Promotion of Poststroke Motor-Function Recovery with Repetitive Transcranial Magnetic Stimulation by Regulating the Interhemispheric Imbalance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Eligibility
2.2. Information Sources and Search Strategy
2.3. Study Selection
3. Result
3.1. Interhemispheric Imbalance in Stroke: Relationship with Sensory-Motor Impairment
3.2. rTMS on Motor-Function Recovery after Acute Stroke
3.3. rTMS on Motor-Function Recovery after Chronic Stroke
3.4. Mechanism of rTMS in Poststroke Motor-Function Recovery
4. Pitfalls and Limitations of rTMS
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Markus, H. Stroke: Causes and clinical features. Medicine 2016, 44, 515–520. [Google Scholar] [CrossRef]
- Swayne, O.B.C.; Rothwell, J.C.; Ward, N.S.; Greenwood, R.J. Stages of Motor Output Reorganization after Hemispheric Stroke Suggested by Longitudinal Studies of Cortical Physiology. Cereb. Cortex 2008, 18, 1909–1922. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lewi, P.M.; Thomson, R.H.; Rosenfeld, J.V.; Fitzgerald, P.B. Brain Neuromodulation Techniques: A Review. Review 2016, 22, 406–421. [Google Scholar]
- Pell, G.S.; Roth, Y.; Zangen, A. Modulation of cortical excitability induced by repetitive transcranial magnetic stimulation: Influence of timing and geometrical parameters and underlying mechanisms. Prog. Neurobiol. 2010, 93, 59–98. [Google Scholar] [CrossRef] [PubMed]
- Reis, J.; Swayne, O.; Vandermeeren, Y.; Camus, M.; Dimyan, M.A.; Harrislove, M.L.; Perez, M.A.; Ragert, P.; Rothwell, J.C.; Cohen, L.G. Contribution of transcranial magnetic stimulation to the understanding of cortical mechanisms involved in motor control. J. Physiol. 2008, 586, 325–351. [Google Scholar] [CrossRef]
- Shen, X.Y.; Liu, M.Y.; Cheng, Y.; Jia, C.; Pan, X.Y.; Gou, Q.Y.; Liu, X.L.; Cao, H.; Zhang, L.H. Repetitive transcranial magnetic stimulation for the treatment of post-stroke depression: A systematic review and meta-analysis of randomized controlled clinical trials. J. Affect. Disord. 2017, 211, 65–74. [Google Scholar] [CrossRef]
- Duan, X.; Yao, G.; Liu, Z.L.; Cui, R.J.; Yang, W. Mechanisms of Transcranial Magnetic Stimulation Treating on Post-stroke Depression. Front. Neurosci. 2018, 12, 215. [Google Scholar] [CrossRef] [PubMed]
- Schjetnan, A.G.P.; Faraji, J.; Metz, G.A.; Tatsuno, M.; Luczak, A. Transcranial direct current stimulation in stroke rehabilitation: A review of recent advancements. Stroke Res. Treat 2013, 2013, 170256. [Google Scholar]
- Siegel, J.S.; Ramsey, L.; Snyder, A.Z.; Metcalf, N.V.; Chacko, R.V.; Weinberger, K.Q.; Baldassarre, A.; Hacker, C.D.; Shulman, G.L.; Corbetta, M. Disruptions of network connectivity predict impairment in multiple behavioral domains after stroke. Proc. Natl. Acad. Sci. USA 2016, 113, 158. [Google Scholar] [CrossRef] [Green Version]
- Metcalf, N.V.; Shulman, J.L.; Corbetta, M. Structural disconnections explain brain network dysfunction after stroke. bioRxiv 2019, 28, 562165. [Google Scholar]
- Xu, L.; Li, M.; Zhou, H.; Zhang, B.; Zhang, Z.; Han, N.; Wu, T. Rapid characterization of the chemical constituents and rat metabolites of the Wen-Jing decoction by ultra high performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry. J. Sep. Sci. 2019, 85, 502–513. [Google Scholar] [CrossRef] [PubMed]
- Murase, N.; Duque, J.; Mazzocchio, R.; Cohen, L.G. Influence of interhemispheric interactions on motor function in chronic stroke. Ann. Neurol. 2004, 55, 400–409. [Google Scholar] [CrossRef] [PubMed]
- Takechi, U.; Matsunaga, K.; Nakanishi, R.; Yamanaga, H.; Murayama, N.; Mafune, K.; Tsuji, S. Longitudinal changes of motor cortical excitability and transcallosal inhibition after subcortical stroke. Clin. Neurophysiol. 2014, 125, 2055–2069. [Google Scholar] [CrossRef]
- Takeuchi, N.; Tada, T.; Toshima, M.; Ikoma, K. Correlation of motor function with transcallosal and intracortical inhibition after stroke. J. Rehabil. Med. 2010, 42, 962–966. [Google Scholar] [CrossRef] [Green Version]
- Bertolucci, F.; Chisari, C.; Fregni, F. The potential dual role of transcallosal inhibition in post-stroke motor recovery. Restor. Neurol. Neurosci. 2018, 36, 83–97. [Google Scholar] [CrossRef] [PubMed]
- Boddington, L.J.; Reynolds, J.N.J. Targeting interhemispheric inhibition with neuromodulation to enhance stroke rehabilitation. Brain Stimul. 2017, 10, 214–222. [Google Scholar] [CrossRef] [PubMed]
- Fisicaro, F.; Lanza, G.; Grasso, A.A.; Pennisi, G.; Bella, R.; Paulus, W.; Pennisi, M. Repetitive transcranial magnetic stimulation in stroke rehabilitation: Review of the current evidence and pitfalls. Ther. Adv. Neurol. Disord. 2019, 12, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Rounis, E.; Zu Huang, Y. Theta burst stimulation in humans: A need for better understanding effects of brain stimulation in health and disease. Exp. Brain Res. 2020, 238, 7–8. [Google Scholar] [CrossRef]
- Madhavan, S.; Yerrapothu, M.; Williams, A.; Gradowska, A. Does the presence of a TMS-evoked MEP predict walking speeds in individuals with chronic stroke? Brain Stimul. 2017, 10, 359–360. [Google Scholar] [CrossRef]
- Cantone, M.; Lanza, G.; Vinciguerra, L.; Puglisi, V.; Ricceri, R.; Fisicaro, F.; Vagli, C.; Bella, R.; Ferri, R.; Pennisi, G.; et al. Age, Height, and Sex on Motor Evoked Potentials: Translational Data From a Large Italian Cohort in a Clinical Environment. Front. Neurosci. 2019, 13, 183. [Google Scholar] [CrossRef]
- Veldema, J.; Bosl, K.; Nowak, D.A. Cortico-spinal excitability and hand motor recovery in stroke: A longitudinal study. J. Neurol. 2018, 265, 1071–1078. [Google Scholar] [CrossRef] [PubMed]
- Berenguer-Rocha, M.; Baltar, A.; Rocha, S.; Shirahige, L.; Brito, R.; Monte-Silva, K. Interhemispheric asymmetry of the motor cortex excitability in stroke: Relationship with sensory-motor impairment and injury chronicity. Nat. Rev. Neurosci. 2020, in press. [Google Scholar]
- Rossi, S.; Hallett, M.; Rossini, P.M.; Pascualleone, A. Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin. Neurophysiol. 2009, 120, 2008–2039. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wessel, M.J.; Draaisma, L.R.; Morishita, T.; Hummel, F.C. The effects of stimulator, waveform, and current direction on intracortical inhibition and facilitation: A TMS comparison study. Front. Neurosci. 2019, 13, 703. [Google Scholar] [CrossRef] [PubMed]
- Seo, H.Y.; Kim, G.; Won, Y.H.; Park, S.; Seo, J.; Ko, M. Changes in Intracortical Excitability of Affected and Unaffected Hemispheres After Stroke Evaluated by Paired-Pulse Transcranial Magnetic Stimulation. Ann. Rehabil. Med. 2018, 42, 495–501. [Google Scholar] [CrossRef] [Green Version]
- Liepert, J.; Hamzei, F.; Weiller, C. Motor cortex disinhibition of the unaffected hemisphere after acute stroke. Muscle Nerve 2000, 23, 1761–1763. [Google Scholar] [CrossRef]
- Liepert, J.; Storch, P.; Fritsch, A.; Weiller, C. Motor cortex disinhibition in acute stroke. Clin. Neurophysiol. 2000, 111, 671–676. [Google Scholar] [CrossRef]
- Edwards, J.D.; Meehan, S.K.; Linsdell, M.A.; Borich, M.R.; Anbarani, K.; Jones, P.W.; Ferris, J.; Boyd, L.A. Changes in thresholds for intracortical excitability in chronic stroke: More than just altered intracortical inhibition. Restor. Neurol. Neurosci. 2013, 31, 693–705. [Google Scholar] [CrossRef]
- Manganotti, P.; Patuzzo, S.; Cortese, F.; Palermo, A.; Smania, N.; Fiaschi, N. Motor disinhibition in affected and unaffected hemisphere in the early period of recovery after stroke. Clin. Neurophysiol. 2002, 113, 936–943. [Google Scholar] [CrossRef]
- Volz, L.J.; Sarfeld, A.S.; Diekhoff, S.; Rehme, A.K.; Pool, E.; Eickhoff, S.B.; Fink, G.R.; Grefkes, C. Motor cortex excitability and connectivity in chronic stroke: A multimodal model of functional reorganization. Brain Struct. Funct. 2015, 222, 1093–1107. [Google Scholar] [CrossRef]
- Juatmadja, B.A.; Andriana, M.; Satyawati, R. Effect of High Frequency Transcranial Magnetic Stimulation (TMS) on Extensor Digitorum Communis Muscle Strength in Ischemic Stroke Patients. Arch. Phys. Med. Rehabil. 2020, 2, 16–23. [Google Scholar]
- Baniahmed, A.; Cirstea, C.M. Ipsilateral primary motor cortex and behavioral compensation after stroke: A case series study. Exp. Brain Res. 2020, 238, 439–452. [Google Scholar] [CrossRef]
- Matsuura, A.; Onoda, K.; Oguro, H.; Yamaguchi, S. Magnetic stimulation and movement-related cortical activity for acute stroke with hemiparesis. Eur. J. Neurol. 2015, 22, 1526–1532. [Google Scholar] [CrossRef]
- Lüdemann-Podubecká, J.; Bösl, K.; Nowak, D.A. Inhibition of the contralesional dorsal premotor cortex improves motor function of the affected hand following stroke. Eur. J. Neurol. 2016, 23, 823–830. [Google Scholar] [CrossRef] [PubMed]
- Long, H.; Wang, H.; Zhao, C.; Duan, Q.; Feng, F.; Hui, N.; Mao, L.; Liu, H.; Mou, X.; Yuan, H. Effects of combining high- and low-frequency repetitive transcranial magnetic stimulation on upper limb hemiparesis in the early phase of stroke. Restor. Neurol. Neurosci. 2018, 36, 21–30. [Google Scholar] [CrossRef]
- Nam, K.E.; Jo, L.; Jun, S.Y.; Sung, W.J.; Kim, J.S.; Hong, B.Y.; Sul, B.; Lim, S.H. Long-term effect of repetitive transcranial magnetic stimulation on disability in patients with stroke. J. Clin. Neurosci. 2018, 47, 218–222. [Google Scholar] [CrossRef] [PubMed]
- Hiscock, A.; Miller, S.; Rothwell, J.C.; Tallis, R.C.; Pomeroy, V.M. Informing Dose-Finding Studies of Repetitive Transcranial Magnetic Stimulation to Enhance Motor Function: A Qualitative Systematic Review. Neurorehabil. Neural Repair 2008, 22, 228–249. [Google Scholar] [CrossRef]
- Gerschlager, W.; Christensen, L.O.D.; Bestmann, S.; Rothwell, S.J. rTMS over the cerebellum can increase corticospinal excitability through a spinal mechanism involving activation of peripheral nerve fibres. Clin. Neurophysiol. 2002, 113, 1435–1440. [Google Scholar] [CrossRef]
- Du, J.; Tian, L.; Liu, W.; Hu, J.; Xu, G.; Ma, M.; Fan, X.; Ye, R.; Jiang, Y.; Yin, Q.; et al. Effects of repetitive transcranial magnetic stimulation on motor recovery and motor cortex excitability in patients with stroke: A randomized controlled trial. Eur. J. Neurol. 2016, 23, 1666–1672. [Google Scholar] [CrossRef]
- Hirakawa, Y.C.; Takeda, K.; Tanabe, S.; Koyama, S.; Motoya, I.; Sakurai, H.; Kanada, Y.; Kawamura, N.; Kawamura, M.; Nagata, J.; et al. Effect of intensive motor training with repetitive transcranial magnetic stimulation on upper limb motor function in chronic post-stroke patients with severe upper limb motor impairment. Top Stroke Rehabil. 2018, 25, 321–325. [Google Scholar] [CrossRef]
- Aşkın, A.; Tosun, A.; Demirdal, Ü.S. Effects of low-frequency repetitive transcranial magnetic stimulation on upper extremity motor recovery and functional outcomes in chronic stroke patients: A randomized controlled trial. Somatosens. Mot. Res. 2017, 34, 102–107. [Google Scholar] [CrossRef] [PubMed]
- Goh, H.T.; Connolly, K.; Hardy, J.; McCain, K.; Walker-Batson, D. Hui-Ting Goh, Kendall Connolly, Jenna Hardy, Karen McCain, Delaina Walker-Batson. Single session of repetitive transcranial magnetic stimulation to left dorsolateral prefrontal cortex increased dual-task gait speed in chronic stroke: A pilot study. Gait Posture 2020, 78, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.Y.; Wang, F.Y.; Huang, S.F.; Yang, Y.R. High-frequency repetitive transcranial magnetic stimulation enhanced treadmill training effects on gait performance in individuals with chronic stroke: A double-blinded randomized controlled pilot trial. Gait Posture 2019, 68, 382–387. [Google Scholar] [CrossRef]
- Rastgoo, M.; Naghdi, S.; Ansari, N.; Olyaei, G.; Jalaei, S.; Forogh, B.; Najari, H. Effects of repetitive transcranial magnetic stimulation on lower extremity spasticity and motor function in stroke patients. Disabil. Rehabil. 2016, 38, 1918–1926. [Google Scholar] [CrossRef] [PubMed]
- Bashir, S.; Vernet, M.; Najib, U.; Perez, J.; Alonsoalonso, M.; Knobel, M.; Yoo, W.; Edwards, D.J.; Pascualleone, A. Enhanced motor function and its neurophysiological correlates after navigated low-frequency repetitive transcranial magnetic stimulation over the contralesional motor cortex in stroke. Restor. Neurol. Neurosci. 2016, 34, 677–689. [Google Scholar] [CrossRef] [Green Version]
- Demirtastatlidede, A.; Alonsoalonso, M.; Shetty, R.P.; Ronen, I.; Pascualleone, A.; Fregni, F. Long-term effects of contralesional rTMS in severe stroke: Safety, cortical excitability, and relationship with transcallosal motor fibers. NeuroRehabilitation 2015, 36, 56–59. [Google Scholar]
- Inatomi, Y.; Nakajima, M.; Yonehara, T.; Ando, Y. Ipsilateral hemiparesis in ischemic stroke patients. Acta Neurol. Scand. 2017, 136, 31–40. [Google Scholar] [CrossRef]
- Yamada, N.; Kakuda, W.; Senoo, A.; Kondo, T.; Mitani, S.; Shimizu, M.; Abo, M. Functional cortical reorganization after low-frequency repetitive transcranial magnetic stimulation plus intensive occupational therapy for upper limb hemiparesis: Evaluation by functional magnetic resonance imaging in poststroke patients. Int. J. Stroke 2013, 8, 422–429. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, D.; Zhao, Y.Y.; Hai, H.; Ma, Y.W. Effects of high-frequency repetitive transcranial magnetic stimulation over the contralesional motor cortex on motor recovery in severe hemiplegic stroke: A randomized clinical trial. Brain Stimul. 2020, 13, 979–986. [Google Scholar] [CrossRef]
- Auriat, A.M.; Neva, J.L.; Peters, S.; Ferris, J.K.; Boyd, L.A. A Review of Transcranial Magnetic Stimulation and Multimodal Neuroimaging to Characterize Post-Stroke Neuroplasticity. Front Neurol. 2015, 6, 226. [Google Scholar] [CrossRef] [Green Version]
- Kubis, N. Non-Invasive Brain Stimulation to Enhance Post-Stroke Recovery. Front. Neural Circuits 2016, 10, 56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guan, Y.Z.; Li, J.; Zhang, X.W.; Wu, S. Effectiveness of repetitive transcranial magnetic stimulation (rTMS) after acute stroke: A one-year longitudinal randomized trial. CNS Neurosci. Ther. 2017, 23, 1666–1672. [Google Scholar] [CrossRef] [PubMed]
- Moscatelli, F.; Valenzano, A.; Monda, V.; Ruberto, M. Transcranial magnetic stimulation (TMS) application in sport medicine: A brief review. Acta Med. Mediterr. 2017, 33, 423–430. [Google Scholar]
- Caroline, T.; Sebastian, D.; Lukas, H.; Ulf, Z.; Gereon, R.F.; Christian, G. Brain responsivity provides an individual readout for motor recovery after stroke. Brain 2020, 143, 1–6. [Google Scholar]
- Peng, Y.; Liu, J.; Hua, M.; Liang, M.; Yu, C. Enhanced Effective Connectivity from Ipsilesional to Contralesiona M1 in Well-Recovered Subcortical Stroke Patients. Front. Neurol. 2019, 10, 909. [Google Scholar] [CrossRef] [PubMed]
- Urushidani, N.; Kinoshita, S.; Okamoto, T.; Tamashiro, H.; Abo, M. Low-Frequency rTMS and Intensive Occupational Therapy Improve Upper Limb Motor Function and Cortical Reorganization Assessed by Functional Near-Infrared Spectroscopy in a Subacute Stroke Patient. Case Rep. Neurol. 2018, 10, 223–231. [Google Scholar] [CrossRef] [PubMed]
- Takeuchi, N.; Izumi, S. Maladaptive Plasticity for Motor Recovery after Stroke: Mechanisms and Approaches. J. Neural Transpl. Plast. 2012, 2012, 1–9. [Google Scholar] [CrossRef]
- Pellicciari, M.C.; Bonni, S.; Ponzo, V.; Cinnera, A.M.; Mancini, M.; Casula, E.P.; Sallustio, F.; Paolucci, S.; Caltagirone, C.; Koch, G. Dynamic reorganization of TMS-evoked activity in subcortical stroke patients. NeuroImage 2018, 175, 365–378. [Google Scholar] [CrossRef]
- Trompetto, C.; Assini, A.; Buccolieri, A.; Marchese, R.; Abbruzzese, G. Motor recovery following stroke: A transcranial magnetic stimulation study. Clin. Neurophysiol. 2000, 111, 1860–1867. [Google Scholar] [CrossRef]
- Di Pino, G.; Pellegrino, G.; Assenza, G.; Capone, F.; Ferreri, F.; Formica, D.; Ranieri, F.; Tombini, M.; Ziemann, U.; Rothwell, J.C.; et al. Modulation of brain plasticity in stroke: A novel model for neurorehabilitation. Nat. Rev. Neurol. 2014, 10, 597–608. [Google Scholar] [CrossRef] [PubMed]
- Malcolm, M.P.; Paxton, R.J. High-Frequency Repetitive Transcranial Magnetic Stimulation Effects on Motor Intracortical Neurophysiology: A Sham-Controlled Investigation. J. Clin. Neurophysiol. 2015, 32, 428–433. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Sollmann, N.; Castrillón, G.; Kurcyus, K.; Meyer, B.; Zimmer, C.; Krieg, S.M. Intranetwork and Internetwork Effects of Navigated Transcranial Magnetic Stimulation Using Low- and High-frequency Pulse Application to the Dorsolateral Prefrontal CortexdA Combined rTMS–fMRI Approach. J. Clin. Neurophysiol. 2020, 37, 131–139. [Google Scholar] [CrossRef] [PubMed]
- Du, J.; Yang, F.; Liu, L.; Hu, J.; Cai, B.; Liu, W.; Xu, G.; Liu, X. Repetitive transcranial magnetic stimulation for rehabilitation of poststroke dysphagia: A randomized, double-blind clinical trial. Clin. Neurophysiol. 2016, 127, 1907–1913. [Google Scholar] [CrossRef] [PubMed]
- Chang, M.C.; Do, K.H.; Chun, M.H. Prediction of lower limb motor outcomes based on transcranial magnetic stimulation findings in patients with an infarct of the anterior cerebral artery. Somatosens. Mot. Res. 2015, 32, 249–253. [Google Scholar] [CrossRef] [PubMed]
- Jones, P.S.; Pomeroy, V.M.; Wang, J.; Schlaug, G.; Marrapu, S.T.; Geva, S.; Rowe, P.J.; Chandler, E.; Kerr, A.; Baron, J.C. Does stroke location predict walk speed response to gait rehabilitation? Hum. Brain Mapp. 2015, 37, 689–703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoonhorst, M.H.W.J.; Nijland, R.H.M.; Van Den Berg, P.J.S.; Emmelot, C.H.; Kollen, B.J.; Kwakkel, G. Does Transcranial Magnetic Stimulation Have an Added Value to Clinical Assessment in Predicting Upper-Limb Function Very Early After Severe Stroke? Neurorehabil. Neural Repair 2018, 32, 682–690. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Author | Purpose | Number of Participants | Patient Type | Stimulation Mode | Stimulation Area | Intensity | Number of Pulses | Result |
---|---|---|---|---|---|---|---|---|
Juatmadja et al. 2020 [31] | To prove the effect of rTMS on extensor digitorum communis muscle strength improvement | 18 | Ischemic stroke | Affected contralesional, 10-Hz TMS | M1 | 100% RMT | 750 pulses per day | Significant increase of sEMG numbers in the extensor digitorum communis muscle strength. |
Lüdemann-Podubecká et al. 2016 [34] | To examine the effects of rTMS on hand function and cortical neurophysiology | 10 | Subacute stroke with mild hand motor impairment | Unaffected contralesional, 1-Hz rTMS, control-rTMS | PMd | 110% RMT | 900 pulses | Hand function tests revealed significant improvement of motor function of the affected, but not of the unaffected hand after actual rTMS only. Neither intervention changed the neurophysiological measures compared with those at baseline. |
Long et al. 2018 [35] | To compare the effects of LF- and LF-HF rTMS on upper limb motor function | 62 | Upper limb hemiparesis in the early phase of stroke | Unaffected contralesional, 1-Hz rTMS, Unaffected contralesional 1-Hz rTMS + affected contralesional 10-Hz TMS, control rTMS | M1 | 90% RMT | 1000 pulses | FMA scores and WMFT time over the baseline level were significantly increased in the LF-rTMS and LF-HF rTMS groups. |
Matsuura et al. 2015 [33] | To investigate the effects of rTMS on functional recovery and electrophysiological measures | 20 | Acute stroke | Unaffected contralesional, 1-Hz rTMS, sham rTMS | Motor cortex | 100% RMT | 1200 pulses | The FMA score in the real rTMS group was significantly improved compared with that in the sham group. The PPT score of only the affected limb was improved by rTMS. |
Du et al. 2016 [39] | To compare the effects of HF-rTMS versus LF-rTMS on motor recovery and identify the neurophysiological correlation of motor improvements. | 69 | First-ever ischemic stroke with motor deficits | Unaffected contralesional, 1-Hz rTMS, affected contralesional, 3-Hz rTMS, sham rTMS | M1 | 80%–90% RMT | 1200 pulses | The upper limb score of FMA in the 1-Hz group was significantly improved, but no difference was observed in the other groups. The lower limb score of FMA showed significant improvements in each real rTMS group compared with that in the sham group. The MRC score in both real rTMS groups was significantly improved compared with that in the sham group. |
Nam et al. 2018 [36] | To investigate the long-term effect of rTMS on improvement of motor function | 76 | Subacute stroke | Affected contralesional, 10-Hz TMS, control rTMS | M1 | 80% RMT | Repeated 20 times for a total of 1000 pulses | The motor strength, MFT, FAC classification and K-MBI scores did not differ between rTMS and control groups and rTMS did not have a long-term effect. |
Hirakawa et al. 2018 [40] | To test the treatment effects of upper limb motor function | 26 | Chronic poststroke with severe upper limb | Unaffected contralesional, 1-Hz rTMS | Hand area of M1 | 90% RMT | One session consisted of 880 pulses | The FMA total score significantly increased from 12.6 to 18.0 points. The WMFT log performance time also significantly improved from 3.6 to 3.3. |
Aşkın et al. 2017 [41] | To assess the efficacy of rTMS on upper extremity motor recovery and functional outcomes | 40 | Chronic ischemic stroke | Unaffected contralesional, 1-Hz rTMS, PT | M1 | 90% RMT | 1200 pulses | FMA, BBT, motor and total FIM scores and FAS scores were significantly increased in both groups. |
Goh et al. 2020 [42] | To investigate the effect of rTMS on improving dual-task gait performance | 15 | Left chronic stroke | Affected contralesional, 5-Hz rTMS | DLPFC, SMA, M1 | 90% RMT | 1200 pulses | Single-task gait speed remained unchanged after rTMS. rTMS applied to DLPFC appeared to result in a greater change in dual-task gait speed than that at the other two sites. |
Wang et al. 2019 [43] | To investigate whether HF-rTMS enhances the effects of subsequent treadmill training | 14 | Poststroke time longer than 6 months | Affected contralesional, 5-Hz rTMS | The motor hot spot of the tibialis anterior | 90% RMT | 900 pulses | FMA scores, walking speed, spatial asymmetry, TA activity at follow-up and RF activity in the experimental group after training were improved and were significantly greater than those in the control–group. |
Rastgoo et al. 2016 [44] | To investigate the effect of rTMS on lower extremity (LE) spasticity, motor function and motor neuronal excitability | 20 | Chronic stroke | Unaffected contralesional, 1-Hz rTMS, control rTMS | Lower extremity motor area | 90% RMT | 1000 pulses | LE-MMAS and LE-FMA scores were improved significantly only after active rTMS and this improvement was sustained 1 week after the intervention. |
Bashir et al. 2016 [45] | To investigate the effect of rTMS on motor function and motor neuronal excitability | 16 | Chronic stroke patients and normal subjects | Unaffected contralesional, 1-Hz rTMS, right brain 1-Hz rTMS | M1 | 90% RMT | 1200 pulses | Muscle strength, finger tapping speed and reaction–time performance increased for the hand ipsilateral to the stimulation, but not for the hand contralateral to the stimulated side. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, X.; Yang, Y.; Cao, N.; Jiang, C. Promotion of Poststroke Motor-Function Recovery with Repetitive Transcranial Magnetic Stimulation by Regulating the Interhemispheric Imbalance. Brain Sci. 2020, 10, 648. https://doi.org/10.3390/brainsci10090648
Yuan X, Yang Y, Cao N, Jiang C. Promotion of Poststroke Motor-Function Recovery with Repetitive Transcranial Magnetic Stimulation by Regulating the Interhemispheric Imbalance. Brain Sciences. 2020; 10(9):648. https://doi.org/10.3390/brainsci10090648
Chicago/Turabian StyleYuan, Xiaoxia, Yuan Yang, Na Cao, and Changhao Jiang. 2020. "Promotion of Poststroke Motor-Function Recovery with Repetitive Transcranial Magnetic Stimulation by Regulating the Interhemispheric Imbalance" Brain Sciences 10, no. 9: 648. https://doi.org/10.3390/brainsci10090648
APA StyleYuan, X., Yang, Y., Cao, N., & Jiang, C. (2020). Promotion of Poststroke Motor-Function Recovery with Repetitive Transcranial Magnetic Stimulation by Regulating the Interhemispheric Imbalance. Brain Sciences, 10(9), 648. https://doi.org/10.3390/brainsci10090648