Evaluation of Cerebral Microvascular Regulatory Mechanisms with Transcranial Doppler in Fabry Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Clinical Examination and Baseline Assessment
2.3. Cervical and Transcranial Ultrasound
2.4. Monitoring Protocol with Transcranial Doppler
2.4.1. Cerebral Autoregulation
2.4.2. Cerebral Vasoreactivity
2.4.3. Neurovascular Coupling
2.5. Statistical Analysis
3. Results
4. Discussion
4.1. Posterior Circulation Microvascular Impairment in Males with Long-Term ERT
4.2. Pathophysiological Considerations
5. Limitations
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Oliveira, J.P.; Ferreira, S. Multiple phenotypic domains of Fabry disease and their relevance for establishing genotype-phenotype correlations. Appl. Clin. Genet. 2019, 12, 35–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sims, K.; Politei, J.; Banikazemi, M.; Lee, P. Stroke in Fabry disease frequently occurs before diagnosis and in the absence of other clinical events: Natural history data from the Fabry Registry. Stroke 2009, 40, 788–794. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azevedo, E.; Mendes, A.; Seixas, D.; Santos, R.; Castro, P.; Ayres-Basto, M.; Rosengarten, B.; Oliveira, J.P. Functional transcranial Doppler: Presymptomatic changes in Fabry disease. Eur. Neurol. 2012, 67, 331–337. [Google Scholar] [CrossRef] [PubMed]
- Kalliokoski, R.J.; Kalliokoski, K.K.; Penttinen, M.; Kantola, I.; Leino, A.; Viikari, J.S.; Simell, O.; Nuutila, P.; Raitakari, O.T. Structural and functional changes in peripheral vasculature of Fabry patients. J. Inherit. Metab. Dis. 2006, 29, 660–666. [Google Scholar] [CrossRef]
- Fellgiebel, A.; Muller, M.J.; Ginsberg, L. CNS manifestations of Fabry’s disease. Lancet. Neurol. 2006, 5, 791–795. [Google Scholar] [CrossRef]
- Eng, C.M.; Guffon, N.; Wilcox, W.R.; Germain, D.P.; Lee, P.; Waldek, S.; Caplan, L.; Linthorst, G.E.; Desnick, R.J.; International Collaborative Fabry Disease Study Group. Safety and efficacy of recombinant human alpha-galactosidase A replacement therapy in Fabry’s disease. N. Engl. J. Med. 2001, 345, 9–16. [Google Scholar] [CrossRef] [Green Version]
- Schiffmann, R.; Kopp, J.B.; Austin, H.A., 3rd; Sabnis, S.; Moore, D.F.; Weibel, T.; Balow, J.E.; Brady, R.O. Enzyme replacement therapy in Fabry disease: A randomized controlled trial. JAMA 2001, 285, 2743–2749. [Google Scholar] [CrossRef]
- Moore, D.F.; Altarescu, G.; Herscovitch, P.; Schiffmann, R. Enzyme replacement reverses abnormal cerebrovascular responses in Fabry disease. BMC Neurol. 2002, 2, 4. [Google Scholar] [CrossRef] [Green Version]
- Sheng, S.; Wu, L.; Nalleballe, K.; Sharma, R.; Brown, A.; Ranabothu, S.; Kapoor, N.; Onteddu, S. Fabry’s disease and stroke: Effectiveness of enzyme replacement therapy (ERT) in stroke prevention, a review with meta-analysis. J. Clin. Neurosci. 2019, 65, 83–86. [Google Scholar] [CrossRef]
- Ortiz, A.; Abiose, A.; Bichet, D.G.; Cabrera, G.; Charrow, J.; Germain, D.P.; Hopkin, R.J.; Jovanovic, A.; Linhart, A.; Maruti, S.S.; et al. Time to treatment benefit for adult patients with Fabry disease receiving agalsidase beta: Data from the Fabry Registry. J. Med. Genet. 2016, 53, 495–502. [Google Scholar] [CrossRef]
- Germain, D.P.; Elliott, P.M.; Falissard, B.; Fomin, V.V.; Hilz, M.J.; Jovanovic, A.; Kantola, I.; Linhart, A.; Mignani, R.; Namdar, M.; et al. The effect of enzyme replacement therapy on clinical outcomes in male patients with Fabry disease: A systematic literature review by a European panel of experts. Mol. Genet. Metab. Rep. 2019, 19, 100454. [Google Scholar] [CrossRef] [PubMed]
- Aaslid, R.; Markwalder, T.M.; Nornes, H. Noninvasive transcranial Doppler ultrasound recording of flow velocity in basal cerebral arteries. J. Neurosurg. 1982, 57, 769–774. [Google Scholar] [CrossRef] [PubMed]
- Claassen, J.A.; Meel-van den Abeelen, A.S.; Simpson, D.M.; Panerai, R.B. Transfer function analysis of dynamic cerebral autoregulation: A white paper from the International Cerebral Autoregulation Research Network. J. Cereb. Blood Flow Metab. 2016, 36, 665–680. [Google Scholar] [CrossRef] [Green Version]
- Madureira, J.; Castro, P.; Azevedo, E. Demographic and Systemic Hemodynamic Influences in Mechanisms of Cerebrovascular Regulation in Healthy Adults. J. Stroke Cerebrovasc. Dis. 2017, 26, 500–508. [Google Scholar] [CrossRef] [PubMed]
- Rosengarten, B.; Aldinger, C.; Kaufmann, A.; Kaps, M. Comparison of visually evoked peak systolic and end diastolic blood flow velocity using a control system approach. Ultrasound Med. Biol. 2001, 27, 1499–1503. [Google Scholar] [CrossRef]
- Castro, P.; Azevedo, E.; Sorond, F. Cerebral Autoregulation in Stroke. Curr. Atheroscler. Rep. 2018, 20, 37. [Google Scholar] [CrossRef] [PubMed]
- Freeman, R.; Wieling, W.; Axelrod, F.B.; Benditt, D.G.; Benarroch, E.; Biaggioni, I.; Cheshire, W.P.; Chelimsky, T.; Cortelli, P.; Gibbons, C.H.; et al. Consensus statement on the definition of orthostatic hypotension, neurally mediated syncope and the postural tachycardia syndrome. Clin. Auton. Res. 2011, 21, 69–72. [Google Scholar] [CrossRef]
- Rosengarten, B.; Huwendiek, O.; Kaps, M. Neurovascular coupling in terms of a control system: Validation of a second-order linear system model. Ultrasound Med. Biol. 2001, 27, 631–635. [Google Scholar] [CrossRef]
- Malojcic, B.; Giannakopoulos, P.; Sorond, F.A.; Azevedo, E.; Diomedi, M.; Oblak, J.P.; Carraro, N.; Boban, M.; Olah, L.; Schreiber, S.J.; et al. Ultrasound and dynamic functional imaging in vascular cognitive impairment and Alzheimer’s disease. BMC Med. 2017, 15, 27. [Google Scholar] [CrossRef] [Green Version]
- Freitas, S.; Simoes, M.R.; Alves, L.; Santana, I. Montreal Cognitive Assessment (MoCA): Normative study for the Portuguese population. J. Clin. Exp. Neuropsychol. 2011, 33, 989–996. [Google Scholar] [CrossRef]
- Uceyler, N.; Homola, G.A.; Guerrero Gonzalez, H.; Kramer, D.; Wanner, C.; Weidemann, F.; Solymosi, L.; Sommer, C. Increased arterial diameters in the posterior cerebral circulation in men with Fabry disease. PLoS ONE 2014, 9, e87054. [Google Scholar] [CrossRef] [PubMed]
- Segura, T.; Ayo-Martin, O.; Gomez-Fernandez, I.; Andres, C.; Barba, M.A.; Vivancos, J. Cerebral hemodynamics and endothelial function in patients with Fabry disease. BMC Neurol. 2013, 13, 170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moore, D.F.; Altarescu, G.; Ling, G.S.; Jeffries, N.; Frei, K.P.; Weibel, T.; Charria-Ortiz, G.; Ferri, R.; Arai, A.E.; Brady, R.O.; et al. Elevated cerebral blood flow velocities in Fabry disease with reversal after enzyme replacement. Stroke 2002, 33, 525–531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jokumsen-Cabral, A.; Aires, A.; Ferreira, S.; Azevedo, E.; Castro, P. Primary involvement of neurovascular coupling in cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy. J. Neurol. 2019, 266, 1782–1788. [Google Scholar] [CrossRef] [PubMed]
- Azevedo, E.; Castro, P.; Santos, R.; Freitas, J.; Coelho, T.; Rosengarten, B.; Panerai, R. Autonomic dysfunction affects cerebral neurovascular coupling. Clin. Auton. Res. 2011, 21, 395–403. [Google Scholar] [CrossRef]
- Hilz, M.J.; Kolodny, E.H.; Brys, M.; Stemper, B.; Haendl, T.; Marthol, H. Reduced cerebral blood flow velocity and impaired cerebral autoregulation in patients with Fabry disease. J. Neurol. 2004, 251, 564–570. [Google Scholar] [CrossRef]
- Namdar, M. Electrocardiographic Changes and Arrhythmia in Fabry Disease. Front. Cardiovasc. Med. 2016, 3, 7. [Google Scholar] [CrossRef] [Green Version]
- Cocozza, S.; Russo, C.; Pisani, A.; Olivo, G.; Riccio, E.; Cervo, A.; Pontillo, G.; Feriozzi, S.; Veroux, M.; Battaglia, Y.; et al. Redefining the Pulvinar Sign in Fabry Disease. AJNR Am. J. Neuroradiol. 2017, 38, 2264–2269. [Google Scholar] [CrossRef] [Green Version]
- DeGraba, T.; Azhar, S.; Dignat-George, F.; Brown, E.; Boutiere, B.; Altarescu, G.; McCarron, R.; Schiffmann, R. Profile of endothelial and leukocyte activation in Fabry patients. Ann. Neurol. 2000, 47, 229–233. [Google Scholar] [CrossRef]
- Moore, D.F.; Scott, L.T.; Gladwin, M.T.; Altarescu, G.; Kaneski, C.; Suzuki, K.; Pease-Fye, M.; Ferri, R.; Brady, R.O.; Herscovitch, P.; et al. Regional cerebral hyperperfusion and nitric oxide pathway dysregulation in Fabry disease: Reversal by enzyme replacement therapy. Circulation 2001, 104, 1506–1512. [Google Scholar] [CrossRef] [Green Version]
Participant Characteristics | Fabry (n = 10) | Controls (n = 10) | pa |
---|---|---|---|
Male | 4 (40) | 4 (40) | |
Age at inclusion, years | 42 ± 13 | 41 ± 13 | 0.91 |
Age at diagnosis, years | 27 ± 14 | ||
Hypertension | 2 (20) | 0 (0) | |
Diabetes Mellitus | 1 (10) | 0 (0) | |
Dyslipidemia | 2 (20) | 0 (0) | |
Tobacco | 0 (0) | 0 (0) | |
BMI | 25.0 ± 4.9 | 23.2 ± 3.2 | 0.34 |
MoCA score | 22 ± 6 | ||
Chronic Medication | |||
Statins | 2 (20) | 0 (0) | |
Antiplatelets | 1 (10) | 0 (0) | |
Antihypertensives | 5 (50) | 0 (0) | |
ERT therapy (4 males; 2 females) | 6 (60) | ||
Age of start of ERT therapy, years | 30 ± 21 | ||
Laboratorial results | |||
Total cholesterol, mg/dL | 163 ± 20 | ||
LDL cholesterol, mg/dL | 91 ± 15 | ||
HDL cholesterol, mg/dL | 57 ± 9 | ||
Fasting plasma glucose, mg/dL | 88 ± 12 | ||
Systemic Hemodynamics | |||
Systolic BP, mmHg | 117 ± 11 | 118 ± 15 | 0.80 |
Diastolic BP, mmHg | 67 ± 11 | 68 ± 10 | 0.80 |
Heart rate, bpm | 57 ± 10 | 69 ± 10 | 0.02 |
EtCO2, mmHg | 39 ± 3 | 37 ± 4 | 0.32 |
Fabry (n = 10) | Controls (n = 10) | pa | |||
---|---|---|---|---|---|
Male | Female | Male | Female | ||
Cerebral Autoregulation | |||||
MCA VLF Gain, %/mmHg | 1.06 ± 0.55 | 1.13 ± 0.44 | 0.86 ± 0.39 | 0.87 ± 0.45 | 0.58 |
LF Gain | 1.30 ± 0.21 | 1.85 ± 0.47 | 1.41 ± 0.46 | 1.43 ± 0.33 | 0.40 |
VLF Phase, radians | 0.94 ± 0.51 | 1.29 ± 0.23 | 1.16 ± 0.80 | 0.93 ± 0.14 | 0.26 |
LF Phase | 0.87 ± 0.37 | 0.70 ± 0.18 | 0.95 ± 0.25 | 0.64 ± 0.20 | 0.44 |
PCA VLF Gain, %/mmHg | 1.15 ± 0.60 | 1.23 ± 0.41 | 1.28 ± 0.80 | 0.91 ± 0.54 | 0.35 |
LF Gain | 2.14 ± 0.99 | 2.02 ± 0.37 | 1.86 ± 0.56 | 1.68 ± 0.52 | 0.83 |
VLF Phase, radians | 0.88 ± 0.53 | 1.33 ± 0.20 | 1.16 ± 0.64 | 0.91 ± 0.44 | 0.19 |
LF Phase | 0.70 ± 0.10 | 0.69 ± 0.19 | 1.06 ± 0.45 | 0.63 ± 0.23 | 0.99 |
Vasoreactivity to CO2 | |||||
MCA, MFV %/mmHg CO2 | 1.87 ± 0.67 | 1.59 ± 0.56 | 1.58 ± 0.34 | 2.05 ± 0.57 | 0.39 |
MCA, CVR %/mmHg CO2 | −2.61 ± 0.42 | −3.32 ± 0.89 | −2.96 ± 0.67 | −2.82 ± 0.97 | 0.37 |
PCA, MFV %/mmHg CO2 | 0.70 ± 0.36 * | 0.86 ± 0.10 | 1.09 ± 0.18 | 1.14 ± 0.31 | 0.01 |
PCA, CVR %/mmHg CO2 | −2.85 ± 0.45 | −2.43 ± 0.92 | −2.81 ± 0.46 | −3.10 ± 0.24 | 0.79 |
Neurovascular coupling | |||||
Overshoot Systolic CBFV, % | 15 ± 2.9 * | 20 ± 7.2 | 28 ± 6.1 | 20 ± 6.3 | < 0.01 |
Overshoot Mean CBFV, % | 15 ± 5.8 * | 25 ± 10 | 32 ± 6.2 | 27 ± 4.8 | < 0.01 |
Parameters | MoCA Scores | |
---|---|---|
Cerebral Vasoreactivity | Spearman’s Coefficient | p value |
VR to CO2 PCA, %/mmHg CO2 | 0.22 | 0.54 |
Neurovascular coupling | ||
Overshoot Systolic CBFV, % | −0.60 | 0.07 |
Overshoot Mean CBFV, % | −0.48 | 0.16 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castro, P.; Gutierres, M.; Pereira, G.; Ferreira, S.; Oliveira, J.P.; Azevedo, E. Evaluation of Cerebral Microvascular Regulatory Mechanisms with Transcranial Doppler in Fabry Disease. Brain Sci. 2020, 10, 528. https://doi.org/10.3390/brainsci10080528
Castro P, Gutierres M, Pereira G, Ferreira S, Oliveira JP, Azevedo E. Evaluation of Cerebral Microvascular Regulatory Mechanisms with Transcranial Doppler in Fabry Disease. Brain Sciences. 2020; 10(8):528. https://doi.org/10.3390/brainsci10080528
Chicago/Turabian StyleCastro, Pedro, Mariana Gutierres, Gilberto Pereira, Susana Ferreira, João Paulo Oliveira, and Elsa Azevedo. 2020. "Evaluation of Cerebral Microvascular Regulatory Mechanisms with Transcranial Doppler in Fabry Disease" Brain Sciences 10, no. 8: 528. https://doi.org/10.3390/brainsci10080528
APA StyleCastro, P., Gutierres, M., Pereira, G., Ferreira, S., Oliveira, J. P., & Azevedo, E. (2020). Evaluation of Cerebral Microvascular Regulatory Mechanisms with Transcranial Doppler in Fabry Disease. Brain Sciences, 10(8), 528. https://doi.org/10.3390/brainsci10080528