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Abstract: We have entered an era of a steep increase in the absolute and relative number of older
people. This well-come phenomenon represents a major challenge for health care. However, matu-
rational changes in sleep associated with aging do not easily appear as main factors, even though
sleep alterations in the aging process lead to many detrimental consequences. In this editorial paper,
we summarize the present knowledge about the main aging-related sleep modifications and their
relevance for health problems and cognitive decline. Then, we present the papers published in the
Special Issue “Disturbances of Sleep Among Older People”.
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We have entered an era of a steep increase in the absolute and relative number of
older people. This welcome phenomenon represents a major challenge for health care,
which has to sustain the ability to stay healthy at any age. A healthy status also includes
keeping high cognitive and physical functioning, and avoiding or at least minimizing
disease and disability.

Among the targets that may be of interest, the maturational changes of sleep associated
with aging do not easily appear as a main factor. Still, abnormalities in this maturational
process lead to many consequences, such as sleepiness, cognitive impairment, and several
cardiovascular events, thus spreading disabilities all over the body. From this viewpoint,
exploring the links between normal and pathological modifications of sleep and the brain
appears to be of utmost importance to the promotion of successful aging.

Large changes in sleep pattern characterize the elderly population. Age-related modi-
fications in the sleep architecture mainly include advanced sleep timing (i.e., anticipation
of both night sleep onset and morning awakening), longer sleep latency, shorter sleep
duration, reduced sleep efficiency (i.e., the ratio of time spent asleep to time spent in bed),
decreased ability to maintain sleep (i.e., greater sleep fragmentation), increased time spent
awake after sleep onset, and reduction of deeper non-REM (NREM) sleep and (to a lesser
extent) REM sleep (for a review, see [1,2]). Moreover, the circadian rhythms and the sleep
homeostatic process appear less robust with aging [2]. Daytime napping is more frequent
in the elderly [3–5], and a large proportion of older adults experience excessive daytime
sleepiness [3,6,7] albeit several studies suggest a reduced vulnerability to sleep pressure in
older subjects [8–10].

The electrophysiology of sleep is also affected by age at a microstructural level. In par-
ticular, the strongest age-related modifications can be observed in NREM sleep hallmarks,
with reduced density and amplitude of slow waves [11–14], K-complexes [15–18] and
sleep spindles [19–21]. Phase-locked synchrony between slow waves and sleep spindles
is also affected by age [22,23]. Many primary sleep disorders like insomnia, restless leg
syndrome, REM behavior disorder and sleep-disordered breathing are more frequent in
older adults [24,25].

Overall, many indices of impaired quality and quantity of sleep characterize aging.
Moreover, it is worth noting that different factors associated with aging can have a negative
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impact on sleep in the elderly, like medical and psychiatric disorders, or environmental,
social and lifestyle modification [2].

Such substantial age-related deterioration of the sleep pattern should be considered in
light of the association between sleep problems and health. Indeed, many studies found
a relationship between sleep duration and/or quality and several health problems like
adiposity/obesity [26–29], diabetes [30–33], cardiovascular disease [34–38], and mortal-
ity [39,40]. A recent meta-analysis found a relationship between short sleep and mortality
outcome, diabetes, cardiovascular disease, coronary heart disease and obesity [41]. More
recently, another meta-analysis showed that difficulty in the falling-asleep process and
nonrestorative sleep were associated with increased risk of mortality, and particularly with
cardiovascular disease mortality [42]. Moreover, such a relationship was restricted to the
middle- to older-aged population [42]. Starting from these findings, research on the link
between sleep and health in the elderly appears essential at a clinical level: wider attention
to sleep habits and problems in older subjects may help prevent many health diseases.

The present literature also points to the role of age-related sleep deterioration in
cognitive decline [1]. Sleep is essential for memory processes and plastic mechanisms,
with a crucial role of different sleep electrophysiological hallmarks like slow-wave activity
(SWA) and sleep spindles [43]. Several studies suggest a reduced association between
slow-wave sleep and memory in older adults [44,45]. Moreover, the age-related impairment
of NREM SWA in older subjects predicts decreased overnight sleep-dependent memory
consolidation [14,46], in relation to medial prefrontal cortex grey-matter atrophy [14]. Sim-
ilarly, the reduction of prefrontal sleep spindles in older adults explains the degree of
impaired episodic memory [20]. Age-related deterioration of white matter fiber tracts is
associated with reduced sleep spindles, and the level of deterioration predicts whether
sleep spindles can promote motor memory consolidation [47]. Crucially, a growing body
of evidence suggests that sleep disruption may represent a risk factor for Alzheimer’s
disease (AD) [48,49]. AD, the most common age-related neurodegenerative disorder, is
characterized by further pervasive sleep impairment compared to healthy aging, with
marked alterations of sleep architecture and sleep-wake cycle [50]. The preclinical stage of
AD, called Mild Cognitive Impairment (MCI), is also associated with stronger sleep dis-
ruption than normal aging [51]. Moreover, several signs of altered NREM and REM sleep
electrophysiology in AD and MCI have been observed [48,52–59]. While sleep alterations
have often been considered merely a consequence of AD, recent findings point to a bidi-
rectional relation between sleep and AD [48,60,61]. Indeed, sleep disruption is associated
with AD biomarkers like β-amyloid and phosphorylated tau in humans [58,62–68] and
animals [69–71]. Moreover, β-amyloid levels increase with time spent awake in mice, while
the clearance of β-amyloid is predicted by NREM sleep [72,73]. Sleep deprivation and
selective SWS disruption in humans induce an increase of the cerebrospinal fluid levels of
β-amyloid [74–76]. Furthermore, the sleep-wake cycle modulates interstitial fluid levels
of tau, and sleep deprivation increases the cerebrospinal and interstitial fluid level of tau
and tau spreading [77]. At a longitudinal level, sleep disruption in healthy older humans
is associated with AD pathology-related outcomes [78–82], and the proportion of NREM
SWA <1 Hz and sleep efficiency selectively predict the following β-amyloid deposition
over time [83]. Finally, sleep disruption induces systemic inflammation [61], which is
often considered an early event in the AD pathology [84,85]. Overall, the present literature
suggests that sleep alterations represent both a risk factor and a marker of AD, raising the
possibility that sleep assessment and management may be considered essential for AD
prevention, diagnosis and treatment [48,60].

The present collection of articles introduces some critical topics associated with sleep
and aging. Bartolacci et al. [86] investigated the influence of sleep quality, vigilance, and
sleepiness on driving-related cognitive abilities in older people to identify how sleepiness
and sleep quality predict their driving-related cognitive skills. While results confirm
some maturational changes of aging (i.e., lower sleep efficiency and lower performance in
attention and perception tests), these changes do not necessarily imply a worsened driving
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ability. In fact, older adults show poorer attentional performance and perception skills in
driving tasks while accepting minor risk than younger subjects.

A large study in patients with obstructive sleep apnoea syndrome (OSAS) [87] also
debunks another common opinion and shows that OSAS may not necessarily be linked to
morning headaches (MH). MH has been considered to be a symptom of OSAS for more
than a century. Still, this study suggests that most clinical measures of OSAS parameters
are not significantly associated with the probability of MH.

Moving toward a public health perspective with specific attention devoted to healthy
lifestyle, another study in a large sample of older individuals living in the insular Mediter-
ranean region [88] shows that midday napping is associated with higher levels of successful
aging. Along the same vein, 8.5 h of sleep per day in total, not necessarily slept all to-
gether, are associated with the best successful aging level. Another article [89] investigated
social and health determinants of insomnia among economically disadvantaged African-
American older adults. This study’s merit consists of showing that financial difficulty,
smoking, pain intensity, depression, and a higher number of chronic diseases predict insom-
nia symptom frequency and are associated with higher odds of possible clinical insomnia.

Although the state of the art of existing knowledge should be considered very pre-
liminary, the last article of this collection [90] critically introduces promising techniques to
modulate specific sleep characteristics (mostly slow oscillations) with the aim to improve
sleep and induce cognitive benefits. This narrative review suggests that techniques with
minimal invasiveness, like auditory stimulations delivered during sleep, may be capable
of modulating sleep electrophysiology in the elderly population without impacting sleep
architecture and the subjective quality of sleep. Although pioneering and very prelimi-
nary, these promising studies point to the feasibility and effectiveness of using closed-loop
auditory stimulation systems in older people. This approach’s relevance is even greater
in light of the mounting evidence on the role of specific sleep changes in the preclinical
stage of AD in predicting the onset of cognitive decline [60]. According to this view, the de-
velopment of intervention strategies and specific techniques effective in modulating sleep
electrophysiology may reduce risk factors for AD. This novel view fits with the general
notion that some brain plasticity-dependent processes could be improved managing sleep
quality, while monitoring EEG during sleep may help to explain how specific rehabilitative
paradigms work [91].

We hope that these findings will stimulate interest for further basic and clinical inves-
tigations on the role of sleep in healthy and pathological aging, enhancing our knowledge
on this research topic.

Funding: This research received no external funding.
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