Role of COMT V158M Polymorphism in the Development of Dystonia after Administration of Antipsychotic Drugs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Statistical Analysis
2.2. Genotyping
3. Results
Statistical Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Habibi, M. Dopamine Receptors, Reference Module in Neuroscience and Biobehavioral Psychology; Elsevier: Amsterdam, The Netherlands, 2017; ISBN 9780128093245. [Google Scholar] [CrossRef]
- Beaulieu, J.-M.; Gainetdinov, R. The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol. Rev. 2011, 63, 182–217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Usiello, A.; Baik, J.-H.; Rougé-Pont, F.; Picetti, R.; Dierich, A.; LeMeur, M.; Piazza, P.V.; Borrelli, E. Distinct functions of the two isoforms of dopamine D2 receptors. Nat. Cell Biol. 2000, 408, 199–203. [Google Scholar] [CrossRef] [PubMed]
- Monsma, F.J., Jr.; McVittie, L.D.; Gerfen, C.R.; Mahan, L.C.; Sibley, D.R. Multiple D2 dopamine receptors produced by alternative RNA splicing. Nature 1989, 342, 926–929. [Google Scholar] [CrossRef] [PubMed]
- Karoum, F.; Chrapusta, S.J.; Egan, M.F. 3-methoxytyramine is the major metabolite of released dopamine in the rat frontal cortex: Reassessment of the effects of antipsychotics on the dynamics of dopamine release and metabolism in the frontal cortex, nucleus accumbens, and striatum by a simple T. J. Neurochem. 2002, 63, 972–979. [Google Scholar] [CrossRef]
- Sesack, S.R.; Hawrylak, V.A.; Matus, C.; Guido, M.A.; Levey, A.I. Dopamine axon varicosities in the prelimbic division of the rat prefrontal cortex exhibit sparse immunoreactivity for the dopamine transporter. J. Neurosci. 1998, 18, 2697–2708. [Google Scholar] [CrossRef]
- Matsumoto, M.; Weickert, C.S.; Akil, M.; Lipska, B.; Hyde, T.; Herman, M.; Kleinman, J.; Weinberger, D. Catechol O-methyltransferase mRNA expression in human and rat brain: Evidence for a role in cortical neuronal function. Neuroscience 2003, 116, 127–137. [Google Scholar] [CrossRef]
- Bilder, R.M.; Volavka, J.; Lachman, H.M.; Grace, A. The catechol-O-methyltransferase polymorphism: Relations to the tonic–phasic dopamine hypothesis and neuropsychiatric phenotypes. Neuropsychopharmacol. Off. Publ. Am. Coll. Neuropsychopharmacol. 2004, 29, 1943–1961. [Google Scholar] [CrossRef] [Green Version]
- Ma, J.; Zhao, M.; Zhou, W.; Li, M.; Huai, C.; Shen, L.; Wang, T.; Wu, H.; Zhang, N.; Zhang, Z.; et al. Association between the COMT Val158Met polymorphism and antipsychotic efficacy in schizophrenia: An updated meta-analysis. Curr. Neuropharmacol. 2020, 18, 1–11. [Google Scholar] [CrossRef]
- Hernaus, D.; Collip, D.; Lataster, J.; Ceccarini, J.; Kenis, G.; Booij, L.; Pruessner, J.; Van Laere, K.; Van Winkel, R.; Van Os, J.; et al. COMT Val158Met genotype selectively alters prefrontal [18f]fallypride displacement and subjective feelings of stress in response to a psychosocial stress challenge. PLoS ONE 2013, 8, e65662. [Google Scholar] [CrossRef]
- Hirvonen, M.M.; Någren, K.; Rinne, J.O.; Pesonen, U.; Vahlberg, T.; Hagelberg, N.; Hietala, J. COMT Val158Met genotype does not alter cortical or striatal dopamine D2 receptor availability in vivo. Mol. Imaging Biol. 2009, 12, 192–197. [Google Scholar] [CrossRef]
- Tandon, R. Antipsychotics in the treatment of schizophrenia: An overview. J. Clin. Psychiatry 2011, 72 (Suppl 1), 4–8. [Google Scholar] [CrossRef]
- Singh, J.; Chen, G.; Canuso, C.M. Antipsychotics in the treatment of bipolar disorder. In Handbook of Experimental Pharmacology; Springer: Berlin/Heidelberg, Germany, 2012; pp. 187–212. [Google Scholar] [CrossRef]
- Weng, J.; Zhang, Y.; Li, H.; Shen, Y.; Yu, W. Study on risk factors of extrapyramidal symptoms induced by antipsychotics and its correlation with symptoms of schizophrenia. Gen. Psychiatry 2019, 32, e100026. [Google Scholar] [CrossRef] [Green Version]
- Meltzer, H.Y.; Stahl, S.M. The dopamine hypothesis of schizophrenia: A review. Schizophr. Bull. 1976, 2, 19–76. [Google Scholar] [CrossRef] [Green Version]
- Rupniak, N.M.J.; Jenner, P.; Marsden, C.D. Acute dystonia induced by neuroleptic drugs. Psychopharmacology 1986, 88, 403–419. [Google Scholar] [CrossRef]
- D’Souza, R.S.; Hooten, W.M. Extrapyramidal Symptoms. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2021. [Google Scholar]
- Casarelli, L.; Minnei, M.; Pitzianti, M.; Armando, M.; Pontillo, M.; Vicari, S.; Pasini, A. Dopamine dysfunction in 22q11 deletion syndrome: Possible cause of motor symptoms. Psychiatric genetics. Psychiatr. Genet. 2016, 26, 187–192. [Google Scholar] [CrossRef]
- McDonald-McGinn, D.M.; Sullivan, K.E.; Marino, B.; Philip, N.; Swillen, A.; Vorstman, J.A.S.; Zackai, E.H.; Emanuel, B.S.; Vermeesch, J.R.; Morrow, B.; et al. 22q11.2 deletion syndrome. Nat. Rev. Dis. Prim. 2015, 1, 15071. [Google Scholar] [CrossRef] [Green Version]
- Boot, E.; Butcher, N.J.; van Amelsvoort, T.A.; Lang, A.; Marras, C.; Pondal, M.; Andrade, D.; Fung, W.L.A.; Bassett, A.S. Movement disorders and other motor abnormalities in adults with 22q11.2 deletion syndrome. Am. J. Med. Genet. Part A 2015, 167, 639–645. [Google Scholar] [CrossRef] [Green Version]
- Seeman, P.; Weinshenker, D.; Quirion, R.; Srivastava, L.; Bhardwaj, S.K.; Grandy, D.K.; Premont, R.; Sotnikova, T.D.; Boksa, P.; El-Ghundi, M.; et al. Dopamine supersensitivity correlates with D2High states, implying many paths to psychosis. Proc. Natl. Acad. Sci. USA 2005, 102, 3513–3518. [Google Scholar] [CrossRef] [Green Version]
- Butcher, N.; Kiehl, T.-R.; Hazrati, L.-N.; Chow, E.W.C.; Rogaeva, E.; Lang, A.; Bassett, A.S. Association between early-onset parkinson disease and 22q11.2 deletion syndrome: Identification of a novel genetic form of Parkinson disease and its clinical implications. JAMA Neurol. 2013, 70, 1359–1366. [Google Scholar] [CrossRef]
- Kontoangelos, K.; Maillis, A.; Maltezou, M.; Tsiori, S.; Papageorgiou, C.C. Acute Dystonia in a Patient with 22q11.2 Deletion Syndrome. Ment. Illn. 2015, 7, 5902. [Google Scholar] [CrossRef] [Green Version]
- Tanabe, L.; Kim, C.E.; Alagem, N.; Dauer, W.T. Primary dystonia: Molecules and mechanisms. Nat. Rev. Neurol. 2009, 5, 598–609. [Google Scholar] [CrossRef] [Green Version]
- Grinchii, D.; Dremencov, E. Mechanism of Action of Atypical Antipsychotic Drugs in Mood Disorders. Int. J. Mol. Sci. 2020, 21, 9532. [Google Scholar] [CrossRef]
- Chang, M.-Y.; Lin, K.-L.; Wang, H.-S.; Wu, C.-T. Drug-Induced Extrapyramidal Symptoms at the Pediatric Emergency Department. Pediatr. Emerg. Care 2020, 36, 468–472. [Google Scholar] [CrossRef]
- Kamishima, K.; Ishigooka, J.; Komada, Y. Long term treatment with risperidone long-acting injectable in patients with schizophrenia. Jpn. J. Psychiatry Neurol. 2009, 12, 1223–1244. [Google Scholar]
- Moreno-Calvete, M.C. Prevalencia de los efectos extrapiramidales por neurolépticos en personas hospitalizadas con esquizofrenia [Prevalence of extrapyramidal effects by neuroleptics in admitted people with schizophrenia]. Enfermería Clínica 2013, 23, 114–117. [Google Scholar] [CrossRef]
- Rummel-Kluge, C.; Komossa, K.; Schwarz, S.; Hunger, H.; Schmid, F.; Kissling, W.; Davis, J.M.; Leucht, S. Second-generation antipsychotic drugs and extrapyramidal side effects: A systematic review and meta-analysis of head-to-head comparisons. Schizophr. Bull. 2010, 38, 167–177. [Google Scholar] [CrossRef]
- Bakker, P.R.; Bakker, E.; Amin, N.; Van Duijn, C.M.; Van Os, J.; Van Harten, P.N. Candidate gene-based association study of antipsychotic-induced movement disorders in long-stay psychiatric patients: A prospective study. PLoS ONE 2012, 7, e36561. [Google Scholar] [CrossRef] [Green Version]
- Lachman, H.M.; Papolos, D.F.; Saito, T.; Yu, Y.-M.; Szumlanski, C.L.; Weinshilboum, R.M. Human catechol-O-methyltransferase pharmacogenetics: Description of a functional polymorphism and its potential application to neuropsychiatric disorders. Pharmacogenetics 1996, 6, 243–250. [Google Scholar] [CrossRef]
- Schacht, J.P. COMT val158met moderation of dopaminergic drug effects on cognitive function: A critical review. Pharm. J. 2016, 16, 430–438. [Google Scholar] [CrossRef] [Green Version]
- Weinshilboum, R.M.; Raymond, F.A. Inheritance of low erythrocyte catechol-o-methyltransferase activity in man. Am. J. Hum. Genet. 1977, 29, 125–135. [Google Scholar]
Case | Age (y.o.) | Gender | Psychiatric Diagnosis | Dystonia | Associated Medical Conditions | Genetic Analysis | COMT Val158Met Polymorphism | Psychopharmacological Treatment |
---|---|---|---|---|---|---|---|---|
1 | 22 | Male | Borderline Intellectual Functioning (BIF), Psychotic Disorder | Absent | Myopathy | Array-CGH: normal | Val/Val | Risperidone |
2 | 25 | Male | Severe Intellectual Disability, Psychotic Disorder | Absent | Not reported |
| Val/Val |
|
3 | 17 | Male | Mild Intellectual Disability, Psychotic Disorder | Absent | Scoliosis |
| Val/Val |
|
4 | 27 | Female | Moderate Intellectual Disability, Psychotic Disorder | Absent | Not reported | Array-CGH: normal | Met/Met |
|
5 | 22 | Male | Mild Intellectual Disability, Mood Dysregulation Disorder | Absent | Not reported | Array-CGH: arr16p12.2(21,599,687–21,739,885) × 1 | Val/Val |
|
6 | 18 | Male | Severe Intellectual Disability, Psychotic Disorder | Absent | Not reported |
| Met/Met |
|
7 | 23 | Female | Mild Intellectual Disabilities, Schizophrenia Spectrum | Absent | Not reported | Array-CGH: arr[hg19] 7p12.1(51,700,630–52,568,971) × 3 | Met/Met |
|
8 | 22 | Female | Severe Intellectual Disability, Psychotic Disorder, Gait disorder | Absent | Primary muscle disease sign |
| Val/Met |
|
9 | 18 | Female | Moderate Intellectual Disability, Schizophrenia | Absent | Not reported | Array-CGH: normal | Val/Val |
|
10 | 20 | Female | Mild Intellectual Disability, Psychotic Disorder | Absent | Not reported | Array-CGH: normal | Met/Met |
|
11 | 22 | Male | Mild Intellectual Disability, Psychotic Disorder | Absent | Not reported | Array-CGH: normal | Val/Val |
|
12 | 17 | Female | Mild Intellectual Disability, Psychotic Disorder | Absent | Aspecific white matter alteration in brain MRI | Array-CGH: normal | Met/Met | Risperidone |
13 | 19 | Male | Schizophrenia Spectrum, Specific Learning Disorder | Absent | Cerebral atrophy in brain MRI | Array-CGH: Arr[hg19] 6q12(66,158,720–66,369,429) × 3 mat | Met/Met |
|
14 | 18 | Female | Moderate Intellectual Disability, Schizophrenia Spectrum | Absent | Not reported | Array-CGH: normal. NAA15 gene: truncating variants c.239_240delAT (p.H80RfsX17) | Val/Val |
|
15 | 29 | Male | Severe Intellectual Disability, Schizophrenia | Absent | Not reported |
| Val/Val |
|
16 | 17 | Male | Unspecified Intellectual Disability, Unspecified Neurodevelopmental Disorder | Absent | Not reported |
| Val/Val | Risperidone |
17 | 23 | Male | Schizophrenia | Absent | Not reported |
| Val/Val |
|
Case | Age (y.o.) | Gender | Psychiatric Diagnosis | Dystonia | Associated Medical Conditions | Genetic Analysis | COMT Val158Met polymorphism | Psychopharmacological Treatment |
---|---|---|---|---|---|---|---|---|
18 | 31 | Male | Moderate Intellectual Disability. Schizophrenia | Focal dystonia (Cervical-trunk) | Diabetes mellitus DiGeorge’s syndrome | Array-CGH: arr 22q11.21(18,919,942–21,440,514) × 1 dn | - |
|
19 | 29 | Male | Schizophrenia | Focal dystonia (foot) | Not reported |
| Val/Met |
|
20 | 20 | Male | Moderate Intellectual Disability, Schizophrenia | Hemidystonia | Not reported | Array-CGH [hg19] 3p26.2(2,854,929–3,147,222) × 3 | Val/Met |
|
21 | 46 | Female | Mild Intellectual Disabilities, Schizotypal Personality Disorder | Focal dystonia (foot) | Irsutism | Panel SCA1, SCA2, SCA3, SCA6, SCA7, SCA8: normal | Val/Met |
|
SNP | Genotypes | Frequency (%) | Allele | Frequency (%) | ||
---|---|---|---|---|---|---|
APDR Patients | Controls | APDR Patients | Controls | |||
V158M | G/G | 58.82 | 28.57 | G | 76.47 | 55.36 |
G/A | 5.88 | 53.57 | A | 23.53 | 44.64 | |
A/A | 35.29 | 17.86 | ||||
L136L | G/G | 23.53 | 17.86 | G | 41.18 | 42.86 |
G/C | 41.18 | 50.00 | C | 58.82 | 57.14 | |
C/C | 35.29 | 32.14 |
V158M | |||
---|---|---|---|
Hardy-Weinberg | Chi= | p= | gdf= |
APDR—Patients | 13.029 | 0.0003 | 1 |
Controls | 0.394 | 0.530 | 1 |
APDR Patients Vs Controls-Alleles | Chi= | p= | gdf= |
Yates’s chi-squared test | 0.428 | 0.512 | 1 |
Chi-Square test | 0.873 | 0.350 | 1 |
APDR Patients Vs Controls-Genotype | Chi= | p= | gdf= |
Yates’s chi-squared test | 15.644 | 0.0004 | 2 |
Chi-Square test | 19.660 | 0.00005 | 2 |
L136L | |||
Hardy-Weinberg | Chi= | p= | gdf= |
APDR Patients | 0.462 | 0.497 | 1 |
Controls | 0.024 | 0.876 | 1 |
APDR Patients Vs Controls-Alleles | Chi= | p= | gdf= |
Yates’s chi-squared test | 0.009 | 0.034 | 1 |
Chi-Square test | 0.923 | 0.854 | 1 |
APDR Patients Vs Controls-Genotype | Chi= | p= | gdf= |
Yates’s chi-squared test | 0.156 | 0.653 | 2 |
Chi-Square test | 0.924 | 0.721 | 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nicotera, A.G.; Di Rosa, G.; Turriziani, L.; Costanzo, M.C.; Stracuzzi, E.; Vitello, G.A.; Rando, R.G.; Musumeci, A.; Vinci, M.; Musumeci, S.A.; et al. Role of COMT V158M Polymorphism in the Development of Dystonia after Administration of Antipsychotic Drugs. Brain Sci. 2021, 11, 1293. https://doi.org/10.3390/brainsci11101293
Nicotera AG, Di Rosa G, Turriziani L, Costanzo MC, Stracuzzi E, Vitello GA, Rando RG, Musumeci A, Vinci M, Musumeci SA, et al. Role of COMT V158M Polymorphism in the Development of Dystonia after Administration of Antipsychotic Drugs. Brain Sciences. 2021; 11(10):1293. https://doi.org/10.3390/brainsci11101293
Chicago/Turabian StyleNicotera, Antonio Gennaro, Gabriella Di Rosa, Laura Turriziani, Maria Cristina Costanzo, Emanuela Stracuzzi, Girolamo Aurelio Vitello, Rosanna Galati Rando, Antonino Musumeci, Mirella Vinci, Sebastiano Antonino Musumeci, and et al. 2021. "Role of COMT V158M Polymorphism in the Development of Dystonia after Administration of Antipsychotic Drugs" Brain Sciences 11, no. 10: 1293. https://doi.org/10.3390/brainsci11101293
APA StyleNicotera, A. G., Di Rosa, G., Turriziani, L., Costanzo, M. C., Stracuzzi, E., Vitello, G. A., Rando, R. G., Musumeci, A., Vinci, M., Musumeci, S. A., & Calì, F. (2021). Role of COMT V158M Polymorphism in the Development of Dystonia after Administration of Antipsychotic Drugs. Brain Sciences, 11(10), 1293. https://doi.org/10.3390/brainsci11101293