | 116 | 48.90 | 21.45 | 0.028 | |
Irregular | 83 | 40.15 | 21.06 | |||
Aggressive Behaviors | No | 87 | 39.44 | 21.07 | 0.009 | |
Yes | 112 | 49.72 | 21.17 | |||
Psychotic Symptoms | No | 105 | 35.40 | 18.15 | 0.000 | |
Yes | 93 | 58.20 | 19.04 | |||
Psychotic Symptoms during Depressive Episode | No | 142 | 42.72 | 20.55 | 0.000 | |
Yes | 57 | 63.16 | 19.59 | |||
Psychotic Symptoms during Maniac Episode | No | 107 | 36.60 | 18.99 | 0.000 | |
Yes | 92 | 57.51 | 19.03 | |||
Seasonality | No | 106 | 41.79 | 21.01 | 0.023 | |
Yes | 93 | 50.67 | 21.54 | |||
Treatment with Lithium | No | 94 | 33.93 | 17.95 | 0.000 | |
Yes | 105 | 55.08 | 19.57 | |||
Treatment with Atypical Antipsychotics | No | 61 | 35.79 | 19.65 | 0.013 | |
Yes | 138 | 47.65 | 21.43 | |||
Suicide Attempts | No | 128 | 39.62 | 19.88 | 0.000 | |
Yes | 71 | 61.63 | 17.87 | |||
Calcium* | High School Degree | No | 54 | 9.06 | 1.70 | 0.030 |
Yes | 145 | 9.48 | 0.45 | |||
Prevalent Manic Polarity | No | 152 | 9.40 | 0.79 | 0.049 | |
Yes | 47 | 9.65 | 0.32 | |||
25-OH-Vitamin D* | Psychotic Symptoms | No | 115 | 36.74 | 12.90 | 0.046 |
Yes | 84 | 32.16 | 11.13 | |||
Psychotic Symptoms during Depressive Episode | No | 140 | 35.62 | 12.46 | 0.043 | |
Yes | 59 | 29.33 | 10.20 |
Variables | PTH | Calcium | 25-OH-Vitamin D | |
---|---|---|---|---|
PTH | 1 | 0.000 | −0.260 *** | |
Calcium | 0.000 | 1 | −0.179 | |
25-OH-Vitamin D | −0.260 *** | −0.179 | 1 | |
Age | 0.006 | −0.030 | 0.107 | |
Education (years) | −0.172 * | 0.181 * | 0.002 | |
Age of Onset | −0.221** | 0.037 | 0.128 | |
Age First Psychiatric Contact | −0.155 | 0.009 | 0.179 * | |
Untreated Illness Duration | 0.139 | −0.061 | 0.113 | |
Age First Depressive Episode | −0.219 ** | 0.000 | 0.145 | |
Age First Manic Episode | −0.080 | 0.012 | 0.041 | |
Age First Hypomanic Episode | −0.143 | −0.051 | 0.145 | |
Total Number of Hospitalizations | −0.405 **** | −0.052 | −0.078 | |
Illness Duration | 0.173 | −0.060 | 0.017 | |
Total Number of Depressive Episodes | 0.411 **** | −0.020 | −0.182 * | |
Total Number of Manic Episodes | 0.357 *** | 0.042 | 0.012 | |
Total Number of Hypomanic Episodes | 0.226 ** | 0.022 | −0.074 | |
Total Number of Mixed Episodes | −0.231 | 0.080 | −0.015 | |
Total Number of Episodes | 0.442 **** | −0.009 | −0.143 | |
Total Number of Episodes during Last Year | 0.114 | 0.048 | −0.143 | |
Number of Suicide Attempts | 0.399 **** | 0.011 | −0.033 | |
TEMPS-B | Depressive | 0.319 **** | −0.054 | 0.015 |
Hyperthymic | −0.085 | −0.029 | −0.084 | |
Anxious | 0.215 ** | −0.128 | 0.016 | |
Cyclothymic | 0.242 *** | −0.077 | −0.185 * | |
Irritable | 0.417 **** | 0.160 | −0.067 | |
CTQ | Emotional Neglect | 0.575 **** | 0.107 | −0.157 |
Emotional Abuse | 0.590 **** | 0.015 | −0.028 | |
Sexual Abuse | −0.104 | −0.071 | −0.002 | |
Physical Neglect | 0.586 **** | 0.0999 | −0.137 | |
Physical Abuse | 0.578 **** | 0.115 | −0.125 | |
Trauma | 0.588 **** | 0.061 | −0.244 * | |
CTQ Total Score | 0.627 **** | 0.084 | −0.138 | |
HAM-A | HAM-A Total Score | 0.056 | 0.171 * | −0.148 |
HAM-D | HAM-D Total Score | 0.140 | 0.164 | −0.095 |
MRS | MRS Total Score | 0.176* | 0.128 | −0.009 |
Dependent Variable | Independent Variable | B | Standard Error | Beta | t | p |
---|---|---|---|---|---|---|
PTH | Age of Onset | −0.500 | 0.223 | −0.289 | −2.238 | 0.032 |
Total Number of Hospitalizations | 5.741 | 2.278 | 0.160 | 2.520 | 0.017 | |
Aggressive Behaviors | −7.424 | 4.278 | −0.115 | −1.735 | 0.092 | |
CTQ Total Score | 0.904 | 0.248 | 1.276 | 3.637 | 0.001 | |
Treatment with Lithium | 11.580 | 4.403 | 0.179 | 2.630 | 0.013 | |
vit d | Age of Onset | 0.247 | 0.201 | 0.174 | 1.231 | 0.224 |
Total Number of Hospitalizations | −1.209 | 1.971 | −0.090 | −0.614 | 0.542 | |
Aggressive Behaviors | 3.746 | 4.082 | 0.136 | 0.918 | 0.363 | |
CTQ Total Score | −0.072 | 0.081 | −0.129 | −0.892 | 0.376 | |
Treatment with Lithium | 0.530 | 3.802 | −0.020 | −0.139 | 0.890 | |
Calcium | Age of Onset | −0.003 | 0.007 | −0.059 | −0.428 | 0.670 |
Total Number of Hospitalizations | −0.064 | 0.062 | −0.143 | −1.033 | 0.306 | |
Aggressive Behaviors | 0.051 | 0.131 | 0.055 | 0.393 | 0.696 | |
CTQ Total Score | 0.001 | 0.003 | 0.040 | 0.294 | 0.770 | |
Treatment with Lithium | 0.054 | 0.123 | −0.061 | −0.444 | 0.659 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Steardo, L., Jr.; Luciano, M.; Sampogna, G.; Carbone, E.A.; Caivano, V.; Di Cerbo, A.; Giallonardo, V.; Palummo, C.; Vece, A.; Del Vecchio, V.; et al. Clinical Severity and Calcium Metabolism in Patients with Bipolar Disorder. Brain Sci. 2020, 10, 417. https://doi.org/10.3390/brainsci10070417
Steardo L Jr., Luciano M, Sampogna G, Carbone EA, Caivano V, Di Cerbo A, Giallonardo V, Palummo C, Vece A, Del Vecchio V, et al. Clinical Severity and Calcium Metabolism in Patients with Bipolar Disorder. Brain Sciences. 2020; 10(7):417. https://doi.org/10.3390/brainsci10070417
Chicago/Turabian StyleSteardo, Luca, Jr., Mario Luciano, Gaia Sampogna, Elvira Anna Carbone, Vito Caivano, Arcangelo Di Cerbo, Vincenzo Giallonardo, Carmela Palummo, Alfonso Vece, Valeria Del Vecchio, and et al. 2020. "Clinical Severity and Calcium Metabolism in Patients with Bipolar Disorder" Brain Sciences 10, no. 7: 417. https://doi.org/10.3390/brainsci10070417
APA StyleSteardo, L., Jr., Luciano, M., Sampogna, G., Carbone, E. A., Caivano, V., Di Cerbo, A., Giallonardo, V., Palummo, C., Vece, A., Del Vecchio, V., De Fazio, P., & Fiorillo, A. (2020). Clinical Severity and Calcium Metabolism in Patients with Bipolar Disorder. Brain Sciences, 10(7), 417. https://doi.org/10.3390/brainsci10070417