“No Pain No Gain”: Evidence from a Parcel-Wise Brain Morphometry Study on the Volitional Quality of Elite Athletes
Abstract
:1. Introduction
2. Methods
2.1. Ethics Statement
2.2. Participants
2.3. Measures
2.3.1. Volitional Quality
2.3.2. Scanning Protocol
2.3.3. Image Processing
2.3.4. Parcel-Wise Cortical Thickness Computation
2.4. Statistical Analysis
3. Results
3.1. Demographic Data
3.2. Group Difference in Volitional Qualities
3.3. Group Difference in Cortical Thickness
3.4. Correlation Analyses
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Searle, J. Intentionality: An Essay in the Philosophy of Mind; Cambridge University Press: Cambridge, UK, 1983. [Google Scholar]
- Zhu, J. Intention and volition. Can. J. Philos. 2004, 34, 175–193. [Google Scholar] [CrossRef]
- Frith, C. The psychology of volition. Exp. Brain Res. 2013, 229, 289–299. [Google Scholar] [CrossRef] [Green Version]
- Li, Y. A Qualitative Study, Model Constructing and Measuement of Volition. Ph.D. Thesis, Beijing Sport University, Beijing, China, 2007. [Google Scholar]
- Liang, C.; Fu, Q.; Cheng, Y.; Yu, J. Development and application of BTL-YZ-1.1 elite athlete volition scale. J. Wuhan Sports Univ. 2005, 2, 44–47. [Google Scholar]
- Duckworth, A.L.; Peterson, C.; Matthews, M.D.; Kelly, D.R. Grit: Perseverance and passion for long-term goals. J. Personal. Soc. Psychol. 2007, 92, 1087. [Google Scholar] [CrossRef] [PubMed]
- Bechara, A. Decision making, impulse control and loss of willpower to resist drugs: A neurocognitive perspective. Nat. Neurosci. 2005, 8, 1458. [Google Scholar] [CrossRef]
- Jones, G. What is this thing called mental toughness? An investigation of elite sport performers. J. Appl. Sport Psychol. 2002, 14, 205–218. [Google Scholar] [CrossRef]
- Jones, G.; Hanton, S.; Connaughton, D. A framework of mental toughness in the world’s best performers. Sport Psychol. 2007, 21, 243–264. [Google Scholar] [CrossRef]
- Fletcher, D.; Sarkar, M. Psychological resilience: A review and critique of definitions, concepts, and theory. Eur. Psychol. 2013, 18, 12. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Wang, T. Qualitative analyses and model construction of volitional qualities. J. Beijing Sport Univ. 2011, 34, 4. [Google Scholar]
- Li, Y.; Liang, C. BTL—L—YZ2. 0 Development and application of athletes’ volitional quality scale. Sports Sci. 2008, 28, 8. [Google Scholar]
- Song, Y.; Li, S. Development of volitional quality scale for Chinese wushu sanda athletes. J. Beijing Sport Univ. 2006, 29, 1345–1347. [Google Scholar]
- Sun, X.; Yang, N. The method for quantitative evaluation of athletes’ volitional qualities—Inflection point. J. Chengdu Inst. Phys. Educ. 1988, 3, 35–37. [Google Scholar]
- Zhang, Y. The Effect of Rock Climbing on Volitional Quality of Junior School Students. Master’s Thesis, Xi’an Physical Education University, Xi’an, China, 2017. [Google Scholar]
- Hu, R. Study on the influence of field living training on college students’ volition quality. Chengdu Inst. Phys. Educ. 2019. [Google Scholar]
- Wang, X. Study on the influence of sanda on adolescent’s volition quality and self-confidence. Beijing Sport Univ. 2016. [Google Scholar]
- Maguire, E.A.; Gadian, D.G.; Johnsrude, I.S.; Good, C.D.; Ashburner, J.; Frackowiak, R.S.; Frith, C.D. Navigation-related structural change in the hippocampi of taxi drivers. Proc. Natl. Acad. Sci. USA 2000, 97, 4398–4403. [Google Scholar] [CrossRef] [Green Version]
- Wei, G.-X.; Xu, T.; Fan, F.-M.; Dong, H.-M.; Jiang, L.-L.; Li, H.-J.; Yang, Z.; Luo, J.; Zuo, X.-N. Can Taichi reshape the brain? A brain morphometry study. PLoS ONE 2013, 8, e61038. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lazar, S.W.; Kerr, C.E.; Wasserman, R.H.; Gray, J.R.; Greve, D.N.; Treadway, M.T.; McGarvey, M.; Quinn, B.T.; Dusek, J.A.; Benson, H.; et al. Meditation experience is associated with increased cortical thickness. Neuroreport 2005, 16, 1893–1897. [Google Scholar] [CrossRef] [Green Version]
- Rogge, A.K.; Röder, B.; Zech, A.; Hötting, K. Exercise-induced neuroplasticity: Balance training increases cortical thickness in visual and vestibular cortical regions. Neuroimage 2018, 179, 471–479. [Google Scholar] [CrossRef]
- Weber, B.; Koschutnig, K.; Schwerdtfeger, A.; Rominger, C.; Papousek, I.; Weiss, E.M.; Tilp, M.; Fink, A. Learning unicycling evokes manifold changes in gray and white matter networks related to motor and cognitive functions. Sci. Rep. 2019, 9, 4324. [Google Scholar] [CrossRef]
- Park, I.S.; Lee, N.J.; Kim, T.-Y.; Park, J.-H.; Won, Y.-M.; Jung, Y.-J.; Yoon, J.-H. Volumetric analysis of cerebellum in short-track speed skating players. Cerebellum 2012, 11, 925–930. [Google Scholar] [CrossRef]
- Wei, G.; Luo, J.; Li, Y. Brain structure in diving players on MR imaging studied with voxel-based morphometry. Prog. Nat. Sci. 2009, 19, 1397–1402. [Google Scholar] [CrossRef]
- Wei, G.; Zhang, Y.; Jiang, T.; Luo, J. Increased cortical thickness in sports experts: A comparison of diving players with the controls. PLoS ONE 2011, 6, e17112. [Google Scholar] [CrossRef] [PubMed]
- Jäncke, L.; Koeneke, S.; Hoppe, A.; Rominger, C.; Hänggi, J. The Architecture of the Golfer’s Brain. PLoS ONE 2009, 4, e4785. [Google Scholar] [CrossRef] [PubMed]
- Varley, I.; Hughes, D.C.; Greeves, J.P.; Fraser, W.D.; Sale, C. Increased training volume improves bone density and cortical area in adolescent football players. Int. J. Sports Med. 2017, 38, 341–346. [Google Scholar] [CrossRef] [Green Version]
- Fawver, B.; Cowan, R.L.; DeCouto, B.S.; Lohse, K.R.; Podlog, L.; Williams, A.M. Psychological characteristics, sport engagement, and performance in alpine skiers. Psychol. Sport Exerc. 2020, 47, 10. [Google Scholar] [CrossRef]
- Schaer, M.; Cuadra, M.B.; Schmansky, N.; Fischl, B.; Thiran, J.P.; Eliez, S. How to measure cortical folding from MR images: A step-by-step tutorial to compute local gyrification index. J. Vis. Exp. 2012, e3417. [Google Scholar] [CrossRef] [Green Version]
- Li, Y. The Qualitative Research of Volitional Qualities; Beijing Sport University Press: Beijing, China, 2014. [Google Scholar]
- Manjón, J.V.; Coupé, P. volBrain: An online MRI brain volumetry system. Front. Aging Neurosci. 2016, 10, 30. [Google Scholar] [CrossRef] [Green Version]
- Xu, T.; Yang, Z.; Jiang, L.; Xing, X.-X.; Zuo, X.-N. A connectome computation system for discovery science of brain. Sci. Bull. 2015, 60, 86–95. [Google Scholar] [CrossRef] [Green Version]
- Xing, X.-X.; Zhou, Y.-L.; Adelstein, J.S.; Zuo, X.-N. PDE-based spatial smoothing: A practical demonstration of impacts on MRI brain extraction, tissue segmentation and registration. Reson. Imaging 2011, 29, 731–738. [Google Scholar] [CrossRef]
- Zuo, X.-N.; Xing, X.-X. Effects of non-local diffusion on structural MRI preprocessing and default network mapping: Statistical comparisons with isotropic/anisotropic diffusion. PLoS ONE 2011, 6, e26703. [Google Scholar] [CrossRef]
- Dale, A.M.; Fischl, B.; Sereno, M.I. Cortical surface-based analysis: I. Segmentation and surface reconstruction. NeuroImage 1999, 9, 179–194. [Google Scholar] [CrossRef] [PubMed]
- Ségonne, F.; Dale, A.M.; Busa, E.; Glessner, M.; Salat, D.; Hahn, H.K.; Fischl, B.J.N. A hybrid approach to the skull stripping problem in MRI. Neuroimage 2004, 22, 1060–1075. [Google Scholar] [CrossRef] [PubMed]
- Fischl, B.; Liu, A.; Dale, A. Automated manifold surgery: Constructing geometrically accurate and topologically correct models of the human cerebral cortex. IEEE Trans. Med Imaging 2001, 20, 70–80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ségonne, F.; Pacheco, J.; Fischl, B. Geometrically accurate topology-correction of cortical surfaces using nonseparating loops. IEEE Trans. Med Imaging 2007, 26, 518–529. [Google Scholar] [CrossRef]
- Fischl, B.; Sereno, M.I.; Tootell, R.B.; Dale, A. High-resolution intersubject averaging and a coordinate system for the cortical surface. Human brain mapping 1999, 8, 272–284. [Google Scholar] [CrossRef]
- Fischl, B.; Dale, A. Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc. Natl. Acad. Sci. USA 2000, 97, 11050–11055. [Google Scholar] [CrossRef] [Green Version]
- Han, X.; Jovicich, J.; Salat, D.; van der Kouwe, A.; Quinn, B.; Czanner, S.; Busa, E.; Pacheco, J.; Albert, M.; Killiany, R.J.N. Reliability of MRI-derived measurements of human cerebral cortical thickness: The effects of field strength, scanner upgrade and manufacturer. NeuroImage 2006, 32, 180–194. [Google Scholar] [CrossRef]
- Bernal-Rusiel, J.L.; Atienza, M.; Cantero, J.L.J.N. Determining the optimal level of smoothing in cortical thickness analysis: A hierarchical approach based on sequential statistical thresholding. NeuroImage 2010, 52, 158–171. [Google Scholar] [CrossRef]
- Desikan, R.S.; Ségonne, F.; Fischl, B.; Quinn, B.T.; Dickerson, B.C.; Blacker, D.; Buckner, R.L.; Dale, A.M.; Maguire, R.P.; Hyman, B.T.J.N. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage 2006, 31, 968–980. [Google Scholar] [CrossRef]
- Fischl, B.; Van Der Kouwe, A.; Destrieux, C.; Halgren, E.; Ségonne, F.; Salat, D.H.; Busa, E.; Seidman, L.J.; Goldstein, J.; Kennedy, D.; et al. Automatically parcellating the human cerebral cortex. Cereb. Cortex 2004, 14, 11–22. [Google Scholar] [CrossRef] [Green Version]
- Wang, C. Comparison of volitional qualities in short track speed skaters with different gender and athletic levels. J. Phys. Educ. 2008, 15, 96–99. [Google Scholar]
- Wang, Q. Universite High Level Male Basketball Player Will Quality of Research in Wuhan. Master’s Thesis, Wuhan Institute of Physical Education, Wuhan, China, 2015. [Google Scholar]
- Zhu, D.; Hu, Y.; Yu, Y.; Wang, M.; Gao, P. Relationship between excellent chinese male boxers’ personality, volitional quality, psychological tenacity and the performance. J. Chengdu Sport Univ. 2013, 39, 89–94. [Google Scholar]
- Qiao, S.; Wang, Y. Status quo of the will-quality of chinese beach volleyball players. Sports Sci. Res. 2011, 32, 78–81. [Google Scholar]
- Abbiss, C.R.; Laursen, P.B. Describing and understanding pacing strategies during athletic competition. Sports Med. 2008, 38, 239–252. [Google Scholar] [CrossRef] [PubMed]
- Konings, M.J.; Noorbergen, O.S.; Parry, D.; Hettinga, F.J. Pacing behavior and tactical positioning in 1500-m short-track speed skating. Int. J. Sports Physiol. Perform. 2016, 11, 122–129. [Google Scholar] [CrossRef] [PubMed]
- Noorbergen, O.S.; Konings, M.J.; Micklewright, D.; Elferink-Gemser, M.T.; Hettinga, F. Pacing behavior and tactical positioning in 500-and 1000-m short-track speed skating. Int. J. Sports Physiol. Perform. 2016, 11, 742–748. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smits, B.L.; Pepping, G.-J.; Hettinga, F. Pacing and decision making in sport and exercise: The roles of perception and action in the regulation of exercise intensity. Sports Med. 2014, 44, 763–775. [Google Scholar] [CrossRef] [Green Version]
- David, N.; Newen, A.; Vogeley, K. The “sense of agency” and its underlying cognitive and neural mechanisms. Conscious. Cogn. 2008, 17, 523–534. [Google Scholar] [CrossRef]
- Roskies, A.L. How does neuroscience affect our conception of volition? Annu. Rev. Neurosci. 2010, 33, 109–130. [Google Scholar] [CrossRef] [Green Version]
- Darby, R.R.; Joutsa, J.; Burke, M.J.; Fox, M.D. Lesion network localization of free will. Proc. Natl. Acad. Sci. USA 2018, 115, 10792–10797. [Google Scholar] [CrossRef] [Green Version]
- Pfabigan, D.M.; Wucherer, A.M.; Wang, X.; Pan, X.; Lamm, C.; Han, S. Cultural influences on the processing of social comparison feedback signals-an ERP study. Soc. Cogn. Affect Neurosci. 2018, 13, 1317–1326. [Google Scholar] [CrossRef] [PubMed]
- Nahab, F.B.; Kundu, P.; Maurer, C.; Shen, Q.; Hallett, M. Impaired sense of agency in functional movement disorders: An fMRI study. PLoS ONE 2017, 12, e0172502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bandura, A. Social cognitive theory: An agentic perspective. Annu. Rev. Psychol. 2001, 52, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Saarikallio, S.H.; Randall, W.M.; Baltazar, M. Music listening for supporting adolescents’ sense of agency in daily life. Front. Psychol. 2020, 10, 2911. [Google Scholar] [CrossRef] [PubMed]
- Haggard, P. Sense of agency in the human brain. Nat. Rev. Neurosci. 2017, 18, 196. [Google Scholar] [CrossRef]
- Kircher, T.T.; Senior, C.; Phillips, M.L.; Benson, P.J.; Bullmore, E.T.; Brammer, M.; Simmons, A.; Williams, S.C.; Bartels, M.; David, A.S. Towards a functional neuroanatomy of self processing: Effects of faces and words. Cogn. Brain Res. 2000, 10, 133–144. [Google Scholar] [CrossRef]
- Den Ouden, H.E.; Frith, U.; Frith, C.; Blakemore, S.-J. Thinking about intentions. NeuroImage 2005, 28, 787–796. [Google Scholar] [CrossRef]
- Chaminade, T.; Decety, J.J.N. Leader or follower? Involvement of the inferior parietal lobule in agency. NeuroReport 2002, 13, 1975–1978. [Google Scholar] [CrossRef]
- Marmot, M.G.; Stansfeld, S.; Patel, C.; North, F.; Head, J.; White, I.; Brunner, E.; Feeney, A.; Marmot, M.G.; Smith, G.D. Health inequalities among British civil servants: The Whitehall II study. Lancet 1991, 337, 1387–1393. [Google Scholar] [CrossRef]
- Floden, D.; Stuss, D. Inhibitory control is slowed in patients with right superior medial frontal damage. J. Cogn. Neurosci. 2006, 18, 1843–1849. [Google Scholar] [CrossRef]
- Hu, S.; Ide, J.S.; Zhang, S.; Chiang-shan, R. The right superior frontal gyrus and individual variation in proactive control of impulsive response. J. Neurosci. 2016, 36, 12688–12696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chambon, V.; Haggard, P. Sense of control depends on fluency of action selection, not motor performance. Cognition 2012, 125, 441–451. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Lian, C.; Wu, Z.; Zhang, H.; Li, T.; Meng, Y.; Wang, L.; Lin, W.; Shen, D.; Li, G. Developmental topography of cortical thickness during infancy. Proc. Natl. Acad. Sci. USA 2019, 116, 15855–15860. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collins, C.E.; Airey, D.C.; Young, N.A.; Leitch, D.B.; Kaas, J.H. Neuron densities vary across and within cortical areas in primates. Proc. Natl. Acad. Sci. USA 2010, 107, 15927–15932. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Firth, J.; Stubbs, B.; Vancampfort, D.; Schuch, F.; Lagopoulos, J.; Rosenbaum, S.; Ward, P.B. Effect of aerobic exercise on hippocampal volume in humans: A systematic review and meta-analysis. NeuroImage 2018, 166, 230–238. [Google Scholar] [CrossRef] [PubMed]
Age | Gender | Education (Years) | Body Mass Index (BMI) | Years of Training | Intracranial Volume (ICV) (cm3) | |
---|---|---|---|---|---|---|
Athletes (n = 19) | 18.3 ± 1.5 | 10 M | 9.8 ± 1.8 | 21.2 ± 1.1 | 8.6 ± 1.9 | 1178.06 ± 85.20 |
Controls (n = 19) | 19.2 ± 1.2 | 9 M | 13.7 ± 1.0 | 22.0 ± 3.9 | — | 1210.68 ± 87.10 |
Dimensions | Athletes (M ± SD) | Controls (M ± SD) | F | p |
---|---|---|---|---|
Self-Conscientiousness | 58.38 ± 7.99 | 45.72 ± 4.35 | 28.386 | 0.000 |
Independence | 42.56 ± 7.53 | 27.50 ± 2.23 | 12.086 | 0.002 |
Determination | 35.56 ± 4.75 | 27.11 ± 3.25 | 7.850 | 0.009 |
Resilience | 32.94 ± 4.40 | 23.11 ± 2.59 | 7.842 | 0.009 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, G.; Si, R.; Li, Y.; Yao, Y.; Chen, L.; Zhang, S.; Huang, T.; Zou, L.; Li, C.; Perrey, S. “No Pain No Gain”: Evidence from a Parcel-Wise Brain Morphometry Study on the Volitional Quality of Elite Athletes. Brain Sci. 2020, 10, 459. https://doi.org/10.3390/brainsci10070459
Wei G, Si R, Li Y, Yao Y, Chen L, Zhang S, Huang T, Zou L, Li C, Perrey S. “No Pain No Gain”: Evidence from a Parcel-Wise Brain Morphometry Study on the Volitional Quality of Elite Athletes. Brain Sciences. 2020; 10(7):459. https://doi.org/10.3390/brainsci10070459
Chicago/Turabian StyleWei, Gaoxia, Ruoguang Si, Youfa Li, Ying Yao, Lizhen Chen, Shu Zhang, Tao Huang, Liye Zou, Chunxiao Li, and Stephane Perrey. 2020. "“No Pain No Gain”: Evidence from a Parcel-Wise Brain Morphometry Study on the Volitional Quality of Elite Athletes" Brain Sciences 10, no. 7: 459. https://doi.org/10.3390/brainsci10070459
APA StyleWei, G., Si, R., Li, Y., Yao, Y., Chen, L., Zhang, S., Huang, T., Zou, L., Li, C., & Perrey, S. (2020). “No Pain No Gain”: Evidence from a Parcel-Wise Brain Morphometry Study on the Volitional Quality of Elite Athletes. Brain Sciences, 10(7), 459. https://doi.org/10.3390/brainsci10070459