Coordinated Human Brainstem and Spinal Cord Networks during the Expectation of Pain Have Elements Unique from Resting-State Effects
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants and Experimental Setup
2.1.1. Predictable Pain Data
2.1.2. Resting State Data
2.2. Functional MRI Data Acquisition
2.3. Data Preprocessing
2.3.1. Predictable Pain Data
2.3.2. Resting State Data
2.4. Data Analysis
2.4.1. Structural Equation Modeling (SEM)
2.4.2. Analysis of Connectivity Networks in the Predictable Pain Data
2.4.3. Comparison of Predictable Pain and Resting State Data
3. Results
3.1. Analysis of Connectivity Networks in the Predictable Pain Data
3.2. Comparison of Predictable Pain and Resting State Data
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Powers, J.M.; Ioachim, G.; Stroman, P. Ten Key Insights into the Use of Spinal Cord fMRI. Brain Sci. 2018, 8, 173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stroman, P.; Bosma, R.L.; Cotoi, A.I.; Leung, R.H.; Kornelsen, J.; Lawrence-Dewar, J.M.; Pukall, C.F.; Staud, R. Continuous Descending Modulation of the Spinal Cord Revealed by Functional MRI. PLoS ONE 2016, 11, e0167317. [Google Scholar] [CrossRef] [PubMed]
- Kong, Y.; Eippert, F.; Beckmann, C.F.; Andersson, J.; Finsterbusch, J.; Büchel, C.; Tracey, I.; Brooks, J.C. Intrinsically organized resting state networks in the human spinal cord. Proc. Natl. Acad. Sci. USA 2014, 111, 18067–18072. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barry, R.L.; Smith, S.A.; Dula, A.N.; Gore, J.C. Resting state functional connectivity in the human spinal cord. Elife 2014, 3, e02812. [Google Scholar] [CrossRef]
- Wei, P.; Li, J.; Gao, F.; Ye, D.; Zhong, Q.; Liu, S. Resting state networks in human cervical spinal cord observed with fMRI. Graefe’s Arch. Clin. Exp. Ophthalmol. 2009, 108, 265–271. [Google Scholar] [CrossRef]
- Eippert, F.; Kong, Y.; Winkler, A.M.; Andersson, J.L.; Finsterbusch, J.; Büchel, C.; Brooks, J.C.; Tracey, I. Investigating resting-state functional connectivity in the cervical spinal cord at 3 T. NeuroImage 2017, 147, 589–601. [Google Scholar] [CrossRef] [Green Version]
- Harita, S.; Ioachim, G.; Powers, J.; Stroman, P. Investigation of Resting-State BOLD Networks in the Human Brainstem and Spinal Cord. Neuroscience 2019, 404, 71–81. [Google Scholar] [CrossRef]
- Ioachim, G.; Powers, J.M.; Stroman, P.W. Comparing Coordinated Networks across the Brainstem and Spinal Cord in the Resting State and Altered Cognitive State. Brain Connect. 2019, 9, 415–424. [Google Scholar] [CrossRef]
- Stroman, P.W.; Ioachim, G.; Powers, J.M.; Staud, R.; Pukall, C. Pain processing in the human brainstem and spinal cord before, during, and after the application of noxious heat stimuli. Pain 2018, 159, 2012–2020. [Google Scholar] [CrossRef]
- Millan, M.J. Descending control of pain. Prog. Neurobiol. 2002, 66, 355–474. [Google Scholar] [CrossRef]
- Vierck, C.J.; Cannon, R.L.; Fry, G.; Maixner, W.; Whitsel, B.L. Characteristics of temporal summation of second pain sensations elicited by brief contact of glabrous skin by a preheated thermode. J. Neurophysiol. 1997, 78, 992–1002. [Google Scholar] [CrossRef] [PubMed]
- Uddin, Z.; MacDermid, J.C. Quantitative Sensory Testing in Chronic Musculoskeletal Pain. Pain Med. 2016, 17, 1694–1703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uddin, Z.; MacDermid, J.C.; Moro, J.; Galea, V.; Gross, A.R. Psychophysical and Patient Factors as Determinants of Pain, Function and Health Status in Shoulder Disorders. Open Orthop. J. 2016, 10, 466–480. [Google Scholar] [CrossRef] [PubMed]
- Müller, M.; Bleeck, J.; Ruf, M. Vertebral artery anomaly with entry at C4—Avoiding a surgical pitfall: A case report. Eur. Spine J. 2008, 17, 291–293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harita, S.; Stroman, P. Confirmation of resting-state BOLD fluctuations in the human brainstem and spinal cord after identification and removal of physiological noise. Magn. Reson. Med. 2017, 78, 2149–2156. [Google Scholar] [CrossRef] [PubMed]
- Bosma, R.L.; Mojarad, E.A.; Leung, L.; Pukall, C.; Staud, R.; Stroman, P. FMRI of spinal and supra-spinal correlates of temporal pain summation in fibromyalgia patients. Hum. Brain Mapp. 2016, 37, 1349–1360. [Google Scholar] [CrossRef] [Green Version]
- Bosma, R.; Stroman, P. Assessment of data acquisition parameters, and analysis techniques for noise reduction in spinal cord fMRI data. Magn. Reson. Imaging 2014, 32, 473–481. [Google Scholar] [CrossRef]
- Bosma, R.L.; Mojarad, E.A.; Leung, L.; Pukall, C.; Staud, R.; Stroman, P. Neural correlates of temporal summation of second pain in the human brainstem and spinal cord. Hum. Brain Mapp. 2015, 36, 5038–5050. [Google Scholar] [CrossRef]
- Dobek, C.E.; Beynon, M.E.; Bosma, R.L.; Stroman, P. Music Modulation of Pain Perception and Pain-Related Activity in the Brain, Brain Stem, and Spinal Cord: A Functional Magnetic Resonance Imaging Study. J. Pain 2014, 15, 1057–1068. [Google Scholar] [CrossRef]
- Myronenko, A.; Song, X. Image Registration by Minimization of Residual Complexity. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 49–56. [Google Scholar]
- Myronenko, A.; Song, X. Intensity-Based Image Registration by Minimizing Residual Complexity. IEEE Trans. Med. Imaging 2010, 29, 1882–1891. [Google Scholar] [CrossRef]
- Friston, K.; Jezzard, P.; Turner, R. Analysis of functional MRI time-series. Hum. Brain Mapp. 1994, 1, 153–171. [Google Scholar] [CrossRef]
- Khan, H.; Stroman, P. Inter-individual differences in pain processing investigated by functional magnetic resonance imaging of the brainstem and spinal cord. Neuroscience 2015, 307, 231–241. [Google Scholar] [CrossRef] [PubMed]
- Talairach, J.; Tournoux, P. Co-Planar Stereotaxic Atlas of the Human Brain; Thieme Medical Publishers Inc.: New York, NY, USA, 1988. [Google Scholar]
- Gray, H.; Williams, P.L.; Bannister, L.H. Gray’s Anatomy: The Anatomical Basis of Medicine and Surgery; Churchill-Livingstone: New York, NY, USA, 1995; Volume 38, pp. 975–1011. [Google Scholar]
- Naidich, T.P.; Duvernoy, H.M.; Delman, B.N.; Sorensen, A.G.; Kollias, S.S.; Haacke, E.M. Internal Architecture of the Brain Stem with Key Axial Section. In Duvernoy’s Atlas of the Human Brain Stem and Cerebellum; Springer Science and Business Media LLC.: New York, NY, USA, 2009; pp. 79–82. [Google Scholar]
- Lang, J.; Bartram, C.T. Fila radicularia of the ventral and dorsal radices of the human spinal cord. Gegenbaurs Morphol. Jahrb. 1982, 128, 417–462. [Google Scholar] [PubMed]
- Lang, J. Clinical Anatomy of the Cervical Spine; Thieme Medical Publishers: New York, NY, USA, 1993. [Google Scholar]
- Stroman, P.W. Validation of Structural Equation Modeling Methods for Functional MRI Data Acquired in the Human Brainstem and Spinal Cord. Crit. Rev. Biomed. Eng. 2016, 44, 227–241. [Google Scholar] [CrossRef] [PubMed]
- Llorca-Torralba, M.; Borges, G.; Neto, F.; Mico, J.A.; Berrocoso, E. Noradrenergic Locus Coeruleus pathways in pain modulation. Neuroscience 2016, 338, 93–113. [Google Scholar] [CrossRef]
- Samuels, E.R.; Szabadi, E. Functional Neuroanatomy of the Noradrenergic Locus Coeruleus: Its Roles in the Regulation of Arousal and Autonomic Function Part II: Physiological and Pharmacological Manipulations and Pathological Alterations of Locus Coeruleus Activity in Humans. Curr. Neuropharmacol. 2008, 6, 254–285. [Google Scholar] [CrossRef] [Green Version]
- Schwarz, L.A.; Luo, L. Organization of the Locus Coeruleus-Norepinephrine System. Curr. Biol. 2015, 25, R1051–R1056. [Google Scholar] [CrossRef] [Green Version]
- Uddin, Z.; Woznowski-Vu, A.; Flegg, D.; Aternali, A.; Wickens, R.; Wideman, T.H. Evaluating the Novel Added Value of Neurophysiological Pain Sensitivity within the Fear-Avoidance Model of Pain. Can. J. Pain 2019, 23, 957–972. [Google Scholar] [CrossRef]
- Greicius, M.; Krasnow, B.; Reiss, A.L.; Menon, V. Functional connectivity in the resting brain: A network analysis of the default mode hypothesis. Proc. Natl. Acad. Sci. USA 2002, 100, 253–258. [Google Scholar] [CrossRef] [Green Version]
- Watkins, L.R.; Wiertelak, E.P.; McGorry, M.; Martinez, J.; Schwartz, B.; Sisk, D.; Maier, S.F. Neurocircuitry of conditioned inhibition of analgesia: Effects of amygdala, dorsal raphe, ventral medullary, and spinal cord lesions on antianalgesia in the rat. Behav. Neurosci. 1998, 112, 360–378. [Google Scholar] [CrossRef]
- Rhudy, J.L.; Meagher, M.W. Individual Differences in the Emotional Reaction to Shock Determine Whether Hypoalgesia Is Observed. Pain Med. 2003, 4, 244–256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Craig, A.D. Interoception: The sense of the physiological condition of the body. Curr. Opin. Neurobiol. 2003, 13, 500–505. [Google Scholar] [CrossRef]
- Critchley, H.D. Psychophysiology of neural, cognitive and affective integration: FMRI and autonomic indicants. Int. J. Psychophysiol. 2009, 73, 88–94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hugdahl, K. Cognitive influences on human autonomic nervous system function. Curr. Opin. Neurobiol. 1996, 6, 252–258. [Google Scholar] [CrossRef]
- Eippert, F.; Finsterbusch, J.; Bingel, U.; Büchel, C. Direct Evidence for Spinal Cord Involvement in Placebo Analgesia. Science 2009, 326, 404. [Google Scholar] [CrossRef]
- Geuter, S.; Büchel, C. Facilitation of Pain in the Human Spinal Cord by Nocebo Treatment. J. Neurosci. 2013, 33, 13784–13790. [Google Scholar] [CrossRef]
- Tinnermann, A.; Geuter, S.; Sprenger, C.; Finsterbusch, J.; Büchel, C. Interactions between brain and spinal cord mediate value effects in nocebo hyperalgesia. Science 2017, 358, 105–108. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ioachim, G.; Powers, J.M.; Warren, H.J.M.; Stroman, P.W. Coordinated Human Brainstem and Spinal Cord Networks during the Expectation of Pain Have Elements Unique from Resting-State Effects. Brain Sci. 2020, 10, 568. https://doi.org/10.3390/brainsci10090568
Ioachim G, Powers JM, Warren HJM, Stroman PW. Coordinated Human Brainstem and Spinal Cord Networks during the Expectation of Pain Have Elements Unique from Resting-State Effects. Brain Sciences. 2020; 10(9):568. https://doi.org/10.3390/brainsci10090568
Chicago/Turabian StyleIoachim, Gabriela, Jocelyn M. Powers, Howard J. M. Warren, and Patrick W. Stroman. 2020. "Coordinated Human Brainstem and Spinal Cord Networks during the Expectation of Pain Have Elements Unique from Resting-State Effects" Brain Sciences 10, no. 9: 568. https://doi.org/10.3390/brainsci10090568
APA StyleIoachim, G., Powers, J. M., Warren, H. J. M., & Stroman, P. W. (2020). Coordinated Human Brainstem and Spinal Cord Networks during the Expectation of Pain Have Elements Unique from Resting-State Effects. Brain Sciences, 10(9), 568. https://doi.org/10.3390/brainsci10090568