Nutritional Intervention Facilitates Food Intake after Epilepsy Surgery
Abstract
:1. Introduction
2. Methods
2.1. Clinical Information
2.2. Nutritional Intervention
2.3. Primary Outcome
2.3.1. Observed Period for Food Intake
2.3.2. Total Food Intake
2.3.3. Time to Reach the Maximum Amount
2.3.4. Maintenance Rate
2.4. Secondary Outcome
2.5. Statistical Analysis
3. Results
3.1. Clinical Information
3.2. Primary Outcome
3.2.1. Total Food Intake
3.2.2. Time to Reach the Maximum Amount
3.2.3. Maintenance Rate
3.3. Secondary Outcome
4. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Den, E.; Steer, B.; Quinn, P.; Kiss, N. Effect of an Evidence-Based Nutrition Care Pathway for Cancer Patients Undergoing Gastrointestinal and Pelvic Surgery. Nutr. Cancer 2020. [Google Scholar] [CrossRef] [PubMed]
- Ohbe, H.; Jo, T.; Matsui, H.; Fushimi, K.; Yasunaga, H. Early enteral nutrition in patients with severe traumatic brain injury: A propensity score-matched analysis using a nationwide inpatient database in Japan. Am. J. Clin. Nutr. 2020, 111, 378–384. [Google Scholar] [CrossRef]
- Härtl, R.; Gerber, L.M.; Ni, Q.; Ghajar, J. Effect of early nutrition on deaths due to severe traumatic brain injury. J. Neurosurg. 2008, 109, 50–56. [Google Scholar] [CrossRef] [PubMed]
- Castanon, L.; Asmar, S.; Bible, L.; Chehab, M.; Ditillo, M.; Khurrum, M.; Hanna, K.; Douglas, M.; Joseph, B. Early Enteral Nutrition in Geriatric Burn Patients: Is There a Benefit? J. Burn Care Res. 2020, 41, 986–991. [Google Scholar] [CrossRef]
- Wada, A.; Sonoda, C.; Makino, Y.; Hama, Y.; Nagahama, A.; Harada, D. Effects of Parenteral Amino Acid Administration on the Postoperative Nutritional Status and Wound Healing of Protein-Malnourished Rats. J. Nutr. Sci. Vitaminol. 2018, 64, 34–40. [Google Scholar] [CrossRef] [Green Version]
- Velazco, C.S.; Zurakowski, D.; Fullerton, B.S.; Bechard, L.J.; Jaksic, T.; Mehta, N.M. Nutrient delivery in mechanically ventilated surgical patients in the pediatric critical care unit. J. Pediatr. Surg. 2017, 52, 145–148. [Google Scholar] [CrossRef] [PubMed]
- Qindeel, M.; Ullah, M.H.; Fakhar-ud-Din; Ahmed, N.; Rehman, A.U. Recent trends, challenges and future outlook of transdermal drug delivery systems for rheumatoid arthritis therapy. J. Control. Release 2020, 327, 595–615. [Google Scholar] [CrossRef]
- Kucharski, M.A.; Wierzbicka, A.; Tsibulski, A.; Sotiri, E.; Dobrowolska, A.; Mańkowska-Wierzbicka, D. Parenteral and Enteral Nutrition: A Bridge to Healing and Biological Therapy in a Patient with Enterocutaneous Fistula and Sepsis Complicated Crohn’s Disease. JPEN J. Parenter Enteral Nutr. 2020. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Sung, S.I.; Park, H.J.; Chang, Y.S.; Park, W.S.; Seo, J.M. Fish Oil Monotherapy for Intestinal Failure-Associated Liver Disease on SMOFlipid in the Neonatal Intensive Care Unit. J. Clin. Med. 2020, 9, 3393. [Google Scholar] [CrossRef]
- Yang, J.; Sun, H.; Wan, S.; Mamtawla, G.; Gao, X.; Zhang, L.; Wang, X. Prolonged Parenteral Nutrition Is One of the Most Significant Risk Factors for Nosocomial Infections in Adult Patients with Intestinal Failure. Nutr. Clin. Pract. 2020, 35, 903–910. [Google Scholar] [CrossRef]
- Appleton, N.D.; Lal, S.; Carlson, G.L.; Shaw, S.; Stevens, P.; Peristerakis, I.; Soop, M. Cholelithiasis and Related Morbidity in Chronic Intestinal Failure: A Longitudinal Cohort Study from a National Specialized Centre. J. Gastrointest. Surg. 2019, 23, 2002–2006. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.; Laskaratos, F.M.; Bennell, J.; Chen, J.; Toumpanakis, C.; Mandair, D.; Caplin, M. Home Total Parenteral Nutrition for Intestinal Failure in Patients with Advanced Small Intestinal Neuroendocrine Neoplasms. Nutr. Cancer 2020. [Google Scholar] [CrossRef]
- Heyland, D.K.; MacDonald, S.; Keefe, L.; Drover, J.W. Total parenteral nutrition in the critically ill patient: A meta-analysis. JAMA 1998, 280, 2013–2019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uribe-Cardenas, R.; Boyke, A.E.; Schwarz, J.T.; Morgenstern, P.F.; Greenfield, J.P.; Schwartz, T.H.; Rutka, J.T.; Drake, J.; Hoffman, C.E. Utility of invasive electroencephalography in children 3 years old and younger with refractory epilepsy. J. Neurosurg. Pediatr. 2020. [Google Scholar] [CrossRef] [PubMed]
- Önal, Ç.; Otsubo, H.; Araki, T.; Chitoku, S.; Ochi, A.; Weiss, S.; Logan, W.; Elliott, I.; Snead, O.C.; Rutka, J.T. Complications of invasive subdural grid monitoring in children with epilepsy. J. Neurosurg. 2003, 98, 1017. [Google Scholar] [CrossRef]
- Raftopoulos, C.; Vaz, G.; Tassigny, D.; Van Rijckevorsel, K. Invasive EEG in refractory epilepsy: Insertion of subdural grids through linear craniectomy reduces complications and remains effective. Neurochirurgie 2015, 61, 16–21. [Google Scholar] [CrossRef]
- Remick, M.; Ibrahim, G.M.; Mansouri, A.; Abel, T.J. Patient phenotypes and clinical outcomes in invasive monitoring for epilepsy: An individual patient data meta-analysis. Epilepsy Behav. 2020, 102, 106652. [Google Scholar] [CrossRef]
- Nagahama, Y.; Schmitt, A.J.; Nakagawa, D.; Vesole, A.S.; Kamm, J.; Kovach, C.K.; Hasan, D.; Granner, M.; Dlouhy, B.J.; Howard, M.A.; et al. Intracranial EEG for seizure focus localization: Evolving techniques, outcomes, complications, and utility of combining surface and depth electrodes. J. Neurosurg. 2018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delev, D.; Send, K.; Malter, M.; Ormond, D.R.; Parpaley, Y.; von Lehe, M.; Schramm, J.; Grote, A. Role of Subdural Interhemispheric Electrodes in Presurgical Evaluation of Epilepsy Patients. World Neurosurg. 2015, 84, 1719–1725. [Google Scholar] [CrossRef]
- Araki, T.; Otsubo, H.; Makino, Y.; Elliott, I.; Iida, K.; Ochi, A.; Weiss, S.K.; Chuang, S.H.; Rutka, J.T.; Snead, O.C., 3rd. Efficacy of dexamathasone on cerebral swelling and seizures during subdural grid EEG recording in children. Epilepsia 2006, 47, 176–180. [Google Scholar] [CrossRef]
- Heyland, D.K.; Novak, F.; Drover, J.W.; Jain, M.; Su, X.; Suchner, U. Should immunonutrition become routine in critically ill patients? A systematic review of the evidence. JAMA 2001, 286, 944–953. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dempsey, D.T.; Mullen, J.L.; Buzby, G.P. The link between nutritional status and clinical outcome: Can nutritional intervention modify it? Am. J. Clin. Nutr. 1988, 47, 352–356. [Google Scholar] [CrossRef]
- Fujimoto, A.; Okanishi, T.; Kanai, S.; Sato, K.; Nishimura, M.; Enoki, H. Neuronavigation-guided Frameless Stereoelectroencephalography (SEEG). Neurol. Med. Chir. 2017, 57, 496–502. [Google Scholar] [CrossRef] [Green Version]
- Harris, J.A.; Benedict, F.G. A Biometric Study of Human Basal Metabolism. Proc. Natl. Acad. Sci. USA 1918, 4, 370–373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haydock, D.A.; Hill, G.L. Impaired wound healing in surgical patients with varying degrees of malnutrition. JPEN J. Parenter. Enteral Nutr. 1986, 10, 550–554. [Google Scholar] [CrossRef]
- Felblinger, D.M. Malnutrition, infection, and sepsis in acute and chronic illness. Crit. Care Nurs. Clin. N. Am. 2003, 15, 71–78. [Google Scholar] [CrossRef]
- Keusch, G.T. The history of nutrition: Malnutrition, infection and immunity. J. Nutr. 2003, 133, 336s–340s. [Google Scholar] [CrossRef] [Green Version]
- Lewis, S.J.; Egger, M.; Sylvester, P.A.; Thomas, S. Early enteral feeding versus “nil by mouth” after gastrointestinal surgery: Systematic review and meta-analysis of controlled trials. BMJ 2001, 323, 773–776. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carr, C.S.; Ling, K.D.; Boulos, P.; Singer, M. Randomised trial of safety and efficacy of immediate postoperative enteral feeding in patients undergoing gastrointestinal resection. BMJ 1996, 312, 869–871. [Google Scholar] [CrossRef] [Green Version]
- Smedley, F.; Bowling, T.; James, M.; Stokes, E.; Goodger, C.; O’Connor, O.; Oldale, C.; Jones, P.; Silk, D. Randomized clinical trial of the effects of preoperative and postoperative oral nutritional supplements on clinical course and cost of care. Br. J. Surg. 2004, 91, 983–990. [Google Scholar] [CrossRef]
- Sikes, P.J. Endocrine responses to the stress of critical illness. AACN Clin. Issues Crit. Care Nurs. 1992, 3, 379–391. [Google Scholar] [CrossRef]
- Van den Berghe, G. Endocrinology in intensive care medicine: New insights and therapeutic consequences. Verh. K. Acad. Geneeskd. Belg. 2002, 64, 167–187. [Google Scholar]
- Du, T.; Jing, X.; Song, S.; Lu, S.; Xu, L.; Tong, X.; Yan, H. Therapeutic Effect of Enteral Nutrition Supplemented with Probiotics in the Treatment of Severe Craniocerebral Injury: A Systematic Review and Meta-Analysis. World Neurosurg. 2020, 139, e553–e571. [Google Scholar] [CrossRef]
- Chandra, R.K. Protein-energy malnutrition and immunological responses. J. Nutr. 1992, 122, 597–600. [Google Scholar] [CrossRef] [PubMed]
- Clifton, G.L.; Robertson, C.S.; Choi, S.C. Assessment of nutritional requirements of head-injured patients. J. Neurosurg. 1986, 64, 895–901. [Google Scholar] [CrossRef]
- Lewis, S.J.; Andersen, H.K.; Thomas, S. Early enteral nutrition within 24 h of intestinal surgery versus later commencement of feeding: A systematic review and meta-analysis. J. Gastrointest. Surg. 2009, 13, 569. [Google Scholar] [CrossRef]
- Aiko, S.; Yoshizumi, Y.; Sugiura, Y.; Matsuyama, T.; Naito, Y.; Matsuzaki, J.; Maehara, T. Beneficial effects of immediate enteral nutrition after esophageal cancer surgery. Surg. Today 2001, 31, 971–978. [Google Scholar] [CrossRef] [PubMed]
- Rich, M.W.; Shah, A.S.; Vinson, J.M.; Freedland, K.E.; Kuru, T.; Sperry, J.C. Iatrogenic congestive heart failure in older adults: Clinical course and prognosis. J. Am. Geriatr. Soc. 1996, 44, 638–643. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.; Walentik, C.; Mantych, G.J.; Sadiq, H.F.; Keenan, W.J.; Noguchi, A. Iatrogenic acute hypermagnesemia after total parenteral nutrition infusion mimicking septic shock syndrome: Two case reports. Pediatrics 2003, 112, e70–e72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Pre-N Group | Post-N Group | p-Value | |
---|---|---|---|
Age, y | mean 28.2, SD 15.1, median 26 | mean 25.2, SD 12.9, median 26.5 | p = 0.414 |
Sex | 18 females, 23 males | 8 females, 16 males | p = 0.409 |
Duration of admission, days | mean 20.9, SD 9.3, median 19.0 | mean 17.19, SD 4.8, median 17.0 | p = 0.394 |
Time after SE, days | mean 5.9, SD 2.5, median 6.0 | mean 5.5, SD 1.6, median 6.0 | p = 0.963 |
Minor complications | 2 wound infections, 1 mild meningitis | 0 | p = 0.290 |
Surgery (pre-N group:post-N group) | p = 0.705 | ||
Temporal focus resection | 20 | 13 | |
Frontal focus resection | 13 | 7 | |
Occipital focus resection | 1 | 1 | |
Corpus callosotomy | 3 | 0 | |
Posterior quadrant disconnection | 3 | 2 | |
Hemispherotomy | 0 | 1 | |
Frontal + temporal focus resection | 1 | 0 |
Outcomes | Pre-N Group | Post-N Group | p-Value |
---|---|---|---|
Total food intake | 7 to 86% (mean 43, SD 21, median 39) | 20 to 95% (mean 58, SD 24, median 58) | p = 0.015 * |
Time to the maximum intake | 2.5 to 50 (mean 17.2, SD 11.1, median 14.3) | 9.2 to 100 (mean 27.3, SD 24.6, median 20.0) | p = 0.040 * |
Maintenance rate | 8 to 100% (mean 92, SD 17, median 100) | 68 to 100% (mean 97, SD 9, median 100) | p = 0.477 |
Total number of days of admission | 10 to 49 days (mean 21, SD 9.3, median 19) | 10 to 29 days (mean 18, SD 4.8, median 17) | p = 0.394 |
Total infusion amount | 5500 to 34,000 mL (mean 14,585, SD 6029, median 14,500) | 4000 to 28,000 mL (mean 10,833, SD 5782, median 9750) | p = 0.006 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suzumura, R.; Fujimoto, A.; Sato, K.; Baba, S.; Kubota, S.; Itoh, S.; Shibamoto, I.; Enoki, H.; Okanishi, T. Nutritional Intervention Facilitates Food Intake after Epilepsy Surgery. Brain Sci. 2021, 11, 514. https://doi.org/10.3390/brainsci11040514
Suzumura R, Fujimoto A, Sato K, Baba S, Kubota S, Itoh S, Shibamoto I, Enoki H, Okanishi T. Nutritional Intervention Facilitates Food Intake after Epilepsy Surgery. Brain Sciences. 2021; 11(4):514. https://doi.org/10.3390/brainsci11040514
Chicago/Turabian StyleSuzumura, Rika, Ayataka Fujimoto, Keishiro Sato, Shimpei Baba, Satoko Kubota, Sayuri Itoh, Isamu Shibamoto, Hideo Enoki, and Tohru Okanishi. 2021. "Nutritional Intervention Facilitates Food Intake after Epilepsy Surgery" Brain Sciences 11, no. 4: 514. https://doi.org/10.3390/brainsci11040514
APA StyleSuzumura, R., Fujimoto, A., Sato, K., Baba, S., Kubota, S., Itoh, S., Shibamoto, I., Enoki, H., & Okanishi, T. (2021). Nutritional Intervention Facilitates Food Intake after Epilepsy Surgery. Brain Sciences, 11(4), 514. https://doi.org/10.3390/brainsci11040514