Relationship between Resting-State Alpha Coherence and Cognitive Control in Individuals with Internet Gaming Disorder: A Multimodal Approach Based on Resting-State Electroencephalography and Event-Related Potentials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants and Clinical Assessments
2.2. EEG Acquisition and Analysis
2.3. Resting-State Alpha Coherence
2.4. Go/Nogo Task
2.5. Statistical Analysis
2.6. Research Ethics
3. Results
3.1. Demographic Characteristics
3.2. Behavioral Results
3.3. Correlations between Alpha Coherence and ERPs
3.4. Between-Group Differences in Alpha Coherence
3.5. Between-Group Differences in ERP Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Brooks, S.K.; Webster, R.K.; Smith, L.E.; Woodland, L.; Wessely, S.; Greenberg, N.; Rubin, G.J. The psychological impact of quarantine and how to reduce it: Rapid review of the evidence. Lancet 2020, 395, 912–920. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, N. Economic Effects of Coronavirus Outbreak (COVID-19) on the World Economy; SSRN: Rochester, NY, USA, 2020. [Google Scholar]
- Fazeli, S.; Zeidi, I.M.; Lin, C.-Y.; Namdar, P.; Griffiths, M.D.; Ahorsu, D.K.; Pakpour, A.H. Depression, anxiety, and stress mediate the associations between internet gaming disorder, insomnia, and quality of life during the COVID-19 outbreak. Addict. Behav. Rep. 2020, 12, 100307. [Google Scholar] [CrossRef]
- Xu, S.; Park, M.; Kang, U.G.; Choi, J.-S.; Koo, J.W. Problematic use of alcohol and online gaming as coping strategies during the COVID-19 pandemic: A mini review. Front. Psychiatry 2021, 12, 930. [Google Scholar] [CrossRef]
- Blasi, M.D.; Giardina, A.; Giordano, C.; Coco, G.L.; Tosto, C.; Billieux, J.; Schimmenti, A. Problematic video game use as an emotional coping strategy: Evidence from a sample of MMORPG gamers. J. Behav. Addict. 2019, 8, 25–34. [Google Scholar] [CrossRef] [PubMed]
- Király, O.; Potenza, M.N.; Stein, D.J.; King, D.L.; Hodgins, D.C.; Saunders, J.B.; Griffiths, M.D.; Gjoneska, B.; Billieux, J.; Brand, M. Preventing problematic internet use during the COVID-19 pandemic: Consensus guidance. Compr. Psychiatry 2020, 100, 152180. [Google Scholar] [CrossRef]
- Park, M.; Choi, J.S.; Park, S.; Lee, J.-Y.; Jung, H.; Sohn, B.; Kim, S.; Kim, D.; Kwon, J.S. Dysfunctional information processing during an auditory event-related potential task in individuals with Internet gaming disorder. Transl. Psychiatry 2016, 6, e721. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- American Psychiatric Asocciation. Diagnostic and Statistical Manual of Mental Disorders (DSM-5®); American Psychiatric Publishing: Arlington, VA, USA, 2013. [Google Scholar]
- World Health Organization. Global Status Report on Alcohol and Health 2018; World Health Organization: Geneva, Switzerland, 2019. [Google Scholar]
- Nunez, P.L.; Srinivasan, R.; Westdorp, A.F.; Wijesinghe, R.S.; Tucker, D.M.; Silberstein, R.B.; Cadusch, P.J. EEG coherency: I: Statistics, reference electrode, volume conduction, Laplacians, cortical imaging, and interpretation at multiple scales. Electroencephalogr. Clin. Neurophysiol. 1997, 103, 499–515. [Google Scholar] [CrossRef]
- Thatcher, R.W.; North, D.; Biver, C. EEG and intelligence: Relations between EEG coherence, EEG phase delay and power. Clin. Neurophysiol. 2005, 116, 2129–2141. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-Y.; Choi, J.-S.; Kwon, J.S. Neurophysiological Mechanisms of Resilience as a Protective Factor in Patients with Internet Gaming Disorder: A Resting-State EEG Coherence Study. J. Clin. Med. 2019, 8, 49. [Google Scholar] [CrossRef] [Green Version]
- Park, J.H.; Hong, J.S.; Han, D.H.; Min, K.J.; Lee, Y.S.; Kee, B.S.; Kim, S.M. Comparison of QEEG findings between adolescents with attention deficit hyperactivity disorder (ADHD) without comorbidity and ADHD comorbid with Internet gaming disorder. J. Korean Med. Sci. 2017, 32, 514. [Google Scholar] [CrossRef]
- Kok, A. Effects of degradation of visual stimuli on components of the event-related potential (ERP) in go/nogo reaction tasks. Biol. Psychol. 1986, 23, 21–38. [Google Scholar] [CrossRef]
- Smith, J.L.; Johnstone, S.J.; Barry, R.J. Movement-related potentials in the Go/NoGo task: The P3 reflects both cognitive and motor inhibition. Clin. Neurophysiol. 2008, 119, 704–714. [Google Scholar] [CrossRef]
- Kim, M.; Lee, T.H.; Choi, J.-S.; Kwak, Y.B.; Hwang, W.J.; Kim, T.; Lee, J.Y.; Lim, J.-A.; Park, M.; Kim, Y.J. Neurophysiological correlates of altered response inhibition in internet gaming disorder and obsessive-compulsive disorder: Perspectives from impulsivity and compulsivity. Sci. Rep. 2017, 7, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Park, M.; Jung, M.H.; Lee, J.; Choi, A.R.; Chung, S.J.; Kim, B.; Kim, D.J.; Choi, J.-S. Neurophysiological and cognitive correlates of error processing deficits in Internet gaming disorder. Cereb. Cortex 2020, 30, 4914–4921. [Google Scholar] [CrossRef] [PubMed]
- Chapeton, J.I.; Haque, R.; Wittig, J.H., Jr.; Inati, S.K.; Zaghloul, K.A. Large-scale communication in the human brain is rhythmically modulated through alpha coherence. Curr. Biol. 2019, 29, 2801–2811.e5. [Google Scholar] [CrossRef]
- Berger, H. Über das elektroenkephalogramm des menschen. Arch. Psychiatr. Nervenkrankh. 1929, 87, 527–570. [Google Scholar] [CrossRef]
- Raichle, M.E.; MacLeod, A.M.; Snyder, A.Z.; Powers, W.J.; Gusnard, D.A.; Shulman, G.L. A default mode of brain function. Proc. Natl. Acad. Sci. USA 2001, 98, 676–682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shulman, G.L.; Corbetta, M.; Buckner, R.L.; Fiez, J.A.; Miezin, F.M.; Raichle, M.E.; Petersen, S.E. Common blood flow changes across visual tasks: I. Increases in subcortical structures and cerebellum but not in nonvisual cortex. J. Cogn. Neurosci. 1997, 9, 624–647. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buckner, R.L.; Andrews-Hanna, J.R.; Schacter, D.L. The brain’s default network: Anatomy, function, and relevance to disease. Ann. N. Y. Acad. Sci. 2008, 1124, 1–38. [Google Scholar] [CrossRef] [Green Version]
- Menon, V. Large-scale brain networks and psychopathology: A unifying triple network model. Trends. Cogn. Sci. 2011, 15, 483–506. [Google Scholar] [CrossRef] [PubMed]
- Goldman, R.I.; Stern, J.M.; Engel Jr, J.; Cohen, M.S. Simultaneous EEG and fMRI of the alpha rhythm. Neuroreport 2002, 13, 2487. [Google Scholar] [CrossRef] [PubMed]
- Mantini, D.; Perrucci, M.G.; Del Gratta, C.; Romani, G.L.; Corbetta, M. Electrophysiological signatures of resting state networks in the human brain. Proc. Natl. Acad. Sci. USA 2007, 104, 13170–13175. [Google Scholar] [CrossRef] [Green Version]
- Elton, A.; Gao, W. Task-positive functional connectivity of the default mode network transcends task domain. J. Cogn. Neurosci. 2015, 27, 2369–2381. [Google Scholar] [CrossRef]
- Ding, W.-N.; Sun, J.-H.; Sun, Y.-W.; Zhou, Y.; Li, L.; Xu, J.-R.; Du, Y.-S. Altered default network resting-state functional connectivity in adolescents with Internet gaming addiction. PLoS ONE 2013, 8, e59902. [Google Scholar]
- Dong, G.; Lin, X.; Potenza, M.N. Decreased functional connectivity in an executive control network is related to impaired executive function in Internet gaming disorder. Prog. Neuropsychopharmacol. Biol. Psychiatry 2015, 57, 76–85. [Google Scholar] [CrossRef] [Green Version]
- Petry, N.M.; Rehbein, F.; Gentile, D.A.; Lemmens, J.S.; Rumpf, H.J.; Mößle, T.; Bischof, G.; Tao, R.; Fung, D.S.; Borges, G. An international consensus for assessing internet gaming disorder using the new DSM-5 approach. Addiction 2014, 109, 1399–1406. [Google Scholar] [CrossRef]
- Sheehan, D.V.; Lecrubier, Y.; Sheehan, K.H.; Amorim, P.; Janavs, J.; Weiller, E.; Hergueta, T.; Baker, R.; Dunbar, G.C. The Mini-International Neuropsychiatric Interview (MINI): The development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. J. Clin. Psychiatry 1998, 59, 22–33. [Google Scholar] [PubMed]
- Young, K.S. Internet addiction: The emergence of a new clinical disorder. Cyberpsychol. Behav. 1998, 1, 237–244. [Google Scholar] [CrossRef] [Green Version]
- Wechsler, D. Wechsler Adult Intelligence Scale; Psychological Corporation: San Antonio, TX, USA, 1955. [Google Scholar]
- Beck, A.T.; Epstein, N.; Brown, G.; Steer, R.A. An inventory for measuring clinical anxiety: Psychometric properties. J. Consult. Clin. Psychol. 1988, 56, 893. [Google Scholar] [CrossRef]
- Beck, A.T.; Steer, R.A.; Brown, G. Manual for the Beck Depression Inventory–II. Psychol. Assess.; Pearson Assessments: San Antonio, TX, USA, 1996. [Google Scholar]
- Semlitsch, H.V.; Anderer, P.; Schuster, P.; Presslich, O. A solution for reliable and valid reduction of ocular artifacts, applied to the P300 ERP. Psychophysiology 1986, 23, 695–703. [Google Scholar] [CrossRef]
- Thatcher, R.W.; Biver, C.J.; North, D. EEG Coherence and Phase Delays: Comparisons between Single Reference, Average Reference, and Current Source Density; University of South Florida College of Medicine: Tampa, FL, USA, 2004. [Google Scholar]
- Thatcher, R.W.; North, D.M.; Biver, C.J. Development of cortical connections as measured by EEG coherence and phase delays. Hum. Brain Mapp. 2008, 29, 1400–1415. [Google Scholar] [CrossRef] [PubMed]
- Xia, M.; Wang, J.; He, Y. BrainNet Viewer: A network visualization tool for human brain connectomics. PLoS ONE 2013, 8, e68910. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kato, Y.; Endo, H.; Kizuka, T. Mental fatigue and impaired response processes: Event-related brain potentials in a Go/NoGo task. Int. J. Psychophysiol. 2009, 72, 204–211. [Google Scholar] [CrossRef]
- Polich, J. Updating P300: An integrative theory of P3a and P3b. Clin. Neurophysiol. 2007, 118, 2128–2148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Dinteren, R.; Arns, M.; Jongsma, M.L.; Kessels, R.P. P300 development across the lifespan: A systematic review and meta-analysis. PLoS ONE 2014, 9, e87347. [Google Scholar] [CrossRef]
- Chen, C.Y.; Huang, M.F.; Yen, J.Y.; Chen, C.S.; Liu, G.C.; Yen, C.F.; Ko, C.H. Brain correlates of response inhibition in Internet gaming disorder. Psychiatry Clin. Neurosci. 2015, 69, 201–209. [Google Scholar] [CrossRef]
- Dong, G.; DeVito, E.E.; Du, X.; Cui, Z. Impaired inhibitory control in ‘internet addiction disorder’: A functional magnetic resonance imaging study. Psychiatry Res. Neuroimaging 2012, 203, 153–158. [Google Scholar] [CrossRef] [Green Version]
- Youh, J.; Hong, J.S.; Han, D.H.; Chung, U.S.; Min, K.J.; Lee, Y.S.; Kim, S.M. Comparison of electroencephalography (EEG) coherence between major depressive disorder (MDD) without comorbidity and MDD comorbid with Internet gaming disorder. J. Korean Med. Sci. 2017, 32, 1160. [Google Scholar] [CrossRef] [Green Version]
- Kaplan, R.F.; Glueck, B.C.; Hesselbrock, M.N.; Reed, H., Jr. Power and coherence analysis of the EEG in hospitalized alcoholics and nonalcoholic controls. J. Stud. Alcohol Drugs 1985, 46, 122–127. [Google Scholar] [CrossRef]
- Tcheslavski, G.V.; Gonen, F.F. Alcoholism-related alterations in spectrum, coherence, and phase synchrony of topical electroencephalogram. Comput. Biol. Med. 2012, 42, 394–401. [Google Scholar] [CrossRef]
- Winterer, G.; Enoch, M.A.; White, K.; Saylan, M.; Coppola, R.; Goldman, D. EEG phenotype in alcoholism: Increased coherence in the depressive subtype. Acta Psychiatr. Scand. 2003, 108, 51–60. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.-Y.; Chun, J.-W.; Park, C.-H.; Cho, H.; Choi, J.; Yang, S.; Ahn, K.-J. The correlation between the frontostriatal network and impulsivity in internet gaming disorder. Sci. Rep. 2019, 9, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Bowman, A.D.; Griffis, J.C.; Visscher, K.M.; Dobbins, A.C.; Gawne, T.J.; DiFrancesco, M.W.; Szaflarski, J.P. Relationship between alpha rhythm and the default mode network: An EEG-fMRI study. J Clin. Neurophysiol. 2017, 34, 527–533. [Google Scholar] [CrossRef] [PubMed]
- Laufs, H.; Krakow, K.; Sterzer, P.; Eger, E.; Beyerle, A.; Salek-Haddadi, A.; Kleinschmidt, A. Electroencephalographic signatures of attentional and cognitive default modes in spontaneous brain activity fluctuations at rest. Proc. Natl. Acad. Sci. USA 2003, 100, 11053–11058. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, M.; Kim, Y.J.; Choi, J.-S. Differential neurophysiological correlates of information processing in Internet gaming disorder and alcohol use disorder measured by event-related potentials. Sci. Rep. 2017, 7, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoon, E.J.; Choi, J.-S.; Kim, H.; Sohn, B.K.; Jung, H.Y.; Lee, J.-Y.; Kim, D.-J.; Park, S.-W.; Kim, Y.K. Altered hippocampal volume and functional connectivity in males with Internet gaming disorder comparing to those with alcohol use disorder. Sci. Rep. 2017, 7, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Healthy Control (n = 31) | Internet Gaming Disorder (n = 33) | X2 or t | p | |
---|---|---|---|---|
Mean (SD) | Mean (SD) | |||
Sex (male/female) | 26/5 | 31/2 | 1.663 | 0.197 |
Age (year) | 25.00 (3.17) | 25.00 (5.14) | 0.000 | 1.000 |
Education (year) | 14.71 (2.02) | 13.33 (1.83) | 2.859 | 0.006 ** |
IQ | 117.19 (11.44) | 102.79 (13.27) | 4.639 | <0.001 *** |
Young’s Internet Addiction Test | 33.00 (11.12) | 60.82 (14.82) | −8.453 | <0.001 *** |
BDI | 4.00 (4.62) | 17.33 (9.04) | −7.354 | <0.001 *** |
BAI | 3.53 (5.25) | 14.92 (11.56) | −5.020 | <0.001 *** |
Healthy Control (n = 31) | Internet Gaming Disorder (n = 33) | F | p | |
---|---|---|---|---|
Mean (SD) | Mean (SD) | |||
Accuracy (%) | 98.93 (2.30) | 96.91 (7.04) | 0.016 | 0.901 |
Reaction time (ms) | 264.41 (28.82) | 263.68 (40.40) | 0.009 | 0.925 |
Incorrect rate (%) | 11.69 (8.20) | 13.65 (11.32) | 0.002 | 0.966 |
Nogo Reaction time (ms) | 232.83 (40.45) | 236.23 (48.73) | 0.064 | 0.801 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, M.; Yoo, S.Y.; Lee, J.-Y.; Koo, J.W.; Kang, U.G.; Choi, J.-S. Relationship between Resting-State Alpha Coherence and Cognitive Control in Individuals with Internet Gaming Disorder: A Multimodal Approach Based on Resting-State Electroencephalography and Event-Related Potentials. Brain Sci. 2021, 11, 1635. https://doi.org/10.3390/brainsci11121635
Park M, Yoo SY, Lee J-Y, Koo JW, Kang UG, Choi J-S. Relationship between Resting-State Alpha Coherence and Cognitive Control in Individuals with Internet Gaming Disorder: A Multimodal Approach Based on Resting-State Electroencephalography and Event-Related Potentials. Brain Sciences. 2021; 11(12):1635. https://doi.org/10.3390/brainsci11121635
Chicago/Turabian StylePark, Minkyung, So Young Yoo, Ji-Yoon Lee, Ja Wook Koo, Ung Gu Kang, and Jung-Seok Choi. 2021. "Relationship between Resting-State Alpha Coherence and Cognitive Control in Individuals with Internet Gaming Disorder: A Multimodal Approach Based on Resting-State Electroencephalography and Event-Related Potentials" Brain Sciences 11, no. 12: 1635. https://doi.org/10.3390/brainsci11121635
APA StylePark, M., Yoo, S. Y., Lee, J. -Y., Koo, J. W., Kang, U. G., & Choi, J. -S. (2021). Relationship between Resting-State Alpha Coherence and Cognitive Control in Individuals with Internet Gaming Disorder: A Multimodal Approach Based on Resting-State Electroencephalography and Event-Related Potentials. Brain Sciences, 11(12), 1635. https://doi.org/10.3390/brainsci11121635