The Empowering Effect of Embodied Awareness Practice on Body Structural Map and Sensorimotor Activity: The Case of Feldenkrais Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample
2.2. Procedure
2.2.1. Training Procedure
2.2.2. Psychometric Assessment
2.2.3. Electrophysiological Assessment
2.2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mehling, W.E.; Gopisetty, V.; Daubenmier, J.; Price, C.J.; Hecht, F.M.; Stewart, A. Body awareness: Construct and self-report measures. PLoS ONE 2009, 4, e5614. [Google Scholar] [CrossRef] [Green Version]
- Crivelli, D.; Balconi, M. The agent brain: A review of non-invasive brain stimulation studies on sensing agency. Front. Behav. Neurosci. 2017, 11, 229. [Google Scholar] [CrossRef] [Green Version]
- Crivelli, D.; Balconi, M. Agency and inter-agency, action and joint action: Theoretical and neuropsychological evidences. In Neuropsychology of the Sense of Agency. From Consciousness to Action; Balconi, M., Ed.; Springer: New York, NY, USA, 2010; pp. 107–122. ISBN 9788847015869. [Google Scholar]
- Price, C.J.; Thompson, E.A. Measuring dimensions of body connection: Body awareness and bodily dissociation. J. Altern. Complement. Med. 2007, 13, 945–953. [Google Scholar] [CrossRef] [PubMed]
- Jain, S.; Janssen, K.; DeCelle, S. Alexander technique and Feldenkrais method: A critical overview. Phys. Med. Rehabil. Clin. N. Am. 2004, 15, 811–825. [Google Scholar] [CrossRef] [PubMed]
- Feldenkrais, M. The Potent Self: A Guide to Spontaneity; Harper Row: San Francisco, CA, USA, 1985. [Google Scholar]
- Buchanan, P.A.; Ulrich, B.D. The Feldenkrais Method®: A dynamic approach to changing motor behavior. Res. Q. Exerc. Sport 2001, 72, 315–323. [Google Scholar] [CrossRef] [PubMed]
- Verrel, J.; Almagor, E.; Schumann, F.; Lindenberger, U.; Kühn, S. Changes in neural resting state activity in primary and higher-order motor areas induced by a short sensorimotor intervention based on the Feldenkrais method. Front. Hum. Neurosci. 2015, 9, 232. [Google Scholar] [CrossRef] [Green Version]
- Stephens, J.; Davidson, J.; DeRosa, J.; Kriz, M.; Saltzman, N. Lengthening the hamstring muscles without stretching using “Awareness Through Movement”. Phys. Ther. 2006, 86, 1641–1650. [Google Scholar] [CrossRef]
- Gallagher, S. How the Body Shapes the Mind; Oxford University Press: Oxford, UK, 2005; ISBN 9780199271948. [Google Scholar]
- Stephens, J.; Hillier, S. Evidence for the effectiveness of the Feldenkrais method. Kinesiol. Rev. 2020, 9, 228–235. [Google Scholar] [CrossRef]
- Hillier, S.; Worley, A. The effectiveness of the Feldenkrais Method: A systematic review of the evidence. Evid.-Based Complement. Altern. Med. 2015, 2015, 752160. [Google Scholar] [CrossRef] [Green Version]
- Ernst, E.; Canter, P.H. The Feldenkrais Method—A systematic review of randomised clinical trials. Phys. Med. Rehabil. Kurortmed. 2005, 15, 151–156. [Google Scholar] [CrossRef] [Green Version]
- Tang, Y.-Y.; Hölzel, B.K.; Posner, M.I. The neuroscience of mindfulness meditation. Nat. Rev. Neurosci. 2015, 16, 213–225. [Google Scholar] [CrossRef] [PubMed]
- Balconi, M.; Fronda, G.; Venturella, I.; Crivelli, D. Conscious, pre-conscious and unconscious mechanisms in emotional behaviour. Some applications to the mindfulness approach with wearable devices. Appl. Sci. 2017, 7, 1280. [Google Scholar] [CrossRef] [Green Version]
- Crivelli, D.; Fronda, G.; Venturella, I.; Balconi, M. Supporting mindfulness practices with brain-sensing devices. Cognitive and electrophysiological evidences. Mindfulness 2019, 10, 301–311. [Google Scholar] [CrossRef]
- Crivelli, D.; Balconi, M. Event-Related Electromagnetic Responses. Ref. Modul. Neurosci. Biobehav. Psychol. 2017, 1–27. [Google Scholar] [CrossRef]
- Balconi, M.; Crivelli, D. Fundamentals of electroencephalography and optical imaging for sport and exercise science. From the laboratory to on-the-playing-field acquired evidence. In Handbook of Sport Neuroscience and Psychophysiology; Carlstedt, R.A., Balconi, M., Eds.; Routledge: New York, NY, USA, 2019; pp. 40–69. ISBN 9781317528739. [Google Scholar]
- Crivelli, D.; Pedullà, L.; Bisio, A.; Sabogal Rueda, M.D.; Brichetto, G.; Bove, M.; Balconi, M. When “extraneous” becomes “mine”. Neurophysiological evidence of sensorimotor integration during observation of suboptimal movement patterns performed by people with Multiple Sclerosis. Neuroscience 2018, 386, 326–338. [Google Scholar] [CrossRef] [PubMed]
- Pfurtscheller, G. Event-related synchronization (ERS): An electrophysiological correlate of cortical areas at rest. Electroencephalogr. Clin. Neurophysiol. 1992, 83, 62–69. [Google Scholar] [CrossRef]
- Neuper, C.; Wörtz, M.; Pfurtscheller, G. ERD/ERS patterns reflecting sensorimotor activation and deactivation. Prog. Brain Res. 2006, 159, 211–222. [Google Scholar]
- Pineda, J.A. The functional significance of mu rhythms: Translating “seeing” and “hearing” into “doing”. Brain Res. Rev. 2005, 50, 57–68. [Google Scholar] [CrossRef]
- Fox, N.A.; Yoo, K.H.; Bowman, L.C.; Cannon, E.N.; Ferrari, P.F.; Bakermans-Kranenburg, M.J.; Vanderwert, R.E.; Van IJzendoorn, M.H. Assessing human mirror activity with EEG mu rhythm: A meta-analysis. Psychol. Bull. 2016, 142, 291–313. [Google Scholar] [CrossRef]
- Pfurtscheller, G.; Neuper, C.; Andrew, C.; Edlinger, G. Foot and hand area mu rhythms. Int. J. Psychophysiol. 1997, 26, 121–135. [Google Scholar] [CrossRef]
- Frenkel-Toledo, S.; Bentin, S.; Perry, A.; Liebermann, D.G.; Soroker, N. Dynamics of the EEG power in the frequency and spatial domains during observation and execution of manual movements. Brain Res. 2013, 1509, 43–57. [Google Scholar] [CrossRef]
- De Vignemont, F. Body schema and body image–Pros and cons. Neuropsychologia 2010, 48, 669–680. [Google Scholar] [CrossRef] [Green Version]
- Löwe, B.; Breining, K.; Wilke, S.; Wellmann, R.; Zipfel, S.; Eich, W. Quantitative and qualitative effects of Feldenkrais, progressive muscle relaxation, and standard medical treatment in patients after acute myocardial infarction. Psychother. Res. 2002, 12, 179–191. [Google Scholar] [CrossRef]
- Laumer, U.; Bauer, M.; Fichter, M.; Milz, H. Therapeutische Effekte der Feldenkrais-Methode ’Bewusstheit durch Bewegung’ bei Patienten mit Essstorungen. Therapeutic effects of the Feldenkrais method “awareness through movement” in patients with eating disorders. Psychother. Psychosom. Med. Psychol. 1997, 47, 170–180. [Google Scholar]
- Machover, K. Personality Projection in the Drawing of the Human Figure: A Method of Personality Investigation; Charles C Thomas Publisher: Springfield, IL, USA, 1949. [Google Scholar]
- Barnet-López, S.; Pérez-Testor, S.; Cabedo-Sanromà, J.; Gozzoli, C.; Oviedo, G.R.; Guerra-Balic, M. Developmental items of Human Figure Drawing: Dance/movement therapy for adults with Intellectual Disabilities. Am. J. Danc. Ther. 2015, 37, 135–149. [Google Scholar] [CrossRef]
- Chatrian, G.-E.; Lettich, E.; Nelson, P.L. Modified nomenclature for the “10%” Electrode System. J. Clin. Neurophysiol. 1988, 5, 183–186. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Lawrence Erlbaum Associates: Hillsdale, NJ, USA, 1988; ISBN 0805802835. [Google Scholar]
- Feldenkrais, M. Body & Mature Behavior. A Study of Anxiety, Sex, Gravitation, and Learning; International Universities Press: Tel Aviv, Israel, 1949. [Google Scholar]
- Kuhlman, W.N. Functional topography of the human mu rhythm. Electroencephalogr. Clin. Neurophysiol. 1978, 44, 83–93. [Google Scholar] [CrossRef]
- Leocani, L.; Toro, C.; Manganotti, P.; Zhuang, P.; Hallett, M. Event-related coherence and event-related desynchronization/synchronization in the 10 Hz and 20 Hz EEG during self-paced movements. Electroencephalogr. Clin. Neurophysiol. 1997, 104, 199–206. [Google Scholar] [CrossRef]
- Toro, C.; Deuschl, G.; Thatcher, R.; Sato, S.; Kufta, C.; Hallett, M. Event-related desynchronization and movement-related cortical potentials on the ECoG and EEG. Electroencephalogr. Clin. Neurophysiol. 1994, 93, 380–389. [Google Scholar] [CrossRef]
- Babiloni, C.; Babiloni, F.; Carducci, F.; Cincotti, F.; Cocozza, G.; Del Percio, C.; Moretti, D.V.; Rossini, P.M. Human cortical electroencephalography (EEG) rhythms during the observation of simple aimless movements: A high-resolution EEG study. Neuroimage 2002, 17, 559–572. [Google Scholar] [CrossRef]
- Manshanden, I.; De Munck, J.C.; Simon, N.R.; Lopes da Silva, F.H. Source localization of MEG sleep spindles and the relation to sources of alpha band rhythms. Clin. Neurophysiol. 2002, 113, 1937–1947. [Google Scholar] [CrossRef] [Green Version]
- Thorpe, S.G.; Cannon, E.N.; Fox, N.A. Spectral and source structural development of mu and alpha rhythms from infancy through adulthood. Clin. Neurophysiol. 2016, 127, 254–269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balconi, M.; Crivelli, D.; Cortesi, L. Transitive versus intransitive complex gesture representation: A comparison between execution, observation and imagination by fNIRS. Appl. Psychophysiol. Biofeedback 2017, 42, 179–191. [Google Scholar] [CrossRef] [PubMed]
- Filimon, F.; Rieth, C.A.; Sereno, M.I.; Cottrell, G.W. Observed, executed, and imagined action representations can be decoded from ventral and dorsal areas. Cereb. Cortex 2015, 25, 3144–3158. [Google Scholar] [CrossRef] [Green Version]
- Molenberghs, P.; Cunnington, R.; Mattingley, J.B. Brain regions with mirror properties: A meta-analysis of 125 human fMRI studies. Neurosci. Biobehav. Rev. 2012, 36, 341–349. [Google Scholar] [CrossRef] [Green Version]
- Rizzolatti, G.; Luppino, G.; Matelli, M. The organization of the cortical motor system: New concepts. Electroencephalogr. Clin. Neurophysiol. 1998, 106, 283–296. [Google Scholar] [CrossRef]
- Cunnington, R.; Windischberger, C.; Robinson, S.; Moser, E. The selection of intended actions and the observation of others’ actions: A time-resolved fMRI study. Neuroimage 2006, 29, 1294–1302. [Google Scholar] [CrossRef]
- Balconi, M.; Cortesi, L.; Crivelli, D. Motor planning and performance in transitive and intransitive gesture execution and imagination: Does EEG (RP) activity predict hemodynamic (fNIRS) response? Neurosci. Lett. 2017, 648, 59–65. [Google Scholar] [CrossRef]
- Berti, A.; Pia, L. Understanding motor awareness through normal and pathological behavior. Curr. Dir. Psychol. Sci. 2006, 15, 245–250. [Google Scholar] [CrossRef]
- Bremmer, F. What’s next? Sequential movement encoding in primary motor cortex. Neuron 2005, 45, 819–821. [Google Scholar] [CrossRef] [Green Version]
- Lu, X.; Ashe, J. Anticipatory activity in primary motor cortex codes memorized movement sequences. Neuron 2005, 45, 967–973. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Binkofski, F.; Fink, G.R.; Geyer, S.; Buccino, G.; Gruber, O.; Shah, N.J.; Taylor, J.G.; Seitz, R.J.; Zilles, K.; Freund, H.-J. Neural activity in human primary motor cortex areas 4a and 4p is modulated differentially by attention to action. J. Neurophysiol. 2002, 88, 514–519. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caeyenberghs, K.; Tsoupas, J.; Wilson, P.H.; Smits-Engelsman, B.C.M. Motor imagery development in primary school children. Dev. Neuropsychol. 2009, 34, 103–121. [Google Scholar] [CrossRef]
- Lorey, B.; Bischoff, M.; Pilgramm, S.; Stark, R.; Munzert, J.; Zentgraf, K. The embodied nature of motor imagery: The influence of posture and perspective. Exp. Brain Res. 2009, 194, 233–243. [Google Scholar] [CrossRef]
- Pacella, V.; Foulon, C.; Jenkinson, P.M.; Scandola, M.; Bertagnoli, S.; Avesani, R.; Fotopoulou, A.; Moro, V.; Thiebaut de Schotten, M. Anosognosia for hemiplegia as a tripartite disconnection syndrome. Elife 2019, 8, e46075. [Google Scholar] [CrossRef] [PubMed]
- Pisella, L.; Havé, L.; Rossetti, Y. Body awareness disorders: Dissociations between body-related visual and somatosensory information. Brain 2019, 142, 2170–2173. [Google Scholar] [CrossRef]
- Balconi, M.; Crivelli, D.; Bove, M. ‘Eppur si move’: The association between electrophysiological and psychophysical signatures of perceived movement illusions. J. Mot. Behav. 2018, 50, 37–50. [Google Scholar] [CrossRef]
- Romaiguère, P.; Anton, J.L.; Roth, M.; Casini, L.; Roll, J.P. Motor and parietal cortical areas both underlie kinaesthesia. Cogn. Brain Res. 2003, 16, 74–82. [Google Scholar] [CrossRef]
- Naito, E.; Ehrsson, H.H. Kinesthetic illusion of wrist movement activates motor-related areas. Neuroreport 2001, 12, 3805–3809. [Google Scholar] [CrossRef]
- Naito, E.; Morita, T.; Amemiya, K. Body representations in the human brain revealed by kinesthetic illusions and their essential contributions to motor control and corporeal awareness. Neurosci. Res. 2016, 104, 16–30. [Google Scholar] [CrossRef]
- Morasso, P. What is the use of the body schema for humanoid robots? Int. J. Mach. Conscious. 2013, 05, 75–94. [Google Scholar] [CrossRef]
EXP Group | CON Group | Total Sample | Sig. | |
---|---|---|---|---|
Gender—M/F | 5/9 | 3/8 | 8/17 | n.s. |
Age—Mean (SD) | 49.93 (11.53) | 52.27 (9.96) | 50.96 (10.71) | n.s. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Crivelli, D.; Di Ruocco, M.; Balena, A.; Balconi, M. The Empowering Effect of Embodied Awareness Practice on Body Structural Map and Sensorimotor Activity: The Case of Feldenkrais Method. Brain Sci. 2021, 11, 1599. https://doi.org/10.3390/brainsci11121599
Crivelli D, Di Ruocco M, Balena A, Balconi M. The Empowering Effect of Embodied Awareness Practice on Body Structural Map and Sensorimotor Activity: The Case of Feldenkrais Method. Brain Sciences. 2021; 11(12):1599. https://doi.org/10.3390/brainsci11121599
Chicago/Turabian StyleCrivelli, Davide, Massimilla Di Ruocco, Alessandra Balena, and Michela Balconi. 2021. "The Empowering Effect of Embodied Awareness Practice on Body Structural Map and Sensorimotor Activity: The Case of Feldenkrais Method" Brain Sciences 11, no. 12: 1599. https://doi.org/10.3390/brainsci11121599
APA StyleCrivelli, D., Di Ruocco, M., Balena, A., & Balconi, M. (2021). The Empowering Effect of Embodied Awareness Practice on Body Structural Map and Sensorimotor Activity: The Case of Feldenkrais Method. Brain Sciences, 11(12), 1599. https://doi.org/10.3390/brainsci11121599