Evaluation of Automatic Segmentation of Thalamic Nuclei through Clinical Effects Using Directional Deep Brain Stimulation Leads: A Technical Note
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient
2.2. Preoperative Planning
2.3. Surgical Procedure
2.4. Postoperative Clinical Testing
2.5. VTA Modeling
2.6. Ethics
3. Results
3.1. Lead Location and Orientation
3.2. Tremor Control
3.3. Side Effects
3.3.1. Sensory Side Effect
3.3.2. Capsular Side Effects
3.4. VTA Model
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Nickl, R.C.; Reich, M.M.; Pozzi, N.G.; Fricke, P.; Lange, F.; Roothans, J.; Volkmann, J.; Matthies, C. Rescuing Suboptimal Outcomes of Subthalamic Deep Brain Stimulation in Parkinson Disease by Surgical Lead Revision. Neurosurgery 2019, 85, E314–E321. [Google Scholar] [CrossRef] [PubMed]
- Akram, H.; Dayal, V.; Mahlknecht, P.; Georgiev, D.; Hyam, J.; Foltynie, T.; Limousin, P.; De Vita, E.; Jahanshahi, M.; Ashburner, J.; et al. Connectivity derived thalamic segmentation in deep brain stimulation for tremor. NeuroImage Clin. 2018, 18, 130–142. [Google Scholar] [CrossRef] [PubMed]
- Akram, H.; Hariz, M.; Zrinzo, L. Connectivity derived thalamic segmentation: Separating myth from reality. NeuroImage Clin. 2019, 22. [Google Scholar] [CrossRef] [PubMed]
- Boutet, A.; Gramer, R.; Steele, C.J.; Elias, G.J.B.; Germann, J.; Maciel, R.; Kucharczyk, W.; Zrinzo, L.; Lozano, A.M.; Fasano, A. Neuroimaging Technological Advancements for Targeting in Functional Neurosurgery. Curr. Neurol. Neurosci. Rep. 2019, 19, 42. [Google Scholar] [CrossRef] [PubMed]
- Pouratian, N.; Sheth, S. (Eds.) Stereotactic and Functional Neurosurgery: Principles and Applications; Springer: Berlin, Germany, 2020; Available online: https://www.springer.com/gp/book/9783030349059 (accessed on 10 August 2020).
- Morishita, T.; Higuchi, M.-A.; Kobayashi, H.; Abe, H.; Higashi, T.; Inoue, T. A retrospective evaluation of thalamic targeting for tremor deep brain stimulation using high-resolution anatomical imaging with supplementary fiber tractography. J. Neurol. Sci. 2019, 398, 148–156. [Google Scholar] [CrossRef] [PubMed]
- Reinacher, P.C.; Várkuti, B.; Krüger, M.T.; Piroth, T.; Egger, K.; Roelz, R.; Coenen, V.A. Automatic Segmentation of the Subthalamic Nucleus: A Viable Option to Support Planning and Visualization of Patient-Specific Targeting in Deep Brain Stimulation. Oper. Neurosurg. 2019, 17, 497–502. [Google Scholar] [CrossRef] [PubMed]
- Schaltenbrand, G.; Wahren, W.; Hassler, R.G. Atlas for Stereotaxy of the Human Brain; Thieme: Stuttgart, Germany, 1977. [Google Scholar]
- Reinacher, P.C.; Krüger, M.; Coenen, V.A.; Shah, M.J.; Roelz, R.; Jenkner, C.; Egger, K. Determining the Orientation of Directional Deep Brain Stimulation Electrodes Using 3D Rotational Fluoroscopy. Am. J. Neuroradiol. 2017, 38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stacy, M.; Elble, R.J.; Ondo, W.G.; Wu, S.-C.; Hulihan, J. Assessment of interrater and intrarater reliability of the Fahn–Tolosa–Marin Tremor Rating Scale in essential tremor. Mov. Disord. 2007, 22, 833–838. [Google Scholar] [CrossRef] [PubMed]
- Frankemolle, A.M.M.; Wu, J.; Noecker, A.M.; Voelcker-Rehage, C.; Ho, J.C.; Vitek, J.L.; McIntyre, C.C.; Alberts, J.L. Reversing cognitive–motor impairments in Parkinson’s disease patients using a computational modelling approach to deep brain stimulation programming. Brain 2010, 133, 746–761. [Google Scholar] [CrossRef] [PubMed]
- Horn, A.; Kühn, A.A. Lead-DBS: A toolbox for deep brain stimulation electrode localizations and visualizations. NeuroImage 2015, 107, 127–135. [Google Scholar] [CrossRef] [PubMed]
- Horn, A.; Li, N.; Dembek, T.A.; Kappel, A.; Boulay, C.B.; Ewert, S.; Tietze, A.; Husch, A.; Perera, T.; Neumann, W.-J.; et al. Lead-DBS v2: Towards a comprehensive pipeline for deep brain stimulation imaging. NeuroImage 2019, 184, 293–316. [Google Scholar] [CrossRef] [PubMed]
- Horn, A.; Neumann, W.-J.; Degen, K.; Schneider, G.-H.; Kühn, A.A. Toward an electrophysiological “sweet spot” for deep brain stimulation in the subthalamic nucleus. Hum. Brain Mapp. 2017, 38, 3377–3790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Treu, S.; Strange, B.; Oxenford, S.; Neumann, W.-J.; Kühn, A.; Li, N.; Horn, A. Deep brain stimulation: Imaging on a group level. NeuroImage 2020, 219, 117018. [Google Scholar] [CrossRef] [PubMed]
- D’Albis, T.; Haegelen, C.; Essert, C.; Fernández-Vidal, S.; Lalys, F.; Jannin, P. PyDBS: An automated image processing workflow for deep brain stimulation surgery. Int. J. Comput. Assist. Radiol. Surg. 2015, 10, 117–128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krüger, M.T.; Kurtev-Rittstieg, R.; Kägi, G.; Naseri, Y.; Hägele-Link, S.; Brugger, F. Evaluation of Automatic Segmentation of Thalamic Nuclei through Clinical Effects Using Directional Deep Brain Stimulation Leads: A Technical Note. Brain Sci. 2020, 10, 642. https://doi.org/10.3390/brainsci10090642
Krüger MT, Kurtev-Rittstieg R, Kägi G, Naseri Y, Hägele-Link S, Brugger F. Evaluation of Automatic Segmentation of Thalamic Nuclei through Clinical Effects Using Directional Deep Brain Stimulation Leads: A Technical Note. Brain Sciences. 2020; 10(9):642. https://doi.org/10.3390/brainsci10090642
Chicago/Turabian StyleKrüger, Marie T., Rebecca Kurtev-Rittstieg, Georg Kägi, Yashar Naseri, Stefan Hägele-Link, and Florian Brugger. 2020. "Evaluation of Automatic Segmentation of Thalamic Nuclei through Clinical Effects Using Directional Deep Brain Stimulation Leads: A Technical Note" Brain Sciences 10, no. 9: 642. https://doi.org/10.3390/brainsci10090642
APA StyleKrüger, M. T., Kurtev-Rittstieg, R., Kägi, G., Naseri, Y., Hägele-Link, S., & Brugger, F. (2020). Evaluation of Automatic Segmentation of Thalamic Nuclei through Clinical Effects Using Directional Deep Brain Stimulation Leads: A Technical Note. Brain Sciences, 10(9), 642. https://doi.org/10.3390/brainsci10090642