Dimensions of Craving Interact with COMT Genotype to Predict Relapse in Individuals with Alcohol Use Disorder Six Months after Treatment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Inclusion/Exclusion Criteria
2.3. Measures
2.3.1. The Mini International Neuropsychiatric Interview 7.0.2 (MINI)
2.3.2. The Alcohol Timeline Followback (TLFB)
2.3.3. Obsessive Compulsive Drinking Scale (OCDS)
2.3.4. Barratt Impulsivity Scale (BIS)
2.4. Follow-Up Assessments
2.5. Definition of Relapsers and Abstainers
2.5.1. Relapsers
2.5.2. Abstainers
2.6. DNA Isolation
2.7. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References and Note
- Alcohol Poisoning Deaths | VitalSigns | CDC. Available online: https://www.cdc.gov/vitalsigns/alcohol-poisoning-deaths/index.html (accessed on 14 November 2020).
- Alcohol Use Disorder | National Institute on Alcohol Abuse and Alcoholism (NIAAA). Available online: https://www.niaaa.nih.gov/alcohols-effects-health/alcohol-use-disorder (accessed on 14 November 2020).
- Spillane, S.; Shiels, M.S.; Best, A.F.; Haozous, E.A.; Withrow, D.R.; Chen, Y.; Berrington de González, A.; Freedman, N.D. Trends in Alcohol-Induced Deaths in the United States, 2000–2016. JAMA Netw. Open 2020, 3, e1921451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Substance Use and Mental Health Administration. Results from the 2015 National Survey on Drug Use and Health: Detailed Tables; Substance Use and Mental Health Administration: Rockville, MD, USA, 2015.
- CESAR Alcohol Reported as Primary Substance of Abuse in 62% of Veterans’ Treatment Admissions. 2012, Volume 21.
- Bose, J.; Hedden, S.L.; Lipari, R.N.; Park-Lee, E. Key Substance Use and Mental Health Indicators in the United States: Results from the 2015 National Survey on Drug Use and Health. Subst. Abus. Ment. Heal. Serv. Adm. 2016, 1–70. [Google Scholar]
- Daley, D.C. Family and social aspects of substance use disorders and treatment. J. Food Drug Anal. 2013, 21, S73–S76. [Google Scholar] [CrossRef] [PubMed]
- Holmes, J.; Meier, P.S.; Booth, A.; Guo, Y.; Brennan, A. The temporal relationship between per capita alcohol consumption and harm: A systematic review of time lag specifications in aggregate time series analyses. Drug Alcohol Depend. 2012, 123, 7–14. [Google Scholar] [CrossRef]
- National Drug Intelligence Center. National Drug Threat Assessment. Natl. Drug Intell. Cent. 2011, 1–62. [Google Scholar]
- Ross, S.; Peselow, E. Co-occurring psychotic and addictive disorders: Neurobiology and diagnosis. Clin. Neuropharmacol. 2012, 35, 235–243. [Google Scholar] [CrossRef] [PubMed]
- Moyer, A.; Finney, J.W. Outcomes for untreated individuals involved in randomized trials of alcohol treatment. J. Subst. Abuse Treat. 2002, 23, 247–252. [Google Scholar] [CrossRef]
- Dawson, D.A.; Grant, B.F.; Stinson, F.S.; Chou, P.S.; Huang, B.; Ruan, W.J. Recovery from DSM-IV alcohol dependence: United States, 2001–2002. Addiction 2005, 100, 281–292. [Google Scholar] [CrossRef]
- Keyes, K.M.; Krueger, R.F.; Grant, B.F.; Hasin, D.S. Alcohol craving and the dimensionality of alcohol disorders. Psychol. Med. 2011, 41, 629–640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Litt, M.D.; Cooney, N.L.; Morse, P. Reactivity to alcohol-related stimuli in the laboratory and in the field: Predictors of craving in treated alcoholics. Addiction 2000, 95, 889–900. [Google Scholar] [CrossRef]
- Oslin, D.W.; Cary, M.; Slaymaker, V.; Colleran, C.; Blow, F.C. Daily ratings measures of alcohol craving during an inpatient stay define subtypes of alcohol addiction that predict subsequent risk for resumption of drinking. Drug Alcohol. Depend. 2009, 103, 131–136. [Google Scholar] [CrossRef] [PubMed]
- Pombo, S.; Luísa Figueira, M.; Walter, H.; Lesch, O. Motivational factors and negative affectivity as predictors of alcohol craving. Psychiatry Res. 2016, 243, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Bottlender, M.; Soyka, M. Impact of craving on alcohol relapse during, and 12 months following, outpatient treatment. Alcohol Alcohol. 2004, 39, 357–361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flannery, B.A.; Poole, S.A.; Gallop, R.J.; Volpicelli, J.R. Alcohol craving predicts drinking during treatment: An analysis of three assessment instruments. J. Stud. Alcohol 2003, 64, 120–126. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, P.; Helten, C.; Soyka, M. Predictive value of obsessive-compulsive drinking scale (OCDS) for outcome in alcohol-dependent inpatients: Results of a 24-month follow-up study. Subst. Abus. Treat. Prev. Policy 2011, 6, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sinha, R.; Fox, H.C.; Hong, K.I.A.; Hansen, J.; Tuit, K.; Kreek, M.J. Effects of adrenal sensitivity, stress- and cue-induced craving, and anxiety on subsequent alcohol relapse and treatment outcomes. Arch. Gen. Psychiatry 2011, 68, 942–952. [Google Scholar] [CrossRef] [Green Version]
- Higley, A.E.; Crane, N.A.; Spadoni, A.D.; Quello, S.B.; Goodell, V.; Mason, B.J. Craving in response to stress induction in a human laboratory paradigm predicts treatment outcome in alcohol-dependent individuals. Psychopharmacology 2011, 218, 121–129. [Google Scholar] [CrossRef] [Green Version]
- Breese, G.R.; Sinha, R.; Heilig, M. Chronic alcohol neuroadaptation and stress contribute to susceptibility for alcohol craving and relapse. Pharmacol. Ther. 2011, 129, 149–171. [Google Scholar] [CrossRef] [Green Version]
- Koob, G.F.; Le Moal, M. Drug addiction, dysregulation of reward, and allostasis. Neuropsychopharmacology 2001, 24, 97–129. [Google Scholar] [CrossRef]
- Blaine, S.K.; Sinha, R. Alcohol, stress, and glucocorticoids: From risk to dependence and relapse in alcohol use disorders. Neuropharmacology 2017, 122, 136–147. [Google Scholar] [CrossRef]
- Vendruscolo, L.F.; Barbier, E.; Schlosburg, J.E.; Misra, K.K.; Whitfield, T.W.; Logrip, M.L.; Rivier, C.; Repunte-Canonigo, V.; Zorrilla, E.P.; Sanna, P.P.; et al. Corticosteroid-dependent plasticity mediates compulsive alcohol drinking in rats. J. Neurosci. 2012, 32, 7563–7571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seo, D.; Sinha, R. The neurobiology of alcohol craving and relapse. Handb. Clin. Neurol. 2014, 125, 355–368. [Google Scholar]
- Bauer, J.; Pedersen, A.; Scherbaum, N.; Bening, J.; Patschke, J.; Kugel, H.; Heindel, W.; Arolt, V.; Ohrmann, P. Craving in alcohol-dependent patients after detoxification is related to glutamatergic dysfunction in the nucleus accumbens and the anterior cingulate cortex. Neuropsychopharmacology 2013, 38, 1401–1408. [Google Scholar] [CrossRef] [PubMed]
- Heinz, A.; Beck, A.; Grüsser, S.M.; Grace, A.A.; Wrase, J. Identifying the neural circuitry of alcohol craving and relapse vulnerability. Addict. Biol. 2009, 14, 108–118. [Google Scholar] [CrossRef] [PubMed]
- Seo, D.; Lacadie, C.M.; Tuit, K.; Hong, K.I.; Todd Constable, R.; Sinha, R. Disrupted ventromedial prefrontal function, alcohol craving, and subsequent relapse risk. JAMA Psychiatry 2013, 70, 727–739. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wrase, J.; Makris, N.; Braus, D.F.; Mann, K.; Smolka, M.N.; Kennedy, D.N.; Caviness, V.S.; Hodge, S.M.; Tang, L.; Albaugh, M.; et al. Amygdala volume associated with alcohol abuse relapse and craving. Am. J. Psychiatry 2008, 165, 1179–1184. [Google Scholar] [CrossRef] [PubMed]
- Volkow, N.D.; Fowler, J.S. Addiction, a disease of compulsion and drive: Involvement of the orbitofrontal cortex. Cereb. Cortex 2000, 10, 318–325. [Google Scholar] [CrossRef]
- Tawa, E.A.; Hall, S.D.; Lohoff, F.W. Overview of the Genetics of Alcohol Use Disorder. Alcohol Alcohol. 2016, 51, 507–514. [Google Scholar] [CrossRef] [Green Version]
- Wetherill, L.; Agrawal, A.; Kapoor, M.; Bertelsen, S.; Bierut, L.J.; Brooks, A.; Dick, D.; Hesselbrock, M.; Hesselbrock, V.; Koller, D.L.; et al. Association of substance dependence phenotypes in the COGA sample. Addict. Biol. 2015, 20, 617–627. [Google Scholar] [CrossRef] [Green Version]
- Verhulst, B.; Neale, M.C.; Kendler, K.S. The heritability of alcohol use disorders: A meta-analysis of twin and adoption studies. Psychol. Med. 2015, 45, 1061–1072. [Google Scholar] [CrossRef] [Green Version]
- Henderson, K.E.; Vaidya, J.G.; Kramer, J.R.; Kuperman, S.; Langbehn, D.R.; O’Leary, D.S. Cortical Thickness in Adolescents with a Family History of Alcohol Use Disorder. Alcohol. Clin. Exp. Res. 2018, 42, 89–99. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, J.W.; Hill, S.Y. Neural predictors of substance use disorders in Young adulthood. Psychiatry Res. Neuroimaging 2017, 268, 22–26. [Google Scholar] [CrossRef]
- Hill, S.Y.; O’Brien, J. Psychological and Neurobiological Precursors of Alcohol Use Disorders in High-Risk Youth. Curr. Addict. Rep. 2015, 2, 104–113. [Google Scholar]
- Tunbridge, E.M.; Harrison, P.J.; Weinberger, D.R. Catechol-o-Methyltransferase, Cognition, and Psychosis: Val158Met and Beyond. Biol. Psychiatry 2006, 60, 141–151. [Google Scholar] [CrossRef] [PubMed]
- Stein, D.J.; Newman, T.K.; Savitz, J.; Ramesar, R. Warriors versus Worriers: The Role of COMT Gene Variants. CNS Spectr. 2006, 11, 745–748. [Google Scholar] [CrossRef] [PubMed]
- Lachman, H.M.; Papolos, D.F.; Saito, T.; Yu, Y.-M.; Szumlanski, C.L.; Weinshilboum, R.M. Human catechol-O-methyltransferase pharmacogenetics: Description of a functional polymorphism and its potential application to neuropsychiatric disorders. Pharmacogenetics 1996, 6, 243–250. [Google Scholar] [CrossRef]
- Chen, J.; Lipska, B.K.; Halim, N.; Ma, Q.D.; Matsumoto, M.; Melhem, S.; Kolachana, B.S.; Hyde, T.M.; Herman, M.M.; Apud, J.; et al. Functional Analysis of Genetic Variation in Catechol-O-Methyltransferase (COMT): Effects on mRNA, Protein, and Enzyme Activity in Postmortem Human Brain. Am. J. Hum. Genet. 2004, 75, 807–821. [Google Scholar] [CrossRef] [Green Version]
- Cools, R. Role of Dopamine in the Motivational and Cognitive Control of Behavior. Neuroscientist 2008, 14, 381–395. [Google Scholar] [CrossRef]
- Schellenkens, A.F.A.; Franke, B.; Ellenbroek, B.; Cools, A.; de Jong, C.A.J.; Buitelaar, J.K.; Verkes, R.-J. Reduced Dopamine Receptor Sensitivity as an Intermediate Phenotype in Alcohol Dependence and the Role of the COMT Val158Met and DRD2 Taq1A Genotypes. Arch. Gen. Psychiatry 2012, 69, 339–348. [Google Scholar] [CrossRef]
- Volkow, N.D.; Wang, G.J.; Tomasi, D.; Baler, R.D. Unbalanced neuronal circuits in addiction. Curr. Opin. Neurobiol. 2012, 69, 339–348. [Google Scholar]
- Diamond, A.; Briand, L.; Fossella, J.; Gehlbach, L. Genetic and Neurochemical Modulation of Prefrontal Cognitive Functions in Children. Am. J. Psychiatry 2004, 161, 125–132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Egan, M.F.; Goldberg, T.E.; Kolachana, B.S.; Callicott, J.H.; Mazzanti, C.M.; Straub, R.E.; Goldman, D.; Weinberger, D.R. Effect of COMT Val108/158 Met genotype on frontal lobe function and risk for schizophrenia. Proc. Natl. Acad. Sci. USA 2001, 98, 6917–6922. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malhotra, A.K.; Kestler, L.J.; Mazzanti, C.; Bates, J.A.; Goldberg, T.; Goldman, D. A Functional Polymorphism in the COMT Gene and Performance on a Test of Prefrontal Cognition. Am. J. Psychiatry 2002, 159, 652–654. [Google Scholar] [CrossRef] [PubMed]
- Diaz-Asper, C.M.; Goldberg, T.E.; Kolachana, B.S.; Straub, R.E.; Egan, M.F.; Weinberger, D.R. Genetic Variation in Catechol-O-Methyltransferase: Effects on Working Memory in Schizophrenic Patients, Their Siblings, and Healthy Controls. Biol. Psychiatry 2008, 63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barnett, J.H.; Jones, P.B.; Robbins, T.W.; Müller, U. Effects of the catechol-O-methyltransferase Val158Met polymorphism on executive function: A meta-analysis of the Wisconsin Card Sort Test in schizophrenia and healthy controls. Mol. Psychiatry 2007, 12, 72–79. [Google Scholar] [CrossRef] [Green Version]
- Schacht, J.P. COMT val158met moderation of dopaminergic drug effects on cognitive function: A critical review. Pharm. J. 2016, 16, 430–438. [Google Scholar] [CrossRef] [Green Version]
- Heinz, A.; Smolka, M.N. The effects of catechol O-methyltransferase genotype on brain activation elicited by affective stimuli and cognitive tasks. Rev. Neurosci. 2006, 17, 359–367. [Google Scholar] [CrossRef]
- Nolan, K.A.; Bilder, R.M.; Lachman, H.M.; Volavka, J. Catechol O-Methyltransferase Val 158 Met Polymorphism in Schizophrenia: Differential Effects of Val and Met Alleles on Cognitive Stability and Flexibility. Am. J. Psychiatry 2004, 161, 359–361. [Google Scholar] [CrossRef] [Green Version]
- Frank, M.J.; Moustafa, A.A.; Haughey, H.M.; Curran, T.; Hutchison, K.E. Genetic triple dissociation reveals multiple roles for dopamine in reinforcement learning. Proc. Natl. Acad. Sci. USA 2007, 104, 16311–16316. [Google Scholar] [CrossRef] [Green Version]
- Heinz, A.; Siessmeier, T.; Wrase, J.; Buchholz, H.G.; Gründer, G.; Kumakura, Y.; Cumming, P.; Schreckenberger, M.; Smolka, M.N.; Rösch, F.; et al. Correlation of Alcohol Craving With Striatal Dopamine Synthesis Capacity and D 2/3 Receptor Availability: A Combined [18 F]DOPA and [18 F]DMFP PET Study in Detoxified Alcoholic Patients. Am. J. Psychiatry 2005, 162, 1515–1520. [Google Scholar] [CrossRef] [Green Version]
- Guardia, J.; Catafau, A.M.; Batlle, F.; Martín, J.C.; Segura, L.; Gonzalvo, B.; Prat, G.; Carrió, I.; Casas, M. Striatal Dopaminergic D2 Receptor Density Measured by [123I]Iodobenzamide SPECT in the Prediction of Treatment Outcome of Alcohol-Dependent Patients. Am. J. Psychiatry 2000, 157, 127–129. [Google Scholar] [CrossRef] [PubMed]
- Kauhanen, J.; Hallikainen, T.; Tuomainen, T.-P.; Koulu, M.; Karvonen, M.K.; Salonen, J.T.; Tiihonen, J. Association Between the Functional Polymorphism of Catechol-O-Methyltransferase Gene and Alcohol Consumption Among Social Drinkers. Alcohol. Clin. Exp. Res. 2000, 24, 135–139. [Google Scholar] [CrossRef]
- Tammimäki, A.; Forsberg, M.M.; Karayiorgou, M.; Gogos, J.A.; Männistö, P.T. Increase in Free Choice Oral Ethanol Self-Administration in Catechol-O-Methyltransferase Gene-Disrupted Male Mice. Basic Clin. Pharmacol. Toxicol. 2008, 103, 297–304. [Google Scholar] [CrossRef]
- Wang, T.; Franke, P.; Neidt, H.; Cichon, S.; Knapp, M.; Lichtermann, D.; Maier, W.; Propping, P.; Nöthen, M.M. Association study of the low-activity allele of catechol-O-methyltransferase and alcoholism using a family-based approach. Mol. Psychiatry 2001, 6, 109–111. [Google Scholar] [CrossRef] [Green Version]
- Tiihonen, J.; Hallikainen, T.; Lachman, H.; Saito, T.; Volavka, J.; Kauhanen, J.; Salonen, J.T.; Ryynänen, O.-P.; Koulu, M.; Karvonen, M.K.; et al. Association between the functional variant of the catechol-O-methyltransferase (COMT) gene and type 1 alcoholism. Mol. Psychiatry 1999, 4, 286–289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hallikainen, T.; Lachman, H.; Saito, T.; Volavka, J.; Kauhanen, J.; Salonen, J.T.; Ryynänen, O.P.; Koulu, M.; Karvonen, M.K.; Pohjalainen, T.; et al. Lack of association between the functional variant of the catechol-o-methyltransferase (COMT) gene and early-onset alcoholism associated with severe antisocial behavior. Am. J. Med. Genet. 2000, 96, 348–352. [Google Scholar] [CrossRef] [PubMed]
- Kweon, Y.-S.; Lee, H.K.; Lee, C.T.; Pae, C.-U. Association study of catechol-O-methyltransferase gene polymorphism in Korean male alcoholics. Psychiatr. Genet. 2005, 15, 151–154. [Google Scholar] [CrossRef] [PubMed]
- Foroud, T.; Wetherill, L.F.; Dick, D.M.; Hesselbrock, V.; Nurnberger, J.J.I.; Kramer, J.; Tischfield, J.; Schuckit, M.; Bierut, L.J.; Xuei, X.; et al. Lack of Association of Alcohol Dependence and Habitual Smoking With Catechol-O-methyltransferase. Alcohol. Clin. Exp. Res. 2007, 31, 1773–1779. [Google Scholar] [CrossRef] [Green Version]
- Köhnke, M.D.; Wiatr, G.; Kolb, W.; Köhnke, A.M.; Schick, S.; Lutz, U.; Vonthein, R.; Gaertner, I. Plasma Homovanillic Acid: A Significant Association with Alcoholism is Independent of a Functional Polymorphism of the Human Catechol-O-Methyltransferase Gene. Neuropsychopharmacology 2003, 28, 1004–1010. [Google Scholar] [CrossRef]
- Wojnar, M.; Brower, K.J.; Strobbe, S.; Ilgen, M.; Matsumoto, H.; Nowosad, I.; Sliwerska, E.; Burmeister, M. Association between Val66Met brain-derived neurotrophic factor (BDNF) gene polymorphism and post-treatment relapse in alcohol dependence. Alcohol. Clin. Exp. Res. 2009, 33, 693–702. [Google Scholar] [CrossRef] [Green Version]
- Sheehan, D.V.; Lecrubier, Y.; Sheehan, K.H.; Amorim, P.; Janavs, J.; Weiller, E.; Hergueta, T.; Baker, R.; Dunbar, G.C. The Mini-International Neuropsychiatric Interview (M.I.N.I.): The development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. J. Clin. Psychiatry 1998, 59, 34–57. [Google Scholar]
- Sobell, L.C.; Sobell, M.B. Timeline follow back. A technique for Assessing self-reported Alcohol Consumption. Meas. Alcohol Consum. Psychosoc. Biol. Methods 1992, 41–72. [Google Scholar] [CrossRef]
- Anton, R.F.; Moak, D.H.; Latham, P.K. The obsessive compulsive drinking scale: A new method of assessing outcome in alcoholism treatment studies. Arch. Gen. Psychiatry 1996, 53, 225–231. [Google Scholar] [CrossRef] [PubMed]
- Patton, J.H.; Stanford, M.S.; Barratt, E.S. Factor structure of the barratt impulsiveness scale. J. Clin. Psychol. 1995, 51. [Google Scholar] [CrossRef]
- Desjardins, P.; Conklin, D. NanoDrop Microvolume Quantitation of Nucleic Acids. J. Vis. Exp. 2010, e2565. [Google Scholar] [CrossRef] [Green Version]
- O’Hara, R.; Miller, E.; Liao, C.-P.; Way, N.; Lin, X.; Hallmayer, J. COMT genotype, gender and cognition in community-dwelling, older adults. Neurosci. Lett. 2006, 409, 205–209. [Google Scholar] [CrossRef] [Green Version]
- Reference SNP (rs) Report. Available online: https://www.ncbi.nlm.nih.gov/snp/rs4680 (accessed on 5 December 2020).
- Berridge, K.C.; Robinson, T.E. What is the role of dopamine in reward: Hedonic impact, reward learning, or incentive salience? Brain Res. Rev. 1998, 28, 309–369. [Google Scholar] [CrossRef]
- Berridge, K.C. The debate over dopamine’s role in reward: The case for incentive salience. Psychopharmacology 2007, 191, 391–431. [Google Scholar] [CrossRef]
- Katz, A.C.; Sarapas, C.; Bishop, J.R.; Patel, S.R.; Shankman, S.A. The mediating effect of prefrontal asymmetry on the relationship between the COMT Val 158 Met SNP and trait consummatory positive affect. Cogn. Emot. 2015, 29, 867–881. [Google Scholar] [CrossRef] [Green Version]
- Klimkiewicz, A.; Mach, A.; Jakubczyk, A.; Klimkiewicz, J.; Wnorowska, A.; Kopera, M.; Fudalej, S.; Burmeister, M.; Brower, K.; Wojnar, M. COMT and BDNF Gene Variants Help to Predict Alcohol Consumption in Alcohol-dependent Patients. J. Addict. Med. 2017, 11, 114–118. [Google Scholar] [CrossRef]
- Kramer, U.M.; Cunillera, T.; Camara, E.; Marco-Pallares, J.; Cucurell, D.; Nager, W.; Bauer, P.; Schule, R.; Schols, L.; Rodriguez-Fornells, A.; et al. The Impact of Catechol-O-Methyltransferase and Dopamine D4 Receptor Genotypes on Neurophysiological Markers of Performance Monitoring. J. Neurosci. 2007, 27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kayser, A.S.; Allen, D.C.; Navarro-Cebrian, A.; Mitchell, J.M.; Fields, H.L. Dopamine, Corticostriatal Connectivity, and Intertemporal Choice. J. Neurosci. 2012, 32. [Google Scholar] [CrossRef] [PubMed]
- Coker, A.R.; Weinstein, D.N.; Vega, T.A.; Miller, C.S.; Kayser, A.S.; Mitchell, J.M. The catechol-O-methyltransferase inhibitor tolcapone modulates alcohol consumption and impulsive choice in alcohol use disorder. Psychopharmacology 2020, 237, 3139–3148. [Google Scholar] [CrossRef] [PubMed]
- Boettiger, C.A.; Mitchell, J.M.; Tavares, V.C.; Robertson, M.; Joslyn, G.; D’Esposito, M.; Fields, H.L. Immediate Reward Bias in Humans: Fronto-Parietal Networks and a Role for the Catechol-O-Methyltransferase 158Val/Val Genotype. J. Neurosci. 2007, 27, 14383–14391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soeiro-De-Souza, M.G.; Stanford, M.S.; Bio, D.S.; Machado-Vieira, R.; Moreno, R.A. Association of the COMT Met158 allele with trait impulsivity in healthy young adults. Mol. Med. Rep. 2013, 7, 1067–1072. [Google Scholar] [CrossRef]
- Paloyelis, Y.; Asherson, P.; Mehta, M.A.; Faraone, S.V.; Kuntsi, J. DAT1 and COMT Effects on Delay Discounting and Trait Impulsivity in Male Adolescents with Attention Deficit/Hyperactivity Disorder and Healthy Controls. Neuropsychopharmacology 2010, 35, 2414–2426. [Google Scholar] [CrossRef] [Green Version]
- Forbes, E.E.; Brown, S.M.; Kimak, M.; Ferrell, R.E.; Manuck, S.B.; Hariri, A.R. Genetic variation in components of dopamine neurotransmission impacts ventral striatal reactivity associated with impulsivity. Mol. Psychiatry 2009, 14, 60–70. [Google Scholar] [CrossRef]
- Colzato, L.S.; van den Wildenberg, W.P.M.; Van der Does, A.J.W.; Hommel, B. Genetic markers of striatal dopamine predict individual differences in dysfunctional, but not functional impulsivity. Neuroscience 2010, 170, 782–788. [Google Scholar] [CrossRef]
- Kasparbauer, A.-M.; Merten, N.; Aichert, D.S.; Wöstmann, N.; Meindl, T.; Rujescu, D.; Ettinger, U. Association of COMT and SLC6A3 polymorphisms with impulsivity, response inhibition and brain function. Cortex 2015, 71, 219–231. [Google Scholar] [CrossRef]
- Austin, J.C.; Honer, W.G. Psychiatric genetic counselling for parents of individuals affected with psychotic disorders: A pilot study. Early Interv. Psychiatry 2008, 2, 80–89. [Google Scholar] [CrossRef]
- Kalb, F.M.; Vincent, V.; Herzog, T.; Austin, J. Genetic Counseling for Alcohol Addiction: Assessing Perceptions and Potential Utility in Individuals with Lived Experience and Their Family Members. J. Genet. Couns. 2017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agrawal, A.; Wetherill, L.; Bucholz, K.K.; Kramer, J.; Kuperman, S.; Lynskey, M.T.; Nurnberger, J.I.; Schuckit, M.; Tischfield, J.A.; Edenberg, H.J.; et al. Genetic influences on craving for alcohol. Addict. Behav. 2013, 38, 1501–1508. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foroud, T.; Wetherill, L.F.; Liang, T.; Dick, D.M.; Hesselbrock, V.; Kramer, J.; Nurnberger, J.; Schuckit, M.; Carr, L.; Porjesz, B.; et al. Association of Alcohol Craving With?-Synuclein (SNCA). Alcohol. Clin. Exp. Res. 2007, 31, 537–545. [Google Scholar] [CrossRef] [PubMed]
- Reginsson, G.W.; Ingason, A.; Euesden, J.; Bjornsdottir, G.; Olafsson, S.; Sigurdsson, E.; Oskarsson, H.; Tyrfingsson, T.; Runarsdottir, V.; Hansdottir, I.; et al. Polygenic risk scores for schizophrenia and bipolar disorder associate with addiction. Addict. Biol. 2018, 23, 485–492. [Google Scholar] [CrossRef] [Green Version]
- Taylor, M.; Simpkin, A.J.; Haycock, P.C.; Dudbridge, F.; Zuccolo, L. Exploration of a Polygenic Risk Score for Alcohol Consumption: A Longitudinal Analysis from the ALSPAC Cohort. PLoS ONE 2016, 11, e0167360. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, L.-C.; Durazzo, T.C.; Dwyer, C.L.; Rauch, A.A.; Humphreys, K.; Williams, L.M.; Padula, C.B. Predicting relapse after alcohol use disorder treatment in a high-risk cohort: The roles of anhedonia and smoking. J. Psychiatr. Res. 2020, 126, 1–7. [Google Scholar] [CrossRef]
- Nievergelt, C.M.; Ashley-Koch, A.E.; Dalvie, S.; Hauser, M.A.; Morey, R.A.; Smith, A.K.; Uddin, M. Genomic Approaches to Posttraumatic Stress Disorder: The Psychiatric Genomic Consortium Initiative. Biol. Psychiatry 2018, 83, 831–839. [Google Scholar] [CrossRef]
- Lovallo, W.R.; Cohoon, A.J.; Sorocco, K.H.; Vincent, A.S.; Acheson, A.; Hodgkinson, C.A.; Goldman, D. Early-Life Adversity and Blunted Stress Reactivity as Predictors of Alcohol and Drug Use in Persons with COMT (Rs4680) Val158Met Genotypes. Alcohol. Clin. Exp. Res. 2019, 43, 1519–1527. [Google Scholar] [CrossRef]
- Correa, D.D.; Satagopan, J.; Martin, A.; Braun, E.; Kryza-Lacombe, M.; Cheung, K.; Sharma, A.; Dimitriadoy, S.; O’Connell, K.; Leong, S.; et al. Genetic Variants and Cognitive Functions in Patients with Brain Tumors. Neuro-Oncology 2019, 21, 1297–1309. [Google Scholar] [CrossRef]
- Sobolev, V.; Sakaniya, L.; Tretiakov, A.; Kokaeva, Z.; Naumova, E.; Rudko, O.; Soboleva, A.; Danilin, I.; Korsunskaya, I.; Klimov, E.A. Association of GA Genotype of SNP Rs4680 in COMT Gene with Psoriasis. Arch. Dermatol. Res. 2019, 311, 309–315. [Google Scholar] [CrossRef]
Total (n = 70) | |
---|---|
M (SD), Range OR n (%) | |
Age | 47.99 (15.51), 23.8–91.36 |
Level of Education | 14.01 (2.031), 10–20 |
Sex | |
Females | 17 (24.3%) |
Males | 53 (75.7%) |
Race | |
American Indian or Alaska Native | 3 (0.04%) |
Asian | 1 (0.01%) |
Black or African American | 8 (11.4%) |
Native Hawaiian or Other Pacific Islander | 0 (0%) |
White | 52 (74.3%) |
Other | 10 (14.3%) |
Ethnicity | |
Hispanic or Latino | 19 (27.1%) |
Not Hispanic or Latino | 51 (72.9%) |
Military Branch | |
Navy | 13 (18.6%) |
Army | 36 (51.4%) |
Marine Corps | 9 (12.9%) |
Air Force | 11 (15.7%) |
Coast Guard | 1 (1.4%) |
Smoking Status | |
Never | 9 (12.9%) |
Few times | 7 (10%) |
Former | 19 (27.1%) |
Currently | 35 (50%) |
Total (n = 70) | |
---|---|
M (SD), Range | |
DSM-5 AUD Symptoms | 9.21 (2.46), 0–11 |
AUDIT Total | 26.4 (8.63), 3–40 |
MASQ | |
Anxious Arousal | 23.31 (9.09), 10–50 |
Anhedonic Depression | 34.31 (7.99), 17–50 |
Worry | 17.99 (7.07), 10–44 |
PCL-5 Total | 56.59 (17.89), 20–98 |
Total (n = 70) | Val/Val (n = 17) | Val/Met (n = 27) | Met/Met (n = 26) | Abstainers (n = 19) | Relapsers (n = 51) | |
---|---|---|---|---|---|---|
M (SD), Range | M (SD), Range | M (SD), Range | M (SD), Range | M (SD), Range | M (SD), Range | |
OCDS | ||||||
Total Score | 17.27 (10.57), 0–40 | 14.47 (8.17), 0–31 | 15.37 (9.84), 0–40 | 21.08 (11.86), 0–40 | 20.28 (9.83), 0–40 | 16.18 (10.81), 0–40 |
Obsessions | 7.54 (5.24), 0–20 | 5.71 (3.74), 0–14 * | 6.85 (5.044), 0–20 | 9.46 (5.81), 0–20 * | 9.28 (5.07), 0–20 | 6.88 (5.25), 0–20 |
Compulsions | 9.73 (5.81), 0–20 | 8.76 (5.09), 0–17 | 8.52 (5.36), 0–20 | 11.62 (6.42), 0–20 | 11.0 (5.23), 0–20 | 9.29 (6.06), 0–20 |
Total (n = 70) | Val/Val (n = 17) | Val/Met (n = 27) | Met/Met (n = 26) | Abstainers (n = 19) | Relapsers (n = 51) | |
---|---|---|---|---|---|---|
M (SD), Range | M (SD), Range | M (SD), Range | M (SD), Range | M (SD), Range | M (SD), Range | |
TLFB | ||||||
Days Since Last Drink | 50.76 (62.18), 6–371 | 60.29 (84.92), 11–371 | 51.07 (56.49), 9–228 | 44.19 (51.29), 6–213 | 71.94 (72.69), 6–228 | 42.04 (56.74), 9–371 |
Total Drinks | 509.36 (569.80), 0–2873 | 511.98 (705.19), 0–2873 | 394.74 (480.25), 0–2261 | 626.67 (556.30), 0–1879 | 401.08 (464.60), 0–1718 | 557.56 (602.40), 0–2873 |
Total Drinking Days | 38.94 (30.98), 0–96 | 34.18 (32.40), 0–94 | 36.89 (30.61), 0–82 | 44.192 (30.89), 0–96 | 33.22 (32.63), 0–96 | 41.72 (30.21), 0–94 |
Average Drinks per Day | 11.59 (10.96), 0–52 | 14.59 (14.32), 0–52.7 | 8.92 (8.84), 0–34 | 12.42 (10.25), 0–48 | 7.78 (7.22), 0–23.1 | 13.17 (11.74), 0–52.7 |
Total Excessive Drinking Day | 34.92 (31.24), 0–96 | 30.29 (32.24), 0–93 | 34.0 (32.06), 0–82 | 38.92 (30.44), 0–96 | 27.78 (31.76), 0–96 | 38.14 (30.82), 0–93 |
Max Drinks per Day | 16.07 (14.34), 0–68 | 20.78 (18.32), 0–68 | 13.13 (12.77), 0–55 | 16.06 (12.59), 0–48 | 10.28 (9.62), 0–31 | 18.44 (15.14), 0–68 |
Days to Relapse | 58.94 (47.78), 3–179 | 67.85 (48.94), 3–166 | 42.23 (48.45), 4–179 | 67.32 (44.70), 14–149 | 0 | 59.24 (48.22), 3–179 |
Total (n = 70) | Val/Val (n = 17) | Val/Met (n = 27) | Met/Met (n = 26) | Abstainers (n = 19) | Relapsers (n = 51) | |
---|---|---|---|---|---|---|
M (SD), Range | M (SD), Range | M (SD), Range | M (SD), Range | M (SD), Range | M (SD), Range | |
BIS | ||||||
Total | 70.48 (11.87), 42–107 | 69.24 (13.46), 48–95 | 71.54 (12.49), 43–107 | 70.23 (10.44), 42–89 | 71.11 (13.26), 53–107 | 70.25 (11.48), 42–95 |
Inattention | 11.77 (3.09), 5–20 | 11.59 (3.66), 7–19 | 12.42 (3.05), 6–20 | 11.23 (2.73), 5–16 | 12.12 (3.49), 7–20 | 11.65 (2.98), 5–19 |
Motor Impulsiveness | 15.77 (3.79), 8–26 | 14.18 (2.83), 9–19 | 15.73 (3.95), 8–26 | 16.85 (3.92), 10–25 | 16.41 (4.79), 8–26 | 15.56 (3.43), 9–25 |
Self-Control Problems | 14.80 (3.48), 6–21 | 15.24 (4.24), 6–21 | 14.77 (3.43), 6–19 | 14.54 (3.06), 9–21 | 14.82 (2.94), 7–19 | 14.79 (3.66), 6–21 |
Cognitive Complexity | 13.20 (2.72), 7–19 | 13.29 (2.95), 10–19 | 13.35 (2.33), 8–18 | 12 (2.99), 7–18 | 13.12 (2.59, 7–17 | 13.23 (2.77), 7–19 |
Perseverance | 8.61 (2.27), 4–15 | 8.71 (1.96), 4–12 | 8.65 (2.81), 4–15 | 8.50 (1.90), 4–11 | 8.53 (3.00), 4–15 | 8.63 (2.01), 4–13 |
Cognitive Instability | 6.33 (1.93), 3–11 | 6.24 (1.79), 3–9 | 6.62 (2.000), 3–11 | 6.12 (1.98), 3–10 | 6.59 (2.59), 3–11 | 6.25 (1.68), 3–10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Padula, C.B.; Hansen, A.; Hughes, R.L.; McNerney, M.W. Dimensions of Craving Interact with COMT Genotype to Predict Relapse in Individuals with Alcohol Use Disorder Six Months after Treatment. Brain Sci. 2021, 11, 62. https://doi.org/10.3390/brainsci11010062
Padula CB, Hansen A, Hughes RL, McNerney MW. Dimensions of Craving Interact with COMT Genotype to Predict Relapse in Individuals with Alcohol Use Disorder Six Months after Treatment. Brain Sciences. 2021; 11(1):62. https://doi.org/10.3390/brainsci11010062
Chicago/Turabian StylePadula, Claudia B., Annika Hansen, Rachel L. Hughes, and M. Windy McNerney. 2021. "Dimensions of Craving Interact with COMT Genotype to Predict Relapse in Individuals with Alcohol Use Disorder Six Months after Treatment" Brain Sciences 11, no. 1: 62. https://doi.org/10.3390/brainsci11010062
APA StylePadula, C. B., Hansen, A., Hughes, R. L., & McNerney, M. W. (2021). Dimensions of Craving Interact with COMT Genotype to Predict Relapse in Individuals with Alcohol Use Disorder Six Months after Treatment. Brain Sciences, 11(1), 62. https://doi.org/10.3390/brainsci11010062