Virtual Reality Potentiates Emotion and Task Effects of Alpha/Beta Brain Oscillations
Abstract
:1. Introduction
1.1. General Introduction
1.2. Research Questions
2. Materials and Methods
2.1. Participants
2.2. Stimuli & Setup
2.3. Procedure & Task
2.4. EEG Data Acquisition and Main Analysis
2.4.1. Frequency Analysis
2.4.2. Statistics
2.4.3. Event Related Potentials (ERPs)
3. Results
3.1. Behavior and Questionnaires
- INV3 “I still paid attention to the real environment.” (“Ich achtete noch auf die reale Umgebung”, t(15) = 4.56, p < 0.001, dz = 1.14)
- INV2 “I was not aware of my real environment.” (“Meine reale Umgebung war mir nicht mehr bewusst”, t(15) = 3.12, p < 0.004, dz = 0.78)
- SP5 “I felt present in the virtual space.” (“Ich fühlte mich im virtuellen Raum anwesend”, t(15) = 2.91, p = 0.005, dz = 0.73).
3.2. Induced EEG Frequencies
3.3. ERPs
4. Discussion
4.1. Research Question 1: General Effects Associated with VR Stimulation
4.2. Research Question 2: Specific Effects of VR Stimulation on Emotion and Task Manipulations
4.3. Control Analyses
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Slater, M.; Wilbur, S. A framework for immersive virtual environments (FIVE): Speculations on the role of presence in virtual environments. Presence Teleoperators Virtual Environ. 1997, 6, 603–616. [Google Scholar] [CrossRef]
- Diemer, J.; Alpers, G.W.; Peperkorn, H.M.; Shiban, Y.; Mühlberger, A. The impact of perception and presence on emotional reactions: A review of research in virtual reality. Front. Psychol. 2015, 6, 26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cummings, J.J.; Bailenson, J.N. How Immersive Is Enough? A Meta-Analysis of the Effect of Immersive Technology on User Presence. Media Psychol. 2016, 19, 272–309. [Google Scholar] [CrossRef]
- Freeman, J.; Lessiter, J.; Pugh, K.; Keogh, E. When presence and emotion are related, and when they are not. In Proceedings of the 8th Annual International Workshop on Presence (PRESENCE 2005), London, UK, 21–23 September 2005; pp. 213–219. [Google Scholar]
- Parsons, T.D. Virtual reality for enhanced ecological validity and experimental control in the clinical, affective and social neurosciences. Front. Hum. Neurosci. 2015, 9, 660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stolz, C.; Endres, D.; Mueller, E.M. Threat-conditioned contexts modulate the late positive potential to faces—A mobile EEG/virtual reality study. Psychophysiology 2019, 56, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.C.; Syue, K.S.; Li, K.C.; Yeh, S.C. Neuronal correlates of a virtual-reality-based passive sensory P300 network. PLoS ONE 2014, 9, e112228. [Google Scholar] [CrossRef]
- Marín-Morales, J.; Higuera-Trujillo, J.L.; Greco, A.; Guixeres, J.; Llinares, C.; Scilingo, E.P.; Alcañiz, M.; Valenza, G. Affective computing in virtual reality: Emotion recognition from brain and heartbeat dynamics using wearable sensors. Sci. Rep. 2018, 8, 1–15. [Google Scholar] [CrossRef]
- Kober, S.E.; Neuper, C. Using auditory event-related EEG potentials to assess presence in virtual reality. Int. J. Hum. Comput. Stud. 2012, 70, 577–587. [Google Scholar] [CrossRef]
- Wilson, C.J.; Soranzo, A. The Use of Virtual Reality in Psychology: A Case Study in Visual Perception. Comput. Math. Methods Med. 2015, 2015, 151702. [Google Scholar] [CrossRef] [Green Version]
- Sharples, S.; Cobb, S.; Moody, A.; Wilson, J.R. Virtual reality induced symptoms and effects (VRISE): Comparison of head mounted display (HMD), desktop and projection display systems. Displays 2008, 29, 58–69. [Google Scholar] [CrossRef]
- Bayliss, J.D. Use of the evoked potential P3 component for control in a virtual apartment. IEEE Trans. Neural Syst. Rehabil. Eng. 2003, 11, 113–116. [Google Scholar] [CrossRef] [PubMed]
- Ting, S.; Tan, T.; West, G.; Squelch, A.; Foster, J. Quantitative assessment of 2D versus 3D visualisation modalities. In Proceedings of the 2011 Visual Communications and Image Processing (VCIP), Tainan, Taiwan, 6–9 November 2011; pp. 3–6. [Google Scholar] [CrossRef]
- Kober, S.E.; Kurzmann, J.; Neuper, C. Cortical correlate of spatial presence in 2D and 3D interactive virtual reality: An EEG study. Int. J. Psychophysiol. 2012, 83, 365–374. [Google Scholar] [CrossRef] [PubMed]
- Codispoti, M.; De Cesarei, A. Arousal and attention: Picture size and emotional reactions. Psychophysiology 2007, 44, 680–686. [Google Scholar] [CrossRef] [PubMed]
- Slobounov, S.M.; Ray, W.; Johnson, B.; Slobounov, E.; Newell, K.M. Modulation of cortical activity in 2D versus 3D virtual reality environments: An EEG study. Int. J. Psychophysiol. 2015, 95, 254–260. [Google Scholar] [CrossRef] [PubMed]
- Dan, A.; Reiner, M. EEG-based cognitive load of processing events in 3D virtual worlds is lower than processing events in 2D displays. Int. J. Psychophysiol. 2017, 122, 75–84. [Google Scholar] [CrossRef]
- Makransky, G.; Terkildsen, T.S.; Mayer, R.E. Adding immersive virtual reality to a science lab simulation causes more presence but less learning. Learn. Instr. 2019, 60, 225–236. [Google Scholar] [CrossRef]
- Visch, V.T.; Tan, E.S.; Molenaar, D. The emotional and cognitive effect of immersion in film viewing. Cogn. Emot. 2010, 24, 1439–1445. [Google Scholar] [CrossRef]
- Schupp, H.T.; Flaisch, T.; Stockburger, J.; Junghöfer, M. Chapter 2 Emotion and attention: Event-related brain potential studies. Prog. Brain Res. 2006, 156, 31–51. [Google Scholar] [CrossRef] [Green Version]
- Schubring, D.; Schupp, H.T. Affective picture processing: Alpha- and lower beta-band desynchronization reflects emotional arousal. Psychophysiology 2019, 56, e13386. [Google Scholar] [CrossRef]
- Schupp, H.T.; Stockburger, J.; Codispoti, M.; Junghofer, M.; Weike, A.I.; Hamm, A.O. Selective Visual Attention to Emotion. J. Neurosci. 2007, 27, 1082–1089. [Google Scholar] [CrossRef]
- Duval, E.R.; Moser, J.S.; Huppert, J.D.; Simons, R.F. What’s in a face?: The late positive potential reflects the level of facial affect expression. J. Psychophysiol. 2013, 27, 27–38. [Google Scholar] [CrossRef] [Green Version]
- Schupp, H.T.; Junghöfer, M.; Öhman, A.; Weike, A.I.; Stockburger, J.; Hamm, A.O. The facilitated processing of threatening faces: An ERP analysis. Emotion 2004, 4, 189–200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, E.; Weinberg, A.; Moran, T.; Hajcak, G. Electrocortical responses to NIMSTIM facial expressions of emotion. Int. J. Psychophysiol. 2013, 88, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Simeone, A.L.; Velloso, E.; Gellersen, H. Substitutional reality: Using the physical environment todesign virtual reality experiences. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, Seoul, Korea, 18–23 April 2015; pp. 3307–3316. [Google Scholar] [CrossRef] [Green Version]
- Schubert, T.; Friedmann, F.; Regenbrecht, H. The experience of presence: Factor analytic insights. Presence Teleoperators Virtual Environ. 2001, 10, 266–281. [Google Scholar] [CrossRef]
- Kennedy, R.S.; Lane, N.E.; Kevin, S.; Lilienthal, M.G. The International Journal of Aviation Psychology Simulator Sickness Questionnaire : An Enhanced Method for Quantifying Simulator Sickness. Int. J. Aviat. Psychol. 1993, 3, 203–220. [Google Scholar] [CrossRef]
- Oostenveld, R.; Fries, P.; Maris, E.; Schoffelen, J.-M. FieldTrip: Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput. Intell. Neurosci. 2011, 2011, 156869. [Google Scholar] [CrossRef]
- Maris, E.; Oostenveld, R. Nonparametric statistical testing of EEG- and MEG-data. J. Neurosci. Methods 2007, 164, 177–190. [Google Scholar] [CrossRef]
- Sassenhagen, J.; Draschkow, D. Cluster-based permutation tests of MEG/EEG data do not establish significance of effect latency or location. Psychophysiology 2019, 56, 1–8. [Google Scholar] [CrossRef]
- Widmann, A.; Schröger, E.; Maess, B. Digital filter design for electrophysiological data—A practical approach. J. Neurosci. Methods 2015, 250, 34–46. [Google Scholar] [CrossRef] [Green Version]
- Langeslag, S.J.E.; Gootjes, L.; van Strien, J.W. The effect of mouth opening in emotional faces on subjective experience and the early posterior negativity amplitude. Brain Cogn. 2018, 127, 51–59. [Google Scholar] [CrossRef]
- Bradley, M.M.; Codispoti, M.; Sabatinelli, D.; Lang, P.J. Emotion and Motivation II: Sex Differences in Picture Processing. Emotion 2001, 1, 300–319. [Google Scholar] [CrossRef] [PubMed]
- Kenney, M.P.; Milling, L.S. The effectiveness of virtual reality distraction for reducing pain: A meta-analysis. Psychol. Conscious. Theory Res. Pract. 2016, 3, 199–210. [Google Scholar] [CrossRef]
- Bradley, M.M.; Lang, P.J. The International Affective Picture System (IAPS) in the study of emotion and attention. In Handbook of Emotion Elicitation and Assessement; Oxford University Press: Oxford, UK, 2007; pp. 29–46. [Google Scholar]
- Mühlberger, A.; Wieser, M.J.; Herrmann, M.J.; Weyers, P.; Tröger, C.; Pauli, P. Early cortical processing of natural and artificial emotional faces differs between lower and higher socially anxious persons. J. Neural Transm. 2009, 116, 735–746. [Google Scholar] [CrossRef] [PubMed]
- Renner, R.S.; Velichkovsky, B.M.; Helmert, J.R. The perception of egocentric distances in virtual environments—A review. ACM Comput. Surv. 2013, 46, 1–40. [Google Scholar] [CrossRef] [Green Version]
- De Cesarei, A.; Codispoti, M. Effects of picture size reduction and blurring on emotional engagement. PLoS ONE 2010, 5, e13399. [Google Scholar] [CrossRef]
- Hofmeyer, F.; Fremerey, S.; Cohrs, T.; Raake, A. Impacts of internal HMD playback processing on subjective quality perception. Electron. Imaging 2019, 2019, 219-1–219-7. [Google Scholar] [CrossRef]
- Lehmann, D. Multichannel topography of human alpha EEG fields. Electroencephalogr. Clin. Neurophysiol. 1971, 31, 439–449. [Google Scholar] [CrossRef]
Measurement | 2D | VR | Statistical Comparison |
---|---|---|---|
Sensor impedance | |||
Overall | 34.2 (236.3) | 19.8 (119.8) | 2D vs. VR t(15) = 1.40, p = 0.180, dz = 0.35 |
Only < 100 kΩ | 10.0 (6.1) | 10.4 (6.6) | 2D vs. VR t(15) = 0.99, p = 0.340, dz = 0.25 |
Excluded sensors | 7.8 (5.7) | 8.6 (3.2) | 2D vs. VR t(15) = 0.59, p = 0.561, dz= 0.14 |
Valid trials | 278.5 (6.8) | 279.8 (8.6) | 2D vs. VR t(15) = 0.65, p = 0.528, dz= 0.16 |
Measurement | 2D | VR | Statistical Comparison |
---|---|---|---|
Valence | 2D vs. VR F (1, 14) = 0.09, p = 0.78, η² = 0.01 Facial expression F (2, 28) = 120.41, p < 0.001, η² = 0.90; | ||
Neutral | 3.45 (0.21) | 3.56 (0.21) | |
Angry Closed | 1.91 (0.13) | 1.95 (0.13) | |
Angry Open | 1.35 (0.95) | 1.31 (0.95) | |
Arousal | 2D vs. VR F (1, 14) = 1.11, p = 0.31, η² = 0.07 Facial expression F (1.3, 17.5) = 127.72, p < 0.001, η² = 0.90; | ||
Neutral | 1.35 (0.21) | 1.71 (0.21) | |
Angry Closed | 3.03 (0.29) | 3.39 (0.29) | |
Angry Open | 3.91 (0.31) | 4.24 (0.31) | |
IPQ/Immersion | 3.24 (1.08) | 4.01 (0.89) | 2D vs. VR t(15) = 2.48, p = 0.026, dz = 0.62 |
SSQ/Difficulty | 2.57 (0.50) | 3.05 (1.65) | 2D vs. VR t(15) = 3.33, p = 0.005, dz = 0.83 |
Counted trials | |||
Correct ±1 | 94% (9%) | 90% (14%) | 2D vs. VR t(15) = 0.56, p = 0.292, dz = 0.14 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schubring, D.; Kraus, M.; Stolz, C.; Weiler, N.; Keim, D.A.; Schupp, H. Virtual Reality Potentiates Emotion and Task Effects of Alpha/Beta Brain Oscillations. Brain Sci. 2020, 10, 537. https://doi.org/10.3390/brainsci10080537
Schubring D, Kraus M, Stolz C, Weiler N, Keim DA, Schupp H. Virtual Reality Potentiates Emotion and Task Effects of Alpha/Beta Brain Oscillations. Brain Sciences. 2020; 10(8):537. https://doi.org/10.3390/brainsci10080537
Chicago/Turabian StyleSchubring, David, Matthias Kraus, Christopher Stolz, Niklas Weiler, Daniel A. Keim, and Harald Schupp. 2020. "Virtual Reality Potentiates Emotion and Task Effects of Alpha/Beta Brain Oscillations" Brain Sciences 10, no. 8: 537. https://doi.org/10.3390/brainsci10080537
APA StyleSchubring, D., Kraus, M., Stolz, C., Weiler, N., Keim, D. A., & Schupp, H. (2020). Virtual Reality Potentiates Emotion and Task Effects of Alpha/Beta Brain Oscillations. Brain Sciences, 10(8), 537. https://doi.org/10.3390/brainsci10080537