Age Differences in the Efficiency of Filtering and Ignoring Distraction in Visual Working Memory
Abstract
:1. Introduction
1.1. Attending to Different Objects
1.2. Attending to Different Features
1.3. The Present Study
2. Materials and Methods
2.1. Participants
2.2. Materials and Apparatus
2.3. Procedure
2.3.1. Perceptual Matching Tasks
2.3.2. Experiment 1
2.3.3. Experiment 2
3. Data Analysis
4. Results
4.1. Experiment 1
4.1.1. Filtering Ability
4.1.2. Ignoring Ability
4.1.3. Delay Effect: More Time to Ignore Distractors?
4.2. Perceptual Matching Tasks
4.3. Experiment 2
4.3.1. Filtering Ability
4.3.2. Ignoring Ability
5. General Discussion
5.1. Attentional Modulation of Objects
5.2. Attentional Modulation of Features
5.3. Aging Deficits in the Control of Attention?
5.4. Limitations
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Park, D.C.; Lautenschlager, G.; Hedden, T.; Davidson, N.S.; Smith, A.D.; Smith, P.K. Models of visuospatial and verbal memory across the adult life span. Psychol. Aging 2002, 17, 299–320. [Google Scholar] [CrossRef] [PubMed]
- Salthouse, T.A. When does age-related cognitive decline begin? Neurobiol. Aging 2009, 30, 507–514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bopp, K.L.; Verhaeghen, P. Aging and verbal memory span: A meta-analysis. J. Gerontol. B Psychol. Sci. Soc. Sci. 2005, 60, P223–P233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gazzaley, A.; Clapp, W.; Kelley, J.; McEvoy, K.; Knight, R.T.; D’Esposito, M. Age-related top-down suppression deficit in the early stages of cortical visual memory processing. Proc. Natl. Acad. Sci. USA 2008, 105, 13122–13126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonnefond, M.; Jensen, O. Alpha Oscillations Serve to Protect Working Memory Maintenance against Anticipated Distracters. Curr. Biol. 2012, 22, 1969–1974. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dolcos, F.; Miller, B.; Kragel, P.; Jha, A.; Mccarthy, G. Regional brain differences in the effect of distraction during the delay interval of a working memory task. Brain Res. 2007, 1152, 171–181. [Google Scholar] [CrossRef]
- McNab, F.; Dolan, R.J. Dissociating distractor-filtering at encoding and during maintenance. J. Exp. Psychol. Hum. Percept. Perform. 2014, 40, 960–967. [Google Scholar] [CrossRef]
- Robison, M.K.; Miller, A.L.; Unsworth, N. Individual differences in working memory capacity and filtering. J. Exp. Psychol. Hum. Percept. Perform. 2018, 44, 1038–1053. [Google Scholar] [CrossRef]
- McNab, F.; Zeidman, P.; Rutledge, R.B.; Smittenaar, P.; Brown, H.R.; Adams, R.A.; Dolan, R.J. Age-related changes in working memory and the ability to ignore distraction. Proc. Natl. Acad. Sci. USA 2015, 112, 6515. [Google Scholar] [CrossRef] [Green Version]
- Park, Y.E.; Sy, J.L.; Hong, S.W.; Tong, F. Reprioritization of Features of Multidimensional Objects Stored in Visual Working Memory. Psychol. Sci. 2017, 28, 1773–1785. [Google Scholar] [CrossRef]
- Marshall, L.; Bays, P.M. Obligatory encoding of task-irrelevant features depletes working memory resources. J. Vis. 2013, 13, 21. [Google Scholar] [CrossRef] [Green Version]
- Oberauer, K. Working Memory and Attention—A Conceptual Analysis and Review. J. Cogn. 2019, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vogel, E.K.; McCollough, A.W.; Machizawa, M.G. Neural measures reveal individual differences in controlling access to working memory. Nature 2005, 438, 500–503. [Google Scholar] [CrossRef] [PubMed]
- Salthouse, T.A. Aging and measures of processing speed. Biol. Psychol. 2000, 54, 35–54. [Google Scholar] [CrossRef]
- Jost, K.; Mayr, U. Switching between filter settings reduces the efficient utilization of visual working memory. Cogn. Affect. Behav. Neurosci. 2016, 16, 207–218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jost, K.; Bryck, R.L.; Vogel, E.K.; Mayr, U. Are Old Adults Just Like Low Working Memory Young Adults? Filtering Efficiency and Age Differences in Visual Working Memory. Cereb. Cortex 2010, 21, 1147–1154. [Google Scholar] [CrossRef] [Green Version]
- Oberauer, K.; Eichenberger, S. Visual working memory declines when more features must be remembered for each object. Mem. Cognit. 2013, 41, 1212–1227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palmer, J.; Boston, B.; Moore, C.M. Limited capacity for memory tasks with multiple features within a single object. Atten. Percept. Psychophys. 2015, 77, 1488–1499. [Google Scholar] [CrossRef] [Green Version]
- Fougnie, D.; Asplund, C.L.; Marois, R. What are the units of storage in visual working memory? J. Vis. 2010, 10, 27. [Google Scholar] [CrossRef] [Green Version]
- Brockmole, J.R.; Logie, R.H. Age-related change in visual working memory: A study of 55,753 participants aged 8–75. Front. Psychol. 2013, 4. [Google Scholar] [CrossRef] [Green Version]
- Brockmole, J.R.; Parra, M.A.; Sala, S.D.; Logie, R.H. Do binding deficits account for age-related decline in visual working memory? Psychon. Bull. Rev. 2008, 15, 543–547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luck, S.J.; Vogel, E.K. The capacity of visual working memory for features and conjunctions. Nature 1997, 390, 279–281. [Google Scholar] [CrossRef] [PubMed]
- Hardman, K.O.; Cowan, N. Remembering complex objects in visual working memory: Do capacity limits restrict objects or features? J. Exp. Psychol. Learn. Mem. Cogn. 2015, 41, 325–347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, M.; Tang, N.; Wu, F.; Shui, R.; Gao, Z. Robust object-based encoding in visual working memory. J. Vis. 2013, 13, 1. [Google Scholar] [PubMed]
- Yin, J.; Zhou, J.; Xu, H.; Liang, J.; Gao, Z.; Shen, M. Does high memory load kick task-irrelevant information out of visual working memory? Psychon. Bull. Rev. 2012, 19, 218–224. [Google Scholar] [CrossRef] [Green Version]
- Shin, H.; Ma, W.J. Crowdsourced single-trial probes of visual working memory for irrelevant features. J. Vis. 2016, 16, 10. [Google Scholar] [CrossRef] [Green Version]
- Yu, Q.; Shim, W.M. Occipital, parietal, and frontal cortices selectively maintain task-relevant features of multi-feature objects in visual working memory. NeuroImage 2017, 157, 97–107. [Google Scholar] [CrossRef]
- Serences, J.T.; Ester, E.F.; Vogel, E.K.; Awh, E. Stimulus-specific delay activity in human primary visual cortex. Psychol. Sci. 2009, 20, 207–214. [Google Scholar] [CrossRef] [Green Version]
- Niklaus, M.; Nobre, A.C.; van Ede, F. Feature-based attentional weighting and spreading in visual working memory. Sci. Rep. 2017, 7. [Google Scholar] [CrossRef]
- Ye, C.; Hu, Z.; Ristaniemi, T.; Gendron, M.; Liu, Q. Retro-dimension-cue benefit in visual working memory. Sci. Rep. 2016, 6, 35573. [Google Scholar] [CrossRef]
- Brainard, D.H. The psychophysics toolbox. Spat. Vis. 1997, 10, 433–436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pelli, D.G. The VideoToolbox software for visual psychophysics: Transforming numbers into movies. Spat. Vis. 1997, 10, 437–442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, W.; Luck, S.J. Discrete fixed-resolution representations in visual working memory. Nature 2008, 453, 233–235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kruschke, J.K. Bayesian Assessment of Null Values Via Parameter Estimation and Model Comparison. Perspect. Psychol. Sci. 2011, 6, 299–312. [Google Scholar] [CrossRef]
- Rouder, J.N.; Morey, R.D.; Speckman, P.L.; Province, J.M. Default Bayes factors for ANOVA designs. J. Math. Psychol. 2012, 56, 356–374. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing. Available online: https://www.gbif.org/tool/81287/r-a-language-and-environmentfor-statistical-computing (accessed on 13 August 2020).
- Morey, R.D.; Rouder, J.N. BayesFactor: Computation of Bayes Factors for Common Designs. Available online: https://richarddmorey.github.io/BayesFactor/ (accessed on 13 August 2020).
- Kruschke, J.K.; Meredith, M. Bayesian Estimation Supersedes the t-Test. Available online: https://cran.r-project.org/web/packages/BEST/BEST.pdf (accessed on 13 August 2020).
- Salthouse, T.A. Selective review of cognitive aging. J. Int. Neuropsychol. Soc. JINS 2010, 16, 754–760. [Google Scholar] [CrossRef]
- Hdstes, T.; Poon, L.W.; Cerella, J.; Frzard, J.L. Age-related differences in the time course of encoding. Exp. Aging Res. 1982, 8, 175–178. [Google Scholar] [CrossRef]
- Zanto, T.P.; Toy, B.; Gazzaley, A. Delays in neural processing during working memory encoding in normal aging. Neuropsychologia 2010, 48, 13–25. [Google Scholar] [CrossRef] [Green Version]
- Souza, A.S.; Czoschke, S.; Lange, E.B. Gaze-based and attention-based rehearsal in spatial working memory. J. Exp. Psychol. Learn. Mem. Cogn. 2020, 46, 980–1003. [Google Scholar] [CrossRef] [Green Version]
- Maunsell, J.H.R.; Treue, S. Feature-based attention in visual cortex. Trends Neurosci. 2006, 29, 317–322. [Google Scholar] [CrossRef] [Green Version]
- Woodman, G.F.; Vogel, E.K. Selective storage and maintenance of an object’s features in visual working memory. Psychon. Bull. Rev. 2008, 15, 223–229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hasher, L.; Zacks, R.T. Working Memory, Comprehension, and Aging: A Review and a New View. In Psychology of Learning and Motivation; Bower, G.H., Ed.; Academic Press: Cambridge, MA, USA, 1988; pp. 193–225. [Google Scholar]
- Gazzaley, A.; Cooney, J.W.; Rissman, J.; D’Esposito, M. Top-down suppression deficit underlies working memory impairment in normal aging. Nat. Neurosci. 2005, 8, 1298–1300. [Google Scholar] [CrossRef] [PubMed]
- Chao, L.; Knight, R.; Chao, L.L.; Knight, R.T. Prefrontal deficits in attention and inhibitory control with aging. Cereb. Cortex N. Y. N. 1991 1997, 7, 63–69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- West, R.; Alain, C. Age-related decline in inhibitory control contributes to the increased Stroop effect in older adults. Psychophysiology 2000, 37, 179–189. [Google Scholar] [CrossRef] [PubMed]
- Souza, A.S.; Oberauer, K. In search of the focus of attention in working memory: 13 years of the retro-cue effect. Atten. Percept. Psychophys. 2016, 78, 1839–1860. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Souza, A.S. No age deficits in the ability to use attention to improve visual working memory. Psychol. Aging 2016, 31, 456–470. [Google Scholar] [CrossRef]
- Curtis, A.; Turner, G.; Park, N.; Murtha, S.J.E. Improving visual spatial working memory in younger and older adults: Effects of cross-modal cues. Aging Neuropsychol. Cogn. 2017, 26, 1–20. [Google Scholar] [CrossRef]
- Verhaeghen, P.; Cerella, J. Aging, executive control, and attention: A review of meta-analyses. Neurosci. Biobehav. Rev. 2002, 26, 849–857. [Google Scholar] [CrossRef]
- Rey-Mermet, A.; Gade, M.; Oberauer, K. Should we stop thinking about inhibition? Searching for individual and age differences in inhibition ability. J. Exp. Psychol. Learn. Mem. Cogn. 2018, 44, 501–526. [Google Scholar] [CrossRef]
- Rey-Mermet, A.; Gade, M. Inhibition in aging: What is preserved? What declines? A meta-analysis. Psychon. Bull. Rev. 2018, 25, 1695–1716. [Google Scholar] [CrossRef] [Green Version]
- Lepsien, J.; Nobre, A.C. Cognitive control of attention in the human brain: Insights from orienting attention to mental representations. Control. Atten. Actions 2006, 1105, 20–31. [Google Scholar] [CrossRef] [PubMed]
- Newsome, R.N.; Duarte, A.; Pun, C.; Smith, V.M.; Ferber, S.; Barense, M.D. A retroactive spatial cue improved VSTM capacity in mild cognitive impairment and medial temporal lobe amnesia but not in healthy older adults. Neuropsychologia 2015, 77, 148–157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duarte, A.; Hearons, P.; Jiang, Y.; Delvin, M.C.; Newsome, R.N.; Verhaeghen, P. Retrospective attention enhances visual working memory in the young but not the old: An ERP study. Psychophysiology 2013, 50, 465–476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gilchrist, A.L.; Duarte, A.; Verhaeghen, P. Retrospective cues based on object features improve visual working memory performance in older adults. Aging Neuropsychol. Cogn. 2016, 23, 184–195. [Google Scholar] [CrossRef] [Green Version]
- Mok, R.M.; Myers, N.E.; Wallis, G.; Nobre, A.C. Behavioral and Neural Markers of Flexible Attention over Working Memory in Aging. Cereb. Cortex 2016, 26, 1831–1842. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loaiza, V.M.; Souza, A.S. Is refreshing in working memory impaired in older age? Evidence from the retro-cue paradigm. Ann. N. Y. Acad. Sci. 2018, 1424, 175–189. [Google Scholar] [CrossRef]
- Loaiza, V.M.; Souza, A.S. An age-related deficit in preserving the benefits of attention in working memory. Psychol. Aging 2019, 34, 282–293. [Google Scholar] [CrossRef] [Green Version]
- Bopp, K.L.; Verhaeghen, P. Age-Related Differences in Control Processes in Verbal and Visuospatial Working Memory: Storage, Transformation, Supervision, and Coordination. J. Gerontol. Ser. B 2007, 62, P239–P246. [Google Scholar] [CrossRef] [Green Version]
- Zokaei, N.; Husain, M. Working Memory in Alzheimer’s Disease and Parkinson’s Disease. In Processes of Visuospatial Attention and Working Memory; Hodgson, T., Ed.; Springer International Publishing: Cham, Switzerland, 2019; pp. 325–344. [Google Scholar]
- Cecchini, M.A.; Yassuda, M.S.; Bahia, V.S.; de Souza, L.C.; Guimaraes, H.C.; Caramelli, P.; Carthery-Goulart, M.T.; Patrocinio, F.; Foss, M.P.; Tumas, V.; et al. Recalling feature bindings differentiates Alzheimer’s disease from frontotemporal dementia. J. Neurol. 2017, 264, 2162–2169. [Google Scholar] [CrossRef]
Age Group | Age Effect (Older < Younger) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Younger | Older | Raw Score | Effect Size | |||||||
Condition | M | 95% HDI | M | 95% HDI | M | 95% HDI | M | 95% HDI | ROPE | BF10 |
Low | 0.66 | [0.62,0.70] | 0.52 | [0.49,0.56] | 0.14 | [0.09,0.19] | 1.47 | [0.85,2.10] | 0 | 5 × 104 |
High-Simu | 0.57 | [0.54,0.61] | 0.44 | [0.40,0.48] | 0.13 | [0.08,0.18] | 1.38 | [0.82,2.05] | 0 | 3.4 × 104 |
High-Seq | 0.51 | [0.48,0.54] | 0.36 | [0.33,0.40] | 0.15 | [0.10,0.19] | 1.57 | [0.92,2.28] | 0 | 1.4 × 105 |
Filter | 0.67 | [0.63,0.71] | 0.58 | [0.54,0.61] | 0.10 | [0.05,0.15] | 1.03 | [0.45,1.60] | 0 | 162 |
Ignore | 0.64 | [0.61,0.68] | 0.54 | [0.51,0.58] | 0.10 | [0.06,0.15] | 1.10 | [0.55,1.73] | 0 | 970 |
Ignore+Delay | 0.62 | [0.59,0.66] | 0.50 | [0.47,0.54] | 0.12 | [0.07,0.17] | 1.33 | [0.71,1.89] | 0 | 4500 |
Contrasts | ||||||||||
Filter = Low-Load | ||||||||||
Raw score | 0.01 | [−0.02,0.04] | 0.05 | [0.02,0.08] | −0.04 | [−0.08,0.0] | −0.50 | [−1.07,0.0] | 0.05 | 0.09 |
Effect size | 0.14 | [−0.24,0.53] | 0.70 | [0.28,1.12] | ||||||
p(ROPE) | 0.31 | 0 | ||||||||
BF10 | 0.25 | 57 | ||||||||
Filter = High-Simu | ||||||||||
Raw score | 0.09 | [0.07,0.12] | 0.13 | [0.10,0.17] | −0.04 | [−0.08,0.0] | −0.48 | [−1.04,0.06] | 0.07 | 0.10 |
Effect size | 1.52 | [0.96,2.09] | 1.38 | [0.85,2.09] | ||||||
p(ROPE) | 0 | 0 | ||||||||
BF10 | 3.9 × 106 | 5.3 × 105 | ||||||||
Ignore = Low-Load | ||||||||||
Raw score | −0.01 | [−0.04,0.01] | 0.02 | [−0.01,0.05] | −0.03 | [−0.07,0.0] | −0.41 | [−0.96,0.11] | 0.09 | 0.11 |
Effect size | −0.18 | [−0.58,0.19] | 0.22 | [−0.14,0.62] | ||||||
p(ROPE) | 0.25 | 0.20 | ||||||||
BF10 | 0.32 | 0.39 | ||||||||
Ignore = High-Seq | ||||||||||
Raw score | 0.14 | [0.11,0.17] | 0.18 | [0.13,0.22] | −0.04 | [−0.09,0.01] | −0.44 | [−0.95,0.13] | 0.09 | 0.11 |
Effect size | 1.83 | [1.23,2.55] | 1.66 | [1.05,2.27] | ||||||
p(ROPE) | 0 | 0 | ||||||||
BF10 | 1.7 × 108 | 1.5 × 107 | ||||||||
Ignore-Delay > Ignore | ||||||||||
Raw score | −0.02 | [−0.04,0.00] | −0.04 | [−0.06,−0.01] | 0.01 | [−0.02,0.05] | 0.14 | [−0.33,0.71] | 0.23 | 0.16 |
Effect size | −0.41 | [−0.82,−0.02] | −0.48 | [−0.90,−0.10] | ||||||
p(ROPE) | 0.05 | 0.02 | ||||||||
BF10 | 0.07 | 0.06 |
Age Group | Age Effect (Younger < Older) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Younger | Older | Raw Score | Effect Size | |||||||
Condition | M | 95% HDI | M | 95% HDI | M | 95% HDI | M | 95% HDI | ROPE | BF10 |
Single-Feature | 51.8 | [46.9,56.8] | 45.0 | [39.8,49.8] | 6.84 | [−0.15,13.7] | 0.51 | [−0.02,1.06] | 0.05 | 0.10 |
Color | 50.8 | [45.4,56.2] | 45.2 | [39.7,50.3] | 5.66 | [−1.81,13.3] | 0.40 | [−0.14,0.93] | 0.10 | 0.11 |
Orientation | 52.8 | [47.0,58.5] | 44.9 | [39.4,50.4] | 7.92 | [0.06,16.0] | 0.52 | [−0.02,1.10] | 0.05 | 0.10 |
Dual-Feature | 60.6 | [55.7,65.5] | 59.1 | [54.8,63.5] | 1.54 | [−4.81,7.95] | 0.07 | [−0.39,0.67] | 0.26 | 0.20 |
Color | 63.7 | [58.9,68.3] | 60.9 | [57.0,65.0] | 2.73 | [−3.31,8.83] | 0.26 | [−0.28,0.77] | 0.20 | 0.15 |
Orientation | 57.4 | [51.4,63.6] | 57.3 | [51.2,63.2] | 0.12 | [−8.7,8.23] | −0.02 | [−0.52,0.52] | 0.30 | 0.26 |
Filter | 50.7 | [44.1,57.1] | 45.6 | [40.0,51.0] | 5.06 | [−3.79,13.2] | 0.32 | [−0.22,0.85] | 0.15 | 0.14 |
Color | 49.4 | [43.4,55.4] | 47.4 | [42.0,52.5] | 1.98 | [−5.93,9.94] | 0.14 | [−0.41,0.66] | 0.25 | 0.20 |
Orientation | 52.1 | [44.7,59.8] | 44.0 | [37.0,51.0] | 8.07 | [−2.02,18.5] | 0.37 | [−0.12,0.95] | 0.09 | 0.12 |
Ignore | 63.4 | [58.6,68.6] | 58.9 | [54.6,63.6] | 4.47 | [−2.04,11.4] | 0.35 | [−0.19,0.89] | 0.13 | 0.13 |
Color | 63.2 | [58.1,68.4] | 61.0 | [56.0,65.6] | 2.22 | [−5.11,9.1] | 0.19 | [−0.37,0.72] | 0.23 | 0.18 |
Orientation | 63.8 | [57.9,70.0] | 56.8 | [51.2,62.6] | 7.00 | [−1.10,15.3] | 0.45 | [−0.09,1.01] | 0.07 | 0.11 |
Contrasts | ||||||||||
Dual > Single | ||||||||||
Raw score | 8.51 | [4.91,12.1] | 13.7 | [9.45,18.0] | −5.15 | [−10.7,0.42] | −0.47 | [−1.04,0.03] | 0.06 | 2.29 |
Effect size | 0.90 | [0.47,1.37] | 1.21 | [0.74,1.76] | ||||||
p(ROPE) | 0 | 0 | ||||||||
BF10 | 2402 | 1.6 × 105 | ||||||||
Single = Filter | ||||||||||
Raw score | 1.2 | [−2.93,5.17] | −0.80 | [−4.09,2.55] | 2.01 | [−3.04,7.40] | 0.19 | [−0.33,0.73] | 0.22 | 0.16 |
Effect size | 0.11 | [−0.27,0.49] | −0.11 | [−0.48,0.28] | ||||||
p(ROPE) | 0.34 | 0.36 | ||||||||
BF10 | 0.22 | 0.22 | ||||||||
Dual = Filter | ||||||||||
Raw score | 9.92 | [6.40,12.10] | 13.2 | [8.93,17.40] | −3.20 | [−8.57,2.24] | −0.32 | [−0.86,0.21] | 0.15 | 0.80 |
Effect size | 1.08 | [0.58,1.70] | 1.17 | [0.66,1.85] | ||||||
p(ROPE) | 0 | 0 | ||||||||
BF10 | 4776 | 1.7 × 105 | ||||||||
Single = Ignore | ||||||||||
Raw score | −11.4 | [−14.8,−8.02] | −14.0 | [−17.7,−10.6] | 2.57 | [−2.19,7.41] | 0.33 | [−0.24,0.84] | 0.18 | 0.64 |
Effect size | −1.35 | [−1.91,−0.84] | −1.49 | [−2.17,−0.94] | ||||||
p(ROPE) | 0 | 0 | ||||||||
BF10 | 4.9 × 105 | 2.5 × 106 | ||||||||
Dual = Ignore | ||||||||||
Raw score | −3.14 | [−6.34,0.17] | −0.22 | [−3.54,3.03] | −2.88 | [−7.57,1.72] | −0.32 | [−0.86,0.20] | 0.14 | 0.87 |
Effect size | −0.40 | [−0.78,0.02] | −0.00 | [−0.40,0.35] | ||||||
p(ROPE) | 0.08 | 0.40 | ||||||||
BF10 | 0.97 | 0.19 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maniglia, M.R.; Souza, A.S. Age Differences in the Efficiency of Filtering and Ignoring Distraction in Visual Working Memory. Brain Sci. 2020, 10, 556. https://doi.org/10.3390/brainsci10080556
Maniglia MR, Souza AS. Age Differences in the Efficiency of Filtering and Ignoring Distraction in Visual Working Memory. Brain Sciences. 2020; 10(8):556. https://doi.org/10.3390/brainsci10080556
Chicago/Turabian StyleManiglia, Mariana R., and Alessandra S. Souza. 2020. "Age Differences in the Efficiency of Filtering and Ignoring Distraction in Visual Working Memory" Brain Sciences 10, no. 8: 556. https://doi.org/10.3390/brainsci10080556
APA StyleManiglia, M. R., & Souza, A. S. (2020). Age Differences in the Efficiency of Filtering and Ignoring Distraction in Visual Working Memory. Brain Sciences, 10(8), 556. https://doi.org/10.3390/brainsci10080556