Effects of Ketamine on Learning and Memory in the Hippocampus of Rats through ERK, CREB, and Arc
Abstract
:1. Introduction
2. Materials and Methods
2.1. Drugs
2.2. Animals
2.3. Drug Administration
2.4. Morris Water Maze Test
2.5. Tissue Preparation
2.6. Protein Immunoblot Detection
2.7. RNA Extraction and Real-Time Quantitative Polymerase Chain Reaction (RT-PCR) Analysis
2.8. Statistical Methods
3. Results
3.1. Effects of Ketamine on the Behavior of Rats
3.2. Effect of Ketamine Administration on Arc Gene and Protein Expression in the Hippocampus
3.3. Detection of ERK–CREB Pathway-Related Indexes after Ketamine Administration
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, J.; Zhou, M.; Wang, X.; Yang, X.; Wang, M.; Zhang, C.; Zhou, S.; Tang, N. Impact of ketamine on learning and memory function, neuronal apoptosis and its potential association with miR-214 and PTEN in adolescent rats. PLoS ONE 2014. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morgan, C.J.A.; Curran, H.V. Acute and chronic effects of ketamine upon human memory: A review. Psychopharmacology 2006. [Google Scholar] [CrossRef] [PubMed]
- Leffa, D.D.; Bristot, B.N.; Damiani, A.P.; Borges, G.D.; Daumann, F.; Zambon, G.M.; Fagundes, G.E.; de Andrade, V.M. Anesthetic Ketamine-Induced DNA Damage in Different Cell Types In Vivo. Mol. Neurobiol. 2016. [Google Scholar] [CrossRef] [PubMed]
- Riddell, J.M.; Trummel, J.M.; Onakpoya, I.J. Low-dose ketamine in painful orthopaedic surgery: A systematic review and meta-analysis. Br. J. Anaesth. 2019. [Google Scholar] [CrossRef] [Green Version]
- Li, F.; Liu, J.; Yip, P.S.F.; Lu, X.; Liu, S. Mortalities of methamphetamine, opioid, and ketamine abusers in Shanghai and Wuhan, China. Forensic Sci. Int. 2020, 306. [Google Scholar] [CrossRef]
- Miolo, G.; Tucci, M.; Menilli, L.; Stocchero, G.; Vogliardi, S.; Scrivano, S.; Montisci, M.; Favretto, D. A study on photostability of amphetamines and ketamine in hair irradiated under artificial sunlight. Brain Sci. 2018, 8, 96. [Google Scholar] [CrossRef] [Green Version]
- Delcasso, S.; Huh, N.; Byeon, J.S.; Lee, J.; Jung, M.W.; Lee, I. Functional relationships between the hippocampus and dorsomedial striatum in learning a visual scene-based memory task in rats. J. Neurosci. 2014. [Google Scholar] [CrossRef] [Green Version]
- Kovács, K.J. c-Fos as a transcription factor: A stressful (re)view from a functional map. Neurochem. Int. 1998. [Google Scholar] [CrossRef]
- Bramham, C.R.; Worley, P.F.; Moore, M.J.; Guzowski, J.F. The immediate early gene Arc/Arg3.1: Regulation, mechanisms, and function. J. Neurosci. 2008, 28, 11760–11767. [Google Scholar] [CrossRef]
- Hearing, M.C.; Schwendt, M.; McGinty, J.F. Suppression of activity-regulated cytoskeleton-associated gene expression in the dorsal striatum attenuates extinction of cocaine-seeking. Int. J. Neuropsychopharmacol. 2011. [Google Scholar] [CrossRef] [Green Version]
- Lv, X.F.; Xu, Y.; Han, J.S.; Cui, C.L. Expression of activity-regulated cytoskeleton-associated protein (Arc/Arg3.1) in the nucleus accumbens is critical for the acquisition, expression and reinstatement of morphine-induced conditioned place preference. Behav. Brain Res. 2011, 223, 182–191. [Google Scholar] [CrossRef] [PubMed]
- Notaras, M.; Allen, M.; Longo, F.; Volk, N.; Toth, M.; Jeon, N.L.; Klann, E.; Colak, D. Supplementary Material UPF2 leads to degradation of dendritically-targeted mRNAs to regulate synaptic plasticity and cognitive function. Mol. Psychiatry 2020, 25, 3360–3379. [Google Scholar] [CrossRef]
- Guzowski, J.F.; Lyford, G.L.; Stevenson, G.D.; Houston, F.P.; McGaugh, J.L.; Worley, P.F.; Barnes, C.A. Inhibition of activity-dependent arc protein expression in the rat hippocampus impairs the maintenance of long-term potentiation and the consolidation of long-term memory. J. Neurosci. 2000. [Google Scholar] [CrossRef]
- Czajkowski, R.; Zglinicki, B.; Rejmak, E.; Konopka, W. Strategy-specific patterns of arc expression in the retrosplenial cortex and hippocampus during t-maze learning in rats. Brain Sci. 2020, 10, 854. [Google Scholar] [CrossRef] [PubMed]
- Albert-Gascó, H.; Ros-Bernal, F.; Castillo-Gómez, E.; Olucha-Bordonau, F.E. Map/erk signaling in developing cognitive and emotional function and its effect on pathological and neurodegenerative processes. Int. J. Mol. Sci. 2020, 21, 4471. [Google Scholar] [CrossRef] [PubMed]
- Sanderson, T.M.; Hogg, E.L.; Collingridge, G.L.; Corrêa, S.A.L. Hippocampal metabotropic glutamate receptor long-term depression in health and disease: Focus on mitogen-activated protein kinase pathways. J. Neurochem. 2016, 139, 200–214. [Google Scholar] [CrossRef] [Green Version]
- Ha, S.; Redmond, L. ERK mediates activity dependent neuronal complexity via sustained activity and CREB-mediated signaling. Dev. Neurobiol. 2008. [Google Scholar] [CrossRef]
- Pitsikas, N.; Boultadakis, A. Neuropharmacology Pre-training administration of anesthetic ketamine differentially affects rats’ spatial and non-spatial recognition memory. Neuropharmacology 2009, 57. [Google Scholar] [CrossRef]
- Oddo, M.; Crippa, I.A.; Mehta, S.; Menon, D.; Payen, J.F.; Taccone, F.S.; Citerio, G. Optimizing sedation in patients with acute brain injury. Crit. Care 2016, 20. [Google Scholar] [CrossRef] [Green Version]
- Sassano-Higgins, S.; Baron, D.; Juarez, G.; Esmaili, N.; Gold, M. A review of ketamine abuse and diversion. Depress. Anxiety 2016. [Google Scholar] [CrossRef]
- Liu, Y.; Lin, D.; Wu, B.; Zhou, W. Ketamine abuse potential and use disorder. Brain Res. Bull. 2016, 126, 68–73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Molero, P.; Ramos-Quiroga, J.A.; Martin-Santos, R.; Calvo-Sánchez, E.; Gutiérrez-Rojas, L.; Meana, J.J. Antidepressant Efficacy and Tolerability of Ketamine and Esketamine: A Critical Review. CNS Drugs 2018. [Google Scholar] [CrossRef] [PubMed]
- Duman, R.S.; Aghajanian, G.K. Synaptic dysfunction in depression: Potential therapeutic targets. Science 2012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, B.P.; Kang, S.C.; Gawelek, K.; Zacharias, R.A.; Anderson, S.R.; Turner, C.P.; Morris, J.K. In vivo and in vitro ketamine exposure exhibits a dose-dependent induction of activity-dependent neuroprotective protein in rat neurons. Neuroscience 2015. [Google Scholar] [CrossRef] [PubMed]
- Trujillo, K.A.; Zamora, J.J.; Warmoth, K.P. Increased Response to Ketamine Following Treatment at Long Intervals: Implications for Intermittent Use. Biol. Psychiatry 2008, 63, 178–183. [Google Scholar] [CrossRef] [PubMed]
- Ding, R.; Li, Y.; Du, A.; Yu, H.; He, B.; Shen, R.; Zhou, J.; Li, L.; Cui, W.; Zhang, G.; et al. Changes in hippocampal AMPA receptors and cognitive impairments in chronic ketamine addiction models: Another understanding of ketamine CNS toxicity. Sci. Rep. 2016. [Google Scholar] [CrossRef] [Green Version]
- Gao, X.; Castro-Gomez, S.; Grendel, J.; Graf, S.; Süsens, U.; Binkle, L.; Mensching, D.; Isbrandt, D.; Kuhl, D.; Ohana, O. Arc/Arg3.1 mediates a critical period for spatial learning and hippocampal networks. Proc. Natl. Acad. Sci. USA 2018. [Google Scholar] [CrossRef] [Green Version]
- Whittington, R.A.; Bretteville, A.; Virág, L.; Emala, C.W.; Maurin, T.O.; Marcouiller, F.; Julien, C.; Petry, F.R.; El-Khoury, N.B.; Morin, F.; et al. Anesthesia-induced hypothermia mediates decreased ARC gene and protein expression through ERK/MAPK inactivation. Sci. Rep. 2013, 3. [Google Scholar] [CrossRef] [Green Version]
- Penrod, R.D.; Thomsen, M.; Taniguchi, M.; Guo, Y.; Cowan, C.W.; Smith, L.N. The activity-regulated cytoskeleton-associated protein, Arc/Arg3.1, influences mouse cocaine self-administration. Pharmacol. Biochem. Behav. 2020, 188. [Google Scholar] [CrossRef]
- Lv, X.F.; Sun, L.L.; Cui, C.L.; Han, J.S. NAc shell Arc/Arg3.1 protein mediates reconsolidation of morphine CPP by increased GluR1 cell surface expression: Activation of ERK-coupled CREB is required. Int. J. Neuropsychopharmacol. 2015, 18, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Peng, S.; Yang, X.; Liu, G.J.; Zhang, X.Q.; Wang, G.L.; Sun, H.Y. From the camp pathway to search the ketamine-related learning and memory. Eur. Rev. Med. Pharmacol. Sci. 2015, 19, 161–164. [Google Scholar] [PubMed]
- Wang, C.; Guo, J.; Guo, R. Effect of XingPiJieYu decoction on spatial learning and memory and cAMP-PKA-CREB-BDNF pathway in rat model of depression through chronic unpredictable stress. BMC Complementary Altern. Med. 2017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wimmer, M.E.; Blackwell, J.M.; Abel, T. Rolipram treatment during consolidation ameliorates long-term object location memory in aged male mice. Neurobiol. Learn. Mem. 2020, 169. [Google Scholar] [CrossRef] [PubMed]
Primer | Primer Sequence (5′ to 3′) | Products Size |
---|---|---|
GAPDH(F) | AGAACATCATCCCTGCATCC | 101 |
GAPDH(R) | GGTAGGAACACAAAAGGCCA | |
Arc(F) | ACTCCCTACTGTTGATCTGTTTGCTCC | 109 |
Arc(R) | ACCCGTCATTTTCTCTGCCCTTTGA |
Behavior Analysis | F Value | Mean Square | p Value |
---|---|---|---|
D16 | (3, 20) = 1.248 | 10.52 | p = 0.3187 |
D17 | (3, 20) = 2.420 | 21.50 | p = 0.0962 |
D18 | (3, 20) = 19.91 | 301.1 | p < 0.0001 |
D19 | (3, 20) = 3.929 | 98.84 | p = 0.0244 |
D20 | (3, 20) = 7.540 | 94.72 | p = 0.0014 |
Number of platform crossing | (3, 20) = 18.02 | 8.111 | p < 0.0001 |
Arc mRNA | F Value | Mean Square | p Value |
---|---|---|---|
10 min | (4, 25) = 26.01 | 0.03049 | p < 0.0001 |
24 h | (3, 20) = 29.68 | 0.06418 | p = 0.0001 |
Protein | F Value | Mean Square | p Value |
---|---|---|---|
ARC | (4, 25) = 14.46 | 0.01247 | p = 0.0004 |
CREB | (4, 25) = 17.46 | 0.03490 | p = 0.0002 |
ERK | (4, 25) = 11.61 | 0.1941 | p = 0.0009 |
p-CREB | (4, 25) = 104.8 | 0.04276 | p < 0.0001 |
p-ERK | (4, 25) = 343.1 | 1.787 | p < 0.0001 |
Protein | F Value | Mean Square | p Value |
---|---|---|---|
ARC | (3, 20) = 274.5 | 0.4749 | p < 0.0001 |
CREB | (3, 20) = 0.4808 | 0.01575 | p = 0.7046 |
ERK | (3, 20) = 7.951 | 0.3797 | p = 0.0087 |
p-CREB | (3, 20) = 6.991 | 0.1731 | p = 0.0126 |
p-ERK | (3, 20) = 11.51 | 0.8028 | p = 0.0028 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, M.; Ding, J.; Li, L.; Bai, H.; Li, X.; Lan, L.; Fan, H.; Gao, L. Effects of Ketamine on Learning and Memory in the Hippocampus of Rats through ERK, CREB, and Arc. Brain Sci. 2021, 11, 27. https://doi.org/10.3390/brainsci11010027
Shi M, Ding J, Li L, Bai H, Li X, Lan L, Fan H, Gao L. Effects of Ketamine on Learning and Memory in the Hippocampus of Rats through ERK, CREB, and Arc. Brain Sciences. 2021; 11(1):27. https://doi.org/10.3390/brainsci11010027
Chicago/Turabian StyleShi, Mingxian, Jiafeng Ding, Lin Li, Hui Bai, Xinran Li, Ling Lan, Honggang Fan, and Li Gao. 2021. "Effects of Ketamine on Learning and Memory in the Hippocampus of Rats through ERK, CREB, and Arc" Brain Sciences 11, no. 1: 27. https://doi.org/10.3390/brainsci11010027
APA StyleShi, M., Ding, J., Li, L., Bai, H., Li, X., Lan, L., Fan, H., & Gao, L. (2021). Effects of Ketamine on Learning and Memory in the Hippocampus of Rats through ERK, CREB, and Arc. Brain Sciences, 11(1), 27. https://doi.org/10.3390/brainsci11010027