The Genetics of Sleep Disorders in Children: A Narrative Review
Abstract
:1. Introduction
2. Methods
3. Insomnia
4. Sleep-Related Breathing Disorders
5. Central Disorders of Hypersomnolence
6. Circadian Rhythm Sleep-Wake Disorders
7. Parasomnias
8. Sleep-Related Movement Disorders
9. Limitations and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Glossary
References
- Anafi, R.C.; Kayser, M.S.; Raizen, D.M. Exploring phylogeny to find the function of sleep. Nat. Rev. Neurosci. 2018, 20, 109–116. [Google Scholar] [CrossRef] [PubMed]
- Sheldon, S.; Ferber, R.; Kryger, M.; Gozal, D. Principles and Practice of Pediatric Sleep Medicine, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2014; pp. 3–10, 35–42, 99–102, 313–322, 337–347. [Google Scholar]
- Johnson, D.A.; Billings, M.E.; Hale, L. Environmental determinants of insufficient sleep and sleep disorders: Implications for population health. Curr. Epidemiol. Rep. 2018, 5, 61–69. [Google Scholar] [CrossRef]
- Szmyd, B.; Rogut, M.; Białasiewicz, P.; Gabryelska, A. The impact of glucocorticoids and statins on sleep quality. Sleep Med. Rev. 2020, 55, 101380. [Google Scholar] [CrossRef]
- Winkelmann, J.; Kimura, M. Genetics of sleep disorders. Handb. Clin. Neurol. 2011, 99, 681–693. [Google Scholar] [PubMed]
- Garfield, V. Sleep duration: A review of genome-wide association studies (GWAS) in adults from 2007 to 2020. Sleep Med. Rev. 2020, 56, 101413. [Google Scholar] [CrossRef] [PubMed]
- Partinen, M.; Kaprio, J.; Koskenvuo, M.; Putkonen, P.; Langinvainio, H. Genetic and environmental determination of human sleep. Sleep 1983, 6, 179–185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kelly, J.M.; Bianchi, M.T. Mammalian sleep genetics. Neurogenetics 2012, 13, 287–326. [Google Scholar] [CrossRef]
- Franken, P.; Chollet, D.; Tafti, M. The homeostatic regulation of sleep need is under genetic control. J. Neurosci. 2001, 21, 2610–2621. [Google Scholar] [CrossRef] [Green Version]
- Cirelli, C. The genetic and molecular regulation of sleep: From fruit flies to humans. Nat. Rev. Neurosci. 2009, 10, 549–560. [Google Scholar] [CrossRef] [Green Version]
- Gabryelska, A.; Sochal, M.; Turkiewicz, S.; Białasiewicz, P. Relationship between HIF-1 and circadian clock proteins in obstructive sleep apnea patients—Preliminary study. J. Clin. Med. 2020, 9, 1599. [Google Scholar] [CrossRef]
- Gabryelska, A.; Szmyd, B.; Panek, M.; Szemraj, J.; Kuna, P.; Białasiewicz, P. Serum hypoxia-inducible factor-1α protein level as a diagnostic marker of obstructive sleep apnea. Pol. Arch. Intern. Med. 2019, 130, 158–160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chokroverty, S.; Allen, R.P.; Walters, A.S.; Montagna, P. Sleep and Movement Disorders, 2nd ed.; Oxford University Press: Oxford, UK, 2013; pp. 115–117. [Google Scholar]
- Tononi, G.; Cirelli, C. Sleep and the price of plasticity: From synaptic and cellular homeostasis to memory consolidation and integration. Neuron 2014, 81, 12–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lane, J.M.; Liang, J.; Vlasac, I.; Anderson, S.G.; Bechtold, D.A.; Bowden, J.; Emsley, R.; Gill, S.; Little, M.A.; Luik, A.; et al. Genome-wide association analyses of sleep disturbance traits identify new loci and highlight shared genetics with neuropsychiatric and metabolic traits. Nat. Genet. 2016, 49, 274–281. [Google Scholar] [CrossRef] [Green Version]
- Hammerschlag, A.R.; Stringer, S.; de Leeuw, C.; Sniekers, S.; Taskesen, E.; Watanabe, K.; Blanken, T.F.; Dekker, K.; Lindert, B.H.W.T.; Wassing, R.; et al. Genome-wide association analysis of insomnia complaints identifies risk genes and genetic overlap with psychiatric and metabolic traits. Nat. Genet. 2017, 49, 1584–1592. [Google Scholar] [CrossRef]
- Jansen, P.R.; Watanabe, K.; Stringer, S.; Skene, N.; Bryois, J.; Hammerschlag, A.R.; De Leeuw, C.A.; Benjamins, J.S.; Manchado, A.M.; Nagel, M.; et al. Genome-wide analysis of insomnia in 1,331,010 individuals identifies new risk loci and functional pathways. Nat. Genet. 2019, 51, 394–403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Veatch, O.J.; Keenan, B.T.; Gehrman, P.R.; Malow, B.A.; Pack, A.I. Pleiotropic genetic effects influencing sleep and neurological dis-orders. Lancet Neurol. 2017, 16, 158–170. [Google Scholar] [CrossRef]
- Musiek, E.S.; Holtzman, D.M. Mechanisms linking circadian clocks, sleep, and neurodegeneration. Science 2016, 354, 1004–1008. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Logan, R.W.; McClung, C.A. Rhythms of life: Circadian disruption and brain disorders across the lifespan. Nat. Rev. Neurosci. 2018, 20, 49–65. [Google Scholar] [CrossRef]
- American Academy of Sleep Medicine. The International Classification of Sleep Disorders, 3rd ed.; American Academy of Sleep Medicine: Darien, IL, USA, 2014. [Google Scholar]
- Owens, J.A.; Mindell, J.A. Pediatric insomnia. Pediatr. Clin. North. Am. 2011, 58, 555–569. [Google Scholar] [CrossRef]
- Robinson-Shelton, A.; Malow, B.A. Sleep disturbances in neurodevelopmental disorders. Curr. Psychiatry Rep. 2015, 18, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Owens, J.A.; Moore, M. Insomnia in infants and young children. Pediatr. Ann. 2017, 46, e321–e326. [Google Scholar] [CrossRef] [PubMed]
- Tafti, M.; Maret, S.; Dauvilliers, Y. Genes for normal sleep and sleep disorders. Ann. Med. 2005, 37, 580–589. [Google Scholar] [CrossRef] [PubMed]
- Palagini, L.; Biber, K.; Riemann, D. The genetics of insomnia—Evidence for epigenetic mechanisms? Sleep Med. Rev. 2014, 18, 225–235. [Google Scholar] [CrossRef]
- Lind, M.J.; Gehrman, P.R. Genetic pathways to insomnia. Brain Sci. 2016, 6, 64. [Google Scholar] [CrossRef]
- Lind, M.; Aggen, S.H.; Kirkpatrick, R.M.; Kendler, K.S.; Amstadter, A.B. A longitudinal twin study of insomnia symptoms in adults. Sleep 2015, 38, 1423–1430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barclay, N.L.; Gehrman, P.R.; Gregory, A.M.; Eaves, L.J.; Silberg, J.L. The heritability of insomnia progression during child-hood/adolescence: Results from a longitudinal twin study. Sleep 2015, 38, 109–118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Serretti, A.; Benedetti, F.; Mandelli, L.; Lorenzi, C.; Pirovano, A.; Colombo, C.; Smeraldi, E. Genetic dissection of psychopathological symptoms: Insomnia in mood disorders and CLOCK gene polymorphism. Am. J. Med. Genet. 2003, 121, 35–38. [Google Scholar] [CrossRef]
- Wang, C.-C.; Lung, F.-W. The role of PGC-1 and Apoε4 in insomnia. Psychiatr. Genet. 2012, 22, 82–87. [Google Scholar] [CrossRef]
- Viola, A.U.; Archer, S.N.; James, L.M.; Groeger, J.A.; Lo, J.C.; Skene, D.J.; Dijk, D.J. PER3 polymorphism predicts sleep structure and waking performance. Curr. Biol. 2007, 17, 613–618. [Google Scholar] [CrossRef] [PubMed]
- Brower, K.J.; Wojnar, M.; Sliwerska, E.; Armitage, R.; Burmeister, M. PER3 polymorphism and insomnia severity in alcohol de-pendence. Sleep 2012, 35, 571–577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brummett, B.H.; Krystal, A.; Ashley-Koch, A.; Kuhn, C.M.; Züchner, S.; Siegler, I.C.; Barefoot, J.C.; Ballard, E.L.; Gwyther, L.P.; Williams, R.B. Sleep quality varies as a function of 5-HTTLPR genotype and stress. Psychosom. Med. 2007, 69, 621–624. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deuschle, M.; Schredl, M.; Schilling, C.; Wüst, S.; Frank, J.; Witt, S.H.; Schulze, T.G. Association between a serotonin transporter length polymorphism and primary insomnia. Sleep 2010, 33, 343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du, L.; Bakish, D.; Ravindran, A.; Hrdina, P.D. MAO-A gene polymorphisms are associated with major depression and sleep dis-turbance in males. Neuroreport 2004, 15, 2097–2101. [Google Scholar] [CrossRef] [PubMed]
- Brummett, B.H.; Krystal, A.D.; Siegler, I.C.; Kuhn, C.; Surwit, R.S.; Züchner, S.; Williams, R.B. Associations of a regulatory polymorphism of monoamine oxidase-A gene promoter (MAOA-uVNTR) with symptoms of depression and sleep quality. Psychosom. Med. 2007, 69, 396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ban, H.-J.; Kim, S.C.; Seo, J.; Kang, H.-B.; Choi, J.K. Genetic and metabolic characterization of insomnia. PLoS ONE 2011, 6, e18455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Byrne, E.M.; Gehrman, P.R.; Medland, S.E.; Nyholt, D.R.; Heath, A.C.; Madden, P.A.; Chronogen Consortium. A genome-wide association study of sleep habits and insomnia. Am. J. Med. Genet. 2013, 162, 439–451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spada, J.; Scholz, M.; Kirsten, H.; Hensch, T.; Horn, K.; Jawinski, P.; Ulke, C.; Burkhardt, R.; Wirkner, K.; Loeffler, M.; et al. Genome-wide association analysis of actigraphic sleep phenotypes in the LIFE Adult Study. J. Sleep Res. 2016, 25, 690–701. [Google Scholar] [CrossRef]
- Amin, N.; Allebrandt, K.V.; Van Der Spek, A.; Müller-Myhsok, B.; Hek, K.; Teder-Laving, M.; Hayward, C.; Esko, T.; Van Mill, J.G.; Mbarek, H.; et al. Genetic variants in RBFOX3 are associated with sleep latency. Eur. J. Hum. Genet. 2016, 24, 1488–1495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schormair, B.; Zhao, C.; Bell, S.; Tilch, E.; Salminen, A.V.; Pütz, B.; Dauvilliers, Y.; Stefani, A.; Högl, B.; Poewe, W.; et al. Identification of novel risk loci for restless legs syndrome in genome-wide association studies in individuals of European ancestry: A meta-analysis. Lancet Neurol. 2017, 16, 898–907. [Google Scholar] [CrossRef] [Green Version]
- Marcus, C.L.; Brooks, L.J.; Ward, S.D.; Draper, K.A.; Gozal, D.; Halbower, A.C.; Spruyt, K. Diagnosis and management of childhood obstructive sleep apnea syndrome. Pediatrics 2012, 130, e714–e755. [Google Scholar] [CrossRef] [Green Version]
- Section on Pediatric Pulmonology; Subcommittee on Obstructive Sleep Apnea Syndrome; American Academy of Pediatrics. Clinical practice guideline: Diagnosis and management of childhood obstructive sleep apnea syndrome. Pediatrics 2002, 109, 704–712. [Google Scholar] [CrossRef] [Green Version]
- Verhulst, S.; Kaditis, A. Obstructive sleep apnoea in children. Breathe 2011, 7, 240–247. [Google Scholar] [CrossRef] [Green Version]
- Parish, J.M. Genetic and immunologic aspects of sleep and sleep disorders. Chest 2013, 143, 1489–1499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uyrum, E.; Balbay, O.; Annakkaya, A.N.; Balbay, E.G.; Silan, F.; Arbak, P. The relationship between obstructive sleep apnea syndrome and apolipoprotein e genetic variants. Respiration 2015, 89, 195–200. [Google Scholar] [CrossRef]
- Ovchinsky, A.; Rao, M.; Lotwin, I.; Goldstein, N.A. The familial aggregation of pediatric obstructive sleep apnea syndrome. Arch. Otolaryngol. Head Neck Surg. 2002, 128, 815–818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lavezzi, A.M.; Casale, V.; Oneda, R.; Gioventù, S.; Matturri, L.; Farronato, G. Obstructive sleep apnea syndrome (OSAS) in children with class III malocclusion: Involvement of the PHOX2B gene. Sleep Breath. 2013, 17, 1275–1280. [Google Scholar] [CrossRef]
- Pattyn, A.; Morin, X.; Cremer, H.; Goridis, C.; Brunet, J.-F. The homeobox gene Phox2b is essential for the development of autonomic neural crest derivatives. Nature 1999, 399, 366–370. [Google Scholar] [CrossRef] [PubMed]
- Weese-Mayer, D.E.; Berry-Kravis, E.M.; Zhou, L.; Maher, B.S.; Silvestri, J.M.; Curran, M.E.; Marazita, M.L. Idiopathic congenital central hypoventilation syndrome: Analysis of genes pertinent to early autonomic nervous system embryologic development and identification of mutations in PHOX2b. Am. J. Med. Genet. 2003, 123A, 267–278. [Google Scholar] [CrossRef]
- Au, C.T.; Zhang, J.; Cheung, J.Y.F.; Chan, K.C.C.; Wing, Y.K.; Li, A.M. Familial aggregation and heritability of obstructive sleep apnea using children probands. J. Clin. Sleep Med. 2019, 15, 1561–1570. [Google Scholar] [CrossRef]
- Ye, X.H.; Chen, H.; Yu, Q.; Zhu, Q.L. Liver X receptor gene expression is enhanced in children with obstructive sleep apnea-hyperpnoea syndrome and cyclooxygenase-2 (COX-2) is correlated with severity of Obstructive Sleep Apnea-Hypopnea Syndrome (OSAHS). Int. Med. J. Exp. Clin. Res. 2017, 23, 3261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhushan, B.; Khalyfa, A.; Spruyt, K.; Kheirandish-Gozal, L.; Capdevila, O.S.; Bhattacharjee, R.; Kim, J.; Keating, B.; Hakonarson, H.; Gozal, D. Fatty-acid binding protein 4 gene polymorphisms and plasma levels in children with obstructive sleep apnea. Sleep Med. 2011, 12, 666–671. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weisgraber, K.H.; Roses, A.D.; Strittmatter, W.J. The role of apolipoprotein E in the nervous system. Curr. Opin. Lipidol. 1994, 5, 110–116. [Google Scholar] [CrossRef] [PubMed]
- Gozal, D.; Capdevila, O.S.; Kheirandish-Gozal, L.; Crabtree, V.M. APOE epsilon 4 allele, cognitive dysfunction, and obstructive sleep apnea in children. Neurology 2007, 69, 243–249. [Google Scholar] [CrossRef] [PubMed]
- Gozal, D.; Khalyfa, A.; Capdevila, O.S.; Kheirandish-Gozal, L.; Khalyfa, A.A.; Kim, J. Cognitive function in prepubertal children with obstructive sleep apnea: A modifying role for NADPH oxidase p22 subunit gene polymorphisms? Antioxid. Redox Signal. 2012, 16, 171–177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nair, D.; Dayyat, E.A.; Zhang, S.X.; Wang, Y.; Gozal, D. Intermittent hypoxia-induced cognitive deficits are mediated by NADPH oxidase activity in a murine model of sleep apnea. PLoS ONE 2011, 6, e19847. [Google Scholar] [CrossRef] [PubMed]
- Khalyfa, A.; Capdevila, O.S.; Buazza, M.O.; Serpero, L.D.; Kheirandish-Gozal, L.; Gozal, D. Genome-wide gene expression profiling in children with non-obese obstructive sleep apnea. Sleep Med. 2009, 10, 75–86. [Google Scholar] [CrossRef]
- Khalyfa, A.; Kheirandish-Gozal, L.; Khalyfa, A.A.; Philby, M.F.; Alonso-Álvarez, M.L.; Mohammadi, M.; Gozal, D. Circulating plasma extracellular microvesicle microRNA cargo and endothelial dysfunction in children with obstructive sleep apnea. Am. J. Respir. Crit. Care Med. 2016, 194, 1116–1126. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Bhattacharjee, R.; Khalyfa, A.; Gozal, L.; Capdevila, O.S.; Wang, Y.; Gozal, D. DNA methylation in inflammatory genes among children with obstructive sleep apnea. Am. J. Respir. Crit. Care Med. 2012, 185, 330–338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khalyfa, A.; Kheirandish-Gozal, L.; Capdevila, O.S.; Bhattacharjee, R.; Gozal, D. Macrophage migration inhibitory factor gene polymorphisms and plasma levels in children with obstructive sleep apnea. Pediatr. Pulmonol. 2012, 47, 1001–1011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gozal, L.; Khalyfa, A.; Gozal, D.; Bhattacharjee, R.; Wang, Y. Endothelial dysfunction in children with obstructive sleep apnea is associated with epigenetic changes in the eNOS gene. Chest 2013, 143, 971–977. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Su, M.-S.; Xu, L.; Zheng, J.-S. Association of T lymphocyte immune imbalance and IL-10 gene polymorphism with the risk of obstructive sleep apnea in children with obesity. Sleep Breath. 2017, 177, 1142–1937. [Google Scholar] [CrossRef] [PubMed]
- Berry, R.B.; Brooks, R.; Gamaldo, C.E.; Harding, S.M.; Marcus, C.; Vaughn, B.V. The AASM Manual for the Scoring of Sleep and Associated Events: Rules, Terminology and Technical Specifications; Version 2.6; American Academy of Sleep Medicine: Darien, IL, USA, 2020. [Google Scholar]
- McLaren, A.T.; Bin-Hasan, S.; Narang, I. Diagnosis, management and pathophysiology of central sleep apnea in children. Paediatr. Respir. Rev. 2018, 30, 49–57. [Google Scholar] [CrossRef]
- Marcus, C.L.; Omlin, K.J.; Basinki, D.J.; Bailey, S.L.; Rachal, A.B.; Von Pechmann, W.S.; Keens, T.G.; Ward, S.L.D. Normal polysomnographic values for children and adolescents. Am. Rev. Respir. Dis. 1992, 146, 1235–1239. [Google Scholar] [CrossRef]
- Pillekamp, F.; Hermann, C.; Keller, T.; Von Gontard, A.; Kribs, A.; Roth, B. Factors influencing apnea and bradycardia of prematurity—Implications for neurodevelopment. Neonatology 2006, 91, 155–161. [Google Scholar] [CrossRef]
- Salisbury, E.; Hall, M.H.; Sharma, P.; Boyd, T.; Bednarek, F.; Paydarfar, D. Heritability of apnea of prematurity: A retrospective twin study. Pediatrics 2010, 126, e779–e787. [Google Scholar] [CrossRef]
- Xu, X.-H.; Huang, X.-W.; Qun, L.; Li, Y.-N.; Wang, Y.; Liu, C.; Ma, Y.; Liu, Q.-M.; Sun, K.; Qian, F.; et al. Two functional loci in the promoter of EPAS1 gene involved in high-altitude adaptation of Tibetans. Sci. Rep. 2014, 4, 7465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Basang, Z.; Wang, B.; Li, L.; Yang, L.; Liu, L.; Cui, C.; Lanzi, G.; Yuzhen, N.; Duo, J.; Zheng, H.; et al. HIF2A variants were associated with different levels of high-altitude hypoxia among native Tibetans. PLoS ONE 2015, 10, e0137956. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kritzinger, F.E.; Al-Saleh, S.; Narang, I. Descriptive analysis of central sleep apnea in childhood at a single center. Pediatr. Pulmonol. 2011, 46, 1023–1030. [Google Scholar] [CrossRef]
- Felix, O.; Amaddeo, A.; Arroyo, J.O.; Zerah, M.; Puget, S.; Cormier-Daire, V.; Baujat, G.; Pinto, G.; Fernandez-Bolanos, M.; Fauroux, B. Central sleep apnea in children: Experience at a single center. Sleep Med. 2016, 25, 24–28. [Google Scholar] [CrossRef] [PubMed]
- White, K.K.; Parnell, S.E.; Kifle, Y.; Blackledge, M.; Bompadre, V. Is there a correlation between sleep disordered breathing and fo-ramen magnum stenosis in children with achondroplasia? Am. J. Med. Genet. 2016, 170, 32–41. [Google Scholar] [CrossRef] [PubMed]
- Ghirardo, S.; Amaddeo, A.; Griffon, L.; Khirani, S.; Fauroux, B. Central apnea and periodic breathing in children with underlying conditions. J. Sleep Res. 2021, e13388. [Google Scholar] [CrossRef]
- Trang, H.; Samuels, M.; Ceccherini, I.; Frerick, M.; Garcia-Teresa, M.A.; Peters, J.; Schoeber, J.; Migdal, M.; Markstrom, A.; Ottonello, G.; et al. Guidelines for diagnosis and management of congenital central hypoventilation syndrome. Orphanet. J. Rare Dis. 2020, 15, 1–21. [Google Scholar] [CrossRef]
- Matera, V.; Bachetti, T.; Puppo, F.; Di Duca, M.; Morandi, F.; Casiraghi, G.; Cilio, M.; Hennekam, R.; Hofstra, R.; Schober, J.; et al. PHOX2B mutations and polyalanine expansions correlate with the severity of the respiratory phenotype and associated symptoms in both congenital and late onset Central Hypoventilation syndrome. J. Med. Genet. 2004, 41, 373–380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amiel, J.; Laudier, B.; Attie-Bitach, T.; Trang, H.; Pontual, L.; Gener, B.; Trochet, D.; Etchevers, H.; Ray, P.; Simonneau, M.; et al. Polyalanine expansion and frameshift mutations of the paired-like homeobox gene PHOX2B in congenital central hypoventilation syndrome. Nat. Genet. 2003, 33, 459–461. [Google Scholar] [CrossRef] [Green Version]
- Sasaki, A.; Kanai, M.; Kijima, K.; Akaba, K.; Hashimoto, M.; Hasegawa, H.; Hayasaka, K. Molecular analysis of congenital central hypoventilation syndrome. Hum. Genet. 2003, 114, 22–26. [Google Scholar] [CrossRef] [PubMed]
- Todd, E.S.; Weinberg, S.M.; Berry-Kravis, E.M.; Silvestri, J.M.; Kenny, A.S.; Rand, C.M.; Zhou, L.; Maher, B.S.; Marazita, M.L.; Weese-Mayer, D. Facial phenotype in children and young adults with PHOX2B–determined congenital central hypoventilation syndrome: Quantitative pattern of dysmorphology. Pediatr. Res. 2006, 59, 39–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reppucci, D.; Hamilton, J.; Yeh, E.A.; Katz, S.; Al-Saleh, S.; Narang, I. ROHHAD syndrome and evolution of sleep disordered breathing. Orphanet J. Rare Dis. 2016, 11, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Lazea, C.; Sur, L.; Florea, M. ROHHAD (Rapid-onset obesity with hypoventilation, hypothalamic dysfunction, autonomic dysregulation) syndrome—What every pediatrician should know about the etiopathogenesis, diagnosis and treatment: A review. Int. J. Gen. Med. 2021, 14, 319. [Google Scholar] [CrossRef] [PubMed]
- Barclay, S.F.; Rand, C.M.; Gray, P.A.; Gibson, W.T.; Wilson, R.J.; Berry-Kravis, E.M.; Ize-Ludlow, D.; Bech-Hansen, N.T.; Weese-Mayer, D.E. Absence of mutations in HCRT, HCRTR1 and HCRTR2 in patients with ROHHAD. Respir. Physiol. Neurobiol. 2016, 221, 59–63. [Google Scholar] [CrossRef]
- Patwari, P.P.; Rand, C.M.; Berry-Kravis, E.M.; Ize-Ludlow, D.; Weese-Mayer, D.E. Monozygotic twins discordant for ROHHAD phenotype. Pediatrics 2011, 128, e711–e715. [Google Scholar] [CrossRef]
- Szymońska, I.; Borgenvik, T.L.; Karlsvik, T.M.; Halsen, A.; Malecki, B.K.; Saetre, S.E.; Malecki, M. Novel mutation-deletion in the PHOX2B gene of the patient diagnosed with neuroblastoma, hirschsprung’s disease, and congenital central hypoventilation syndrome (NB-HSCR-CCHS) cluster. J. Genet. Syndr. Gene Ther. 2015, 6. [Google Scholar] [CrossRef] [Green Version]
- Gabryelska, A.; Szmyd, B.; Maschauer, E.L.; Roguski, A.; Canham, R.; Morrison, I.; Białasiewicz, P.; Riha, R.L. Utility of measuring CSF hypocretin-1 level in patients with suspected narcolepsy. Sleep Med. 2020, 71, 48–51. [Google Scholar] [CrossRef] [PubMed]
- Wijnans, L.; Lecomte, C.; de Vries, C.; Weibel, D.; Sammon, C.; Hviid, A.; Svanström, H.; Mølgaard-Nielsen, D.; Heijbel, H.; Dahlström, L.A.; et al. The incidence of narcolepsy in Europe: Before, during, and after the influenza A(H1N1)pdm09 pandemic and vaccination campaigns. Vaccine 2013, 31, 1246–1254. [Google Scholar] [CrossRef] [PubMed]
- Kotagal, S.; Hartse, K.M.; Walsh, J.K. Characteristics of narcolepsy in preteenaged children. Pediatrics 1990, 85. [Google Scholar]
- Plazzi, G.; Pizza, F.; Palaia, V.; Franceschini, C.; Poli, F.; Moghadam, K.K.; Cortelli, P.; Nobili, L.; Bruni, O.; Dauvilliers, Y.; et al. Complex movement disorders at disease onset in childhood narcolepsy with cataplexy. Brain 2011, 134, 3480–3492. [Google Scholar] [CrossRef]
- Quaedackers, L.; Van Gilst, M.M.; Van Mierlo, P.; Lammers, G.-J.; Dhondt, K.; Amesz, P.; Peeters, E.; Hendriks, D.; Vandenbussche, N.; Pillen, S.; et al. Impaired social functioning in children with narcolepsy. Sleep 2018, 42. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Lee, G.-H.; Sung, S.M.; Jung, D.S.; Pak, K. Prevalence of attention deficit hyperactivity disorder symptoms in narcolepsy: A systematic review. Sleep Med. 2019, 65, 84–88. [Google Scholar] [CrossRef] [PubMed]
- Kotagal, S.; Krahn, L.E.; Slocumb, N. A putative link between childhood narcolepsy and obesity. Sleep Med. 2004, 5, 147–150. [Google Scholar] [CrossRef] [PubMed]
- Poli, F.; Pizza, F.; Mignot, E.; Ferri, R.; Pagotto, U.; Taheri, S.; Finotti, E.; Bernardi, F.; Pirazzoli, P.; Cicognani, A.; et al. High prevalence of precocious puberty and obesity in childhood narcolepsy with cataplexy. Sleep 2013, 36, 175–181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mignot, E. Genetic and familial aspects of narcolepsy. Neurology 1998, 50, S16–S22. [Google Scholar] [CrossRef]
- Peyron, C.; Faraco, J.; Rogers, W.; Ripley, B.; Overeem, S.; Charnay, Y.; Nevsimalova, S.; Aldrich, M.; Reynolds, D.; Albin, R.; et al. A mutation in a case of early onset narcolepsy and a generalized absence of hypocretin peptides in human narcoleptic brains. Nat. Med. 2000, 6, 991–997. [Google Scholar] [CrossRef] [PubMed]
- Hor, H.; Bartesaghi, L.; Kutalik, Z.; Vicário, J.L.; de Andrés, C.; Pfister, C.; Peraita-Adrados, R. A missense mutation in myelin oligodendrocyte glycoprotein as a cause of familial narcolepsy with cataplexy. Am. J. Hum. Genet. 2011, 89, 474–479. [Google Scholar] [CrossRef] [Green Version]
- Degn, M.; Dauvilliers, Y.; Dreisig, K.; Lopez, R.; Pfister, C.; Pradervand, S.; Kornum, B.R.; Tafti, M. Rare missense mutations in P2RY11 in narcolepsy with cataplexy. Brain 2017, 140, 1657–1668. [Google Scholar] [CrossRef] [PubMed]
- Raizen, D.M.; Mason, T.B.A.; Pack, A.I. Genetic basis for sleep regulation and sleep disorders. Semin. Neurol. 2006, 26, 467–483. [Google Scholar] [CrossRef]
- Ollila, H.M. Narcolepsy type 1: What have we learned from genetics? Sleep 2020, 43, zsaa099. [Google Scholar] [CrossRef] [PubMed]
- Nishino, S.; Okura, M.; Mignot, E. Narcolepsy: Genetic predisposition and neuropharmacological mechanisms: Review article. Sleep Med. Rev. 2000, 4, 57–99. [Google Scholar] [CrossRef] [PubMed]
- European Narcolepsy Network (EU-NN). DQB1 locus alone explains most of the risk and protection in narcolepsy with cataplexy in Europe. Sleep 2014, 37, 19–25. [Google Scholar] [CrossRef] [Green Version]
- Mignot, E.; Lin, L.; Rogers, W.; Honda, Y.; Qiu, X.; Lin, X.; Risch, N. Complex HLA-DR and-DQ interactions confer risk of narcolepsy-cataplexy in three ethnic groups. Am. J. Hum. Genet. 2001, 68, 686–699. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, F.; Faraco, J.; Dong, X.S.; Ollila, H.; Lin, L.; Li, J.; An, P.; Wang, S.; Jiang, K.W.; Gao, Z.C.; et al. Genome wide analysis of narcolepsy in china implicates novel immune loci and reveals changes in association prior to versus after the 2009 H1N1 influenza pandemic. PLoS Genet. 2013, 9, e1003880. [Google Scholar] [CrossRef]
- Orellana, C.; Villemin, E.; Tafti, M.; Carlander, B.; Besset, A.; Billiard, M. Life events in the year preceding the onset of narcolepsy. Sleep 1994, 17, S50–S53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hallmayer, J.; Faraco, J.; Lin, L.; Hesselson, S.; Winkelmann, J.; Kawashima, M.; Mignot, E. Narcolepsy is strongly associated with the T-cell receptor alpha locus. Nat. Genet. 2009, 41, 708–711. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.K.; Mahlios, J.; Mignot, E. Genetic association, seasonal infections and autoimmune basis of narcolepsy. J. Autoimmun. 2013, 43, 26–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arnulf, I.; Lin, L.; Gadoth, N.; File, J.; Lecendreux, M.; Franco, P.; Zeitzer, J.; Lo, B.; Faraco, J.H.; Mignot, E. Kleine-Levin syndrome: A systematic study of 108 patients. Ann. Neurol. 2008, 63, 482–493. [Google Scholar] [CrossRef] [PubMed]
- Arnulf, I.; Zeitzer, J.M.; File, J.; Farber, N.; Mignot, E. Kleine–Levin syndrome: A systematic review of 186 cases in the literature. Brain 2005, 128, 2763–2776. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dauvilliers, Y.; Mayer, G.; Lecendreux, M.; Neidhart, E.; Peraita-Adrados, R.; Sonka, K.; Billiard, M.; Tafti, M. Kleine-Levin syndrome: An autoimmune hypothesis based on clinical and genetic analyses. Neurology 2002, 59, 1739–1745. [Google Scholar] [CrossRef] [PubMed]
- Billiard, M.; Jaussent, I.; Dauvilliers, Y.; Besset, A. Recurrent hypersomnia: A review of 339 cases. Sleep Med. Rev. 2011, 15, 247–257. [Google Scholar] [CrossRef] [PubMed]
- Nguyen QT, R.; Groos, E.; Leclair-Visonneau, L.; Monaca-Charley, C.; Rico, T.; Farber, N.; Arnulf, I. Familial Kleine-Levin syndrome: A specific entity? Sleep 2016, 39, 1535–1542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peraita-Adrados, R.; Vicario, J.L.; Tafti, M.; De León, M.G.; Billiard, M. Monozygotic twins affected with Kleine-Levin syndrome. Sleep 2012, 35, 595–596. [Google Scholar] [CrossRef]
- Ambati, A.; Hillary, R.; Leu-Semenescu, S.; Ollila, H.M.; Lin, L.; During, E.H.; Farber, N.; Rico, T.J.; Faraco, J.; Leary, E.; et al. Kleine-Levin syndrome is associated with birth difficulties and genetic variants in the TRANK1 gene loci. Proc. Natl. Acad. Sci. USA 2021, 118. [Google Scholar] [CrossRef]
- Van Drunen, R.; Eckel-Mahan, K. Circadian rhythms of the hypothalamus: From function to physiology. Clocks Sleep 2021, 3, 12. [Google Scholar] [CrossRef] [PubMed]
- Albrecht, U. Timing to perfection: The biology of central and peripheral circadian clocks. Neuron 2012, 74, 246–260. [Google Scholar] [CrossRef] [Green Version]
- Matenchuk, B.A.; Mandhane, P.J.; Kozyrskyj, A.L. Sleep, circadian rhythm, and gut microbiota. Sleep Med. Rev. 2020, 53, 101340. [Google Scholar] [CrossRef] [PubMed]
- Feder, M.A.; Baroni, A. Just let me sleep in: Identifying and treating delayed sleep phase disorder in adolescents. Child Adolesc. Psychiatr. Clin. 2021, 30, 159–174. [Google Scholar] [CrossRef]
- Archer, S.N.; Carpen, J.D.; Gibson, M.S.; Lim, G.H.; Johnston, J.; Skene, D.; von Schantz, M. Polymorphism in the PER3 promoter associates with diurnal preference and delayed sleep phase disorder. Sleep 2010, 33, 695–701. [Google Scholar] [CrossRef] [Green Version]
- Wulff, K.; Porcheret, K.; Cussans, E.; Foster, R.G. Sleep and circadian rhythm disturbances: Multiple genes and multiple phenotypes. Curr. Opin. Genet. Dev. 2009, 19, 237–246. [Google Scholar] [CrossRef] [PubMed]
- Jones, C.R.; Huang, A.L.; Ptáček, L.J.; Fu, Y.-H. Genetic basis of human circadian rhythm disorders. Exp. Neurol. 2013, 243, 28–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patke, A.; Murphy, P.J.; Onat, O.E.; Krieger, A.C.; Özçelik, T.; Campbell, S.S.; Young, M.W. Mutation of the human circadian clock gene CRY1 in familial delayed sleep phase disorder. Cell 2017, 169, 203.e13–215.e13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Björkqvist, J.; Paavonen, J.; Andersson, S.; Pesonen, A.-K.; Lahti, J.; Heinonen, K.; Eriksson, J.; Räikkönen, K.; Hovi, P.; Kajantie, E.; et al. Advanced sleep-wake rhythm in adults born prematurely: Confirmation by actigraphy-based assessment in the Helsinki Study of very low birth weight adults. Sleep Med. 2014, 15, 1101–1106. [Google Scholar] [CrossRef] [PubMed]
- Hibbs, A.M.; Storfer-Isser, A.; Rosen, C.; Ievers-Landis, C.E.; Taveras, E.M.; Redline, S. Advanced sleep phase in adolescents born preterm. Behav. Sleep Med. 2013, 12, 412–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toh, K.L.; Jones, C.R.; He, Y.; Eide, E.J.; Hinz, W.A.; Virshup, D.M.; Ptáček, L.J.; Fu, Y.-H. An hPer2 phosphorylation site mutation in familial advanced sleep phase syndrome. Science 2001, 291, 1040–1043. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, Y.; Padiath, Q.S.; Shapiro, R.E.; Jones, C.R.; Wu, S.C.; Saigoh, N.; Fu, Y.H. Functional consequences of a CKIδ mutation causing familial advanced sleep phase syndrome. Nature 2005, 434, 640–644. [Google Scholar] [CrossRef] [PubMed]
- Hirano, A.; Shi, G.; Jones, C.R.; Lipzen, A.; Pennacchio, L.; Xu, Y.; Hallows, W.C.; McMahon, T.; Yamazaki, M.; Ptáček, L.J.; et al. A cryptochrome 2 mutation yields advanced sleep phase in humans. eLife 2016, 5, e16695. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Hirano, A.; Hsu, P.-K.; Jones, C.R.; Sakai, N.; Okuro, M.; McMahon, T.; Yamazaki, M.; Xu, Y.; Saigoh, N.; et al. A PERIOD3 variant causes a circadian phenotype and is associated with a seasonal mood trait. Proc. Natl. Acad. Sci. USA 2016, 113, E1536–E1544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, Y.; Jones, C.R.; Fujiki, N.; Xu, Y.; Guo, B.; Holder, J.L.; Rossner, M.J.; Nishino, S.; Fu, Y.-H. The transcriptional repressor DEC2 regulates sleep length in mammals. Science 2009, 325, 866–870. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hirano, A.; Hsu, P.-K.; Zhang, L.; Xing, L.; McMahon, T.; Yamazaki, M.; Ptáček, L.J.; Fu, Y.-H. DEC2 modulates orexin expression and regulates sleep. Proc. Natl. Acad. Sci. USA 2018, 115, 3434–3439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pellegrino, R.; Kavakli, I.H.; Goel, N.; Cardinale, C.J.; Dinges, D.F.; Kuna, S.T.; Maislin, G.; Van Dongen, H.P.; Tufik, S.; HogenEsch, J.B.; et al. A NovelBHLHE41 variant is associated with short sleep and resistance to sleep deprivation in humans. Sleep 2014, 37, 1327–1336. [Google Scholar] [CrossRef] [Green Version]
- Adan, A.; Archer, S.N.; Hidalgo, M.P.; Di Milia, L.; Natale, V.; Randler, C. Circadian typology: A comprehensive review. Chronobiol. Int. 2012, 29, 1153–1175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalmbach, D.A.; Schneider, L.; Cheung, J.; Bertrand, S.J.; Kariharan, T.; Pack, A.; Gehrman, P.R. Genetic basis of chronotype in humans: Insights from three landmark GWAS. Sleep 2016, 40. [Google Scholar] [CrossRef]
- Jones, S.E.; Lane, J.M.; Wood, A.R.; Van Hees, V.T.; Tyrrell, J.; Beaumont, R.N.; Jeffries, A.R.; Dashti, H.S.; Hillsdon, M.; Ruth, K.S.; et al. Genome-wide association analyses of chronotype in 697,828 individuals provides insights into circadian rhythms. Nat. Commun. 2019, 10, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laberge, L.; Tremblay, R.E.; Vitaro, F.; Montplaisir, J. Development of parasomnias from childhood to early adolescence. Pediatrics 2000, 106, 67–74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petit, D.; Touchette, E.; Tremblay, R.E.; Boivin, M.; Montplaisir, J. Dyssomnias and parasomnias in early childhood. Pediatrics 2007, 119, e1016–e1025. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leung, A.K.; Leung, A.A.; Wong, A.H.; Hon, K.L. Sleep terrors: An updated review. Curr. Pediatr. Rev. 2020, 16, 176–182. [Google Scholar] [CrossRef]
- Loddo, G.; Lopez, R.; Cilea, R.; Dauvilliers, Y.; Provini, F. Disorders of arousal in adults: New diagnostic tools for clinical practice. Sleep Sci. Pract. 2019, 3, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Davis, E.; Hayes, M.; Kirman, B. Somnambulism. Lancet 1942, 239, 186. [Google Scholar] [CrossRef]
- Bakwin, H. Sleep-walking in twins. Lancet 1970, 2, 446–447. [Google Scholar] [CrossRef]
- Abe, K.; Shimakawa, M. Predisposition to sleep-walking. Psychiatr. Neurol. 1966, 152, 306–312. [Google Scholar] [CrossRef] [PubMed]
- Kales, A.; Soldatos, C.R.; Bixler, E.O.; Ladda, R.L.; Charney, D.S.; Weber, G.; Schweitzer, P.K.; Gartner, J.; Langford, A.; O’Brien, A.; et al. Hereditary factors in sleepwalking and night terrors. Br. J. Psychiatry 1980, 137, 111–118. [Google Scholar] [CrossRef] [PubMed]
- Abe, K.; Amatomi, M.; Oda, N. Sleepwalking and recurrent sleeptalking in children of childhood sleepwalkers. Am. J. Psychiatry 1984, 141, 800–801. [Google Scholar] [CrossRef]
- Hällström, T. Night terror in adults through three generations. Acta Psychiatr. Scand. 1972, 48, 350–352. [Google Scholar] [CrossRef]
- Hublin, C.; Kaprio, J.; Partinen, M.; Heikkilä, K.; Koskenvuo, M. Prevalence and genetics of sleepwalking: A population-based twin study. Neurology 1997, 48, 177–181. [Google Scholar] [CrossRef] [PubMed]
- Hublin, C.; Kaprio, J. Genetic aspects and genetic epidemiology of parasomnias. Sleep Med. Rev. 2003, 7, 413–421. [Google Scholar] [CrossRef] [PubMed]
- Petit, D.; Pennestri, M.H.; Paquet, J.; Desautels, A.; Zadra, A.; Vitaro, F.; Montplaisir, J. Childhood sleepwalking and sleep terrors: A longitudinal study of prevalence and familial aggregation. JAMA Pediatrics 2015, 169, 653–658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Licis, A.K.; Desruisseau, D.M.; Yamada, K.A.; Duntley, S.P.; Gurnett, C.A. Novel genetic findings in an extended family pedigree with sleepwalking. Neurology 2010, 76, 49–52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, B.H.; Paquet, J.; Petit, M.; Boivin, M.; Tremblay, R.E.; Montplaisir, J.; Pérusse, D. Sleep terrors in children: A prospective study of twins. Pediatrics 2008, 122, e1164–e1167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lecendreux, M.; Bassetti, C.L.; Dauvilliers, Y.; Mayer, G.; Neidhart, E.; Tafti, M. HLA and genetic susceptibility to sleepwalking. Mol. Psychiatry 2003, 8, 114–117. [Google Scholar] [CrossRef] [Green Version]
- Heidbreder, A.; Frauscher, B.; Mitterling, T.; Boentert, M.; Schirmacher, A.; Hörtnagl, P.; Schennach, H.; Massoth, C.; Happe, S.; Mayer, G.; et al. Not only sleepwalking but NREM parasomnia irrespective of the type is associated with HLA DQB1 05:01. J. Clin. Sleep Med. 2016, 12, 565–570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dijk, D.-J.; Lockley, S.W. Invited review: Integration of human sleep-wake regulation and circadian rhythmicity. J. Appl. Physiol. 2002, 92, 852–862. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Högl, B.; Stefani, A.; Videnovic, A. Idiopathic REM sleep behaviour disorder and neurodegeneration—An update. Nat. Rev. Neurol. 2017, 14, 40–55. [Google Scholar] [CrossRef] [PubMed]
- De Barros-Ferreira, M.; Chodkiewicz, J.P.; Lairy, G.C.; Salzarulo, P. Disorganized relations of tonic and phasic events of REM sleep in a case of brain-stem tumour. Electroencephalogr. Clin. Neurophysiol. 1975, 38, 203–207. [Google Scholar] [CrossRef]
- Sheldon, S.H.; Jacobsen, J. REM-sleep motor disorder in children. J. Child Neurol. 1998, 13, 257–260. [Google Scholar] [CrossRef]
- Stores, G. Rapid eye movement sleep behaviour disorder in children and adolescents. Dev. Med. Child Neurol. 2008, 50, 728–732. [Google Scholar] [CrossRef] [PubMed]
- Lloyd, R.; Tippmann-Peikert, M.; Slocumb, N.; Kotagal, S. Characteristics of REM sleep behavior disorder in childhood. J. Clin. Sleep Med. 2012, 8, 127–131. [Google Scholar] [CrossRef] [Green Version]
- Nevsimalova, S.; Příhodová, I.; Kemlink, D.; Lin, L.; Mignot, E. REM behavior disorder (RBD) can be one of the first symptoms of childhood narcolepsy. Sleep Med. 2007, 8, 784–786. [Google Scholar] [CrossRef] [PubMed]
- Bin-Hasan, S.; Videnovic, A.; Maski, K. Nocturnal REM sleep without atonia is a diagnostic biomarker of pediatric narcolepsy. J. Clin. Sleep Med. 2018, 14, 245–252. [Google Scholar] [CrossRef] [PubMed]
- Denis, D.; French, C.C.; Gregory, A. A systematic review of variables associated with sleep paralysis. Sleep Med. Rev. 2017, 38, 141–157. [Google Scholar] [CrossRef] [PubMed]
- Denis, D.; French, C.C.; Rowe, R.; Zavos, H.; Nolan, P.; Parsons, M.J.; Gregory, A.M. A twin and molecular genetics study of sleep paralysis and associated factors. J. Sleep Res. 2015, 24, 438–446. [Google Scholar] [CrossRef]
- Dahlitz, M.; Parkes, J.D. Sleep paralysis. Lancet 1993, 341, 406–407. [Google Scholar] [CrossRef]
- Kryger, M.; Roth, T.; Dement, W. Principles and Practice of Sleep Medicine; Elsevier: Amsterdam, The Netherlands, 2017; pp. 1002–1010. [Google Scholar]
- Chen, X.; Ke, Z.L.; Chen, Y.; Lin, X. The prevalence of sleep problems among children in mainland China: A meta-analysis and systemic-analysis. Sleep Med. 2021, 83, 248–255. [Google Scholar] [CrossRef]
- Hublin, C.; Kaprio, J.; Partinen, M.; Koskenvuo, M. Nightmares: Familial aggregation and association with psychiatric disorders in a nationwide twin cohort. Am. J. Med. Genet. 1999, 88, 329–336. [Google Scholar] [CrossRef]
- Coolidge, F.L.; Segal, D.L.; Coolidge, C.M.; Spinath, F.M.; Gottschling, J. Do nightmares and generalized anxiety disorder in childhood and adolescence have a common genetic origin? Behav. Genet. 2010, 40, 349–356. [Google Scholar] [CrossRef]
- Bayoumi, R.A.; Eapen, V.; Al-Yahyaee, S.; Al Barwani, H.S.; Hill, R.S.; Al Gazali, L. The genetic basis of inherited primary nocturnal enuresis: A UAE study. J. Psychosom. Res. 2006, 61, 317–320. [Google Scholar] [CrossRef]
- Fatouh, A.A.; Motawie, A.; Al-Aziz, A.M.A.; Hamed, H.; Awad, M.A.M.; El-Ghany, A.A.; Bassyouni, H.; Shehab, M.; Eid, M. Anti-diuretic hormone and genetic study in primary nocturnal enuresis. J. Pediatr. Urol. 2012, 9, 831–837. [Google Scholar] [CrossRef]
- Arnell, H.; Hjalmas, K.; Jagervall, M.; Lackgren, G.; Stenberg, A.; Bengtsson, B.; Wassen, C.; Emahazion, T.; Anneren, G.; Pettersson, U.; et al. The genetics of primary nocturnal enuresis: Inheritance and suggestion of a second major gene on chromosome 12q. J. Med. Genet. 1997, 34, 360–365. [Google Scholar] [CrossRef] [Green Version]
- Jørgensen, C.S.; Horsdal, H.T.; Rajagopal, V.M.; Grove, J.; Als, T.D.; Kamperis, K.; Nyegaard, M.; Walters, G.B.; Eðvarðsson, V.; Stefánsson, H.; et al. Identification of genetic loci associated with nocturnal enuresis: A genome-wide association study. Lancet Child Adolesc. Health 2021, 5, 201–209. [Google Scholar] [CrossRef]
- Allen, R.P.; Picchietti, D.L.; Garcia-Borreguero, D.; Ondo, W.G.; Walters, A.S.; Winkelman, J.W.; International Restless Legs Syndrome Study Group. Restless legs syndrome/Willis–Ekbom disease diagnostic criteria: Updated International Restless Legs Syndrome Study Group (IRLSSG) consensus criteria-history, rationale, description, and significance. Sleep Med. 2014, 15, 860–873. [Google Scholar] [CrossRef] [PubMed]
- Allen, R.P.; Picchietti, D.; Hening, W.; Trenkwalder, C.; Walters, A.S.; Montplaisi, J. Restless legs syndrome: Diagnostic criteria, special considerations, and epidemiology: A report from the restless legs syndrome diagnosis and epidemiology workshop at the National Institutes of Health. Sleep Med. 2003, 4, 101–119. [Google Scholar] [CrossRef]
- Montplaisir, J.; Boucher, S.; Poirier, G.; Lavigne, G.; Lapierre, O.; Lespérance, P. Clinical, polysomnographic, and genetic characteristics of restless legs syndrome: A study of 133 patients diagnosed with new standard criteria. Mov. Disord. Off. J. Mov. Disord. Soc. 1997, 12, 61–65. [Google Scholar] [CrossRef] [PubMed]
- Picchietti, D.; Allen, R.P.; Walters, A.S.; Davidson, J.E.; Myers, A.; Strambi, L.F. Restless Legs Syndrome: Prevalence and impact in children and adolescents the Peds REST Study. Pediatrics 2007, 120, 253–266. [Google Scholar] [CrossRef] [PubMed]
- Ekbom, K.A. Asthenia Crurum Paraesthetica (irritable legs)—A new syndrome consisting of weakness, sensation of cold and nocturnal paresthesia in the legs, responding to a certain extent to treatment with Priscol and Doryl—A note on paresthesia in general. Acta Med. Scand. 1944, 118, 197–209. [Google Scholar] [CrossRef]
- Xiong, L.; Jang, K.; Montplaisir, J.; Levchenko, A.; Thibodeau, P.; Gaspar, C.; Turecki, G.; Rouleau, G.A. Canadian restless legs syndrome twin study. Neurology 2007, 68, 1631–1633. [Google Scholar] [CrossRef] [PubMed]
- Trenkwalder, C.; Seidel, V.C.; Gasser, T.; Oertel, W.H. Clinical symptoms and possible anticipation in a large kindred of familial restless legs syndrome. Mov. Disord. 1996, 11, 389–394. [Google Scholar] [CrossRef]
- Winkelmann, J.; Wetter, T.C.; Collado-Seidel, V.; Gasser, T.; Dichgans, M.; Yassouridis, A.; Trenkwalder, C. Clinical characteristics and frequency of the hereditary restless legs syndrome in a population of 300 patients. Sleep 2000, 23, 1–6. [Google Scholar] [CrossRef]
- Winkelmann, J.; Muller-Myhsok, B.; Wittchen, H.-U.; Hock, B.; Prager, M.; Pfister, H.; Strohle, A.; Eisensehr, I.; Dichgans, M.; Gasser, T.; et al. Complex segregation analysis of restless legs syndrome provides evidence for an autosomal dominant mode of inheritance in early age at onset families. Ann. Neurol. 2002, 52, 297–302. [Google Scholar] [CrossRef] [PubMed]
- Didriksen, M.; Nawaz, M.S.; Dowsett, J.; Bell, S.; Erikstrup, C.; Pedersen, O.B.; Stefansson, K. Large genome-wide association study identifies three novel risk variants for restless legs syndrome. Commun. Biol. 2020, 3, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Stefansson, H.; Rye, D.B.; Hicks, A.; Petursson, H.; Ingason, A.; Thorgeirsson, T.; Palsson, S.; Sigmundsson, T.; Sigurdsson, A.P.; Eiriksdottir, I.; et al. A genetic risk factor for periodic limb movements in sleep. N. Engl. J. Med. 2007, 357, 639–647. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Winkelmann, J.; Schormair, B.; Lichtner, P.; Ripke, S.; Xiong, L.; Jalilzadeh, S.; Fulda, S.; Pütz, B.; Eckstein, G.; Hauk, S.; et al. Genome-wide association study of restless legs syndrome identifies common variants in three genomic regions. Nat. Genet. 2007, 39, 1000–1006. [Google Scholar] [CrossRef] [PubMed]
- Muhle, H.; Neumann, A.; Lohmann-Hedrich, K.; Lohnau, T.; Lu, Y.; Winkler, S.; Waltz, S.; Fischenbeck, A.; Kramer, P.L.; Klein, C.; et al. Childhood-onset restless legs syndrome: Clinical and genetic features of 22 families. Mov. Disord. 2008, 23, 1113–1121. [Google Scholar] [CrossRef] [PubMed]
- Ferri, R. Two legs, one heart, one sleeping brain. Sleep Med. 2006, 7, 299–300. [Google Scholar] [CrossRef]
- Simakajornboon, N.; Thampratankul, L.; Sharon, D.; Walters, A.S. Restless legs syndrome and periodic limb movement disorder in children and adolescents. Paediatr. Respir. Rev. 2013, 612–623. [Google Scholar] [CrossRef]
- Delrosso, L.M.; Lockhart, C.; Wrede, J.; Chen, M.L.; Samson, M.; Reed, J.; Martin-Washo, S.; Arp, M.; Ferri, R. Comorbidities in children with elevated periodic limb movement index during sleep. Sleep 2019. [Google Scholar] [CrossRef] [PubMed]
- Moore, H.; Winkelmann, J.; Lin, L.; Finn, L.; Peppard, P.; Mignot, E. Periodic leg movements during sleep are associated with poly-morphisms in BTBD9, TOX3/BC034767, MEIS1, MAP2K5/SKOR1, and PTPRD. Sleep 2014, 37, 1535–1542. [Google Scholar] [CrossRef]
- Carra, M.C.; Huynh, N.; Fleury, B.; Lavigne, G. Overview on sleep bruxism for sleep medicine clinicians. Sleep Med. Clin. 2015, 10, 375–384. [Google Scholar] [CrossRef] [PubMed]
- Rintakoski, K.; Hublin, C.; Lobbezoo, F.; Rose, R.J.; Kaprio, J. Genetic factors account for half of the phenotypic variance in liability to sleep-related bruxism in young adults: A nationwide Finnish twin cohort study. Twin Res. Hum. Genet. 2012, 15, 714–719. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khoury, S.; Carra, M.C.; Huynh, N.; Montplaisir, J.; Lavigne, G.J. Sleep bruxism-tooth grinding prevalence, characteristics and familial aggregation: A large cross-sectional survey and polysomnographic validation. Sleep 2016, 39, 2049–2056. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manfredini, D.; Lobbezoo, F. Role of psychosocial factors in the etiology of bruxism. J. Orofac. Pain 2009, 23. [Google Scholar]
- Oporto, G.; Lagos, J.; Bornhardt, T.; Fuentes, R.; Salazar, L.A. Are there genetic factors involved in bruxism. Int. J. Odontostomatol. 2016, 6, 249–254. [Google Scholar]
- Abe, Y.; Suganuma, T.; Ishii, M.; Yamamoto, G.; Gunji, T.; Clark, G.T.; Tachikawa, T.; Kiuchi, Y.; Igarashi, Y.; Baba, K. Association of genetic, psychological and behavioral factors with sleep bruxism in a Japanese population. J. Sleep Res. 2011, 21, 289–296. [Google Scholar] [CrossRef]
- Oporto, G.H.; Bornhardt, T.; Iturriaga, V.; Salazar, L.A. Single nucleotide polymorphisms in genes of dopaminergic pathways are associated with bruxism. Clin. Oral Investig. 2017, 22, 331–337. [Google Scholar] [CrossRef]
- Gwyther, A.R.; Walters, A.S.; Hill, C.M. Rhythmic movement disorder in childhood: An integrative review. Sleep Med. Rev. 2017, 35, 62–75. [Google Scholar] [CrossRef] [Green Version]
- Mayer, G.; Wilde-Frenz, J.; Kurella, B. Sleep related rhythmic movement disorder revisited. J. Sleep Res. 2007, 16, 110–116. [Google Scholar] [CrossRef] [PubMed]
- Walen, S.R. Jactatio capitis. Acta Paedopsychiatr. 1972, 39, 66–68. [Google Scholar] [PubMed]
- Hayward-Koennecke, H.K.; Werth, E.; Valko, P.O.; Baumann, C.R.; Poryazova, R. Sleep-related rhythmic movement disorder in triplets: Evidence for genetic predisposition? J. Clin. Sleep Med. 2019, 15, 157–158. [Google Scholar] [CrossRef] [PubMed]
- Attarian, H.; Ward, N.; Schuman, C. A multigenerational family with persistent sleep related rhythmic movement disorder (RMD) and insomnia. J. Clin. Sleep Med. 2009, 5, 571–572. [Google Scholar] [CrossRef] [Green Version]
- Prihodova, I.; Skibova, J.; Nevsimalova, S. Sleep-related rhythmic movements and rhythmic movement disorder beyond early childhood. Sleep Med. 2019, 64, 112–115. [Google Scholar] [CrossRef]
- Adamczyk, M.; Ambrosius, U.; Lietzenmaier, S.; Wichniak, A.; Holsboer, F.; Friess, E. Genetics of rapid eye movement sleep in hu-mans. Transl. Psychiatry 2015, 5, e598. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mainieri, G.; Montini, A.; Nicotera, A.; Di Rosa, G.; Provini, F.; Loddo, G. The Genetics of Sleep Disorders in Children: A Narrative Review. Brain Sci. 2021, 11, 1259. https://doi.org/10.3390/brainsci11101259
Mainieri G, Montini A, Nicotera A, Di Rosa G, Provini F, Loddo G. The Genetics of Sleep Disorders in Children: A Narrative Review. Brain Sciences. 2021; 11(10):1259. https://doi.org/10.3390/brainsci11101259
Chicago/Turabian StyleMainieri, Greta, Angelica Montini, Antonio Nicotera, Gabriella Di Rosa, Federica Provini, and Giuseppe Loddo. 2021. "The Genetics of Sleep Disorders in Children: A Narrative Review" Brain Sciences 11, no. 10: 1259. https://doi.org/10.3390/brainsci11101259
APA StyleMainieri, G., Montini, A., Nicotera, A., Di Rosa, G., Provini, F., & Loddo, G. (2021). The Genetics of Sleep Disorders in Children: A Narrative Review. Brain Sciences, 11(10), 1259. https://doi.org/10.3390/brainsci11101259