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Abstract: Single-unit recordings in the brain of behaving human subjects provide a unique oppor-
tunity to advance our understanding of neural mechanisms of cognition. These recordings are
exclusively performed in medical centers during diagnostic or therapeutic procedures. The presence
of medical instruments along with other aspects of the hospital environment limit the control of
electrical noise compared to animal laboratory environments. Here, we highlight the problem of
an increased occurrence of simultaneous spike events on different recording channels in human
single-unit recordings. Most of these simultaneous events were detected in clusters previously
labeled as artifacts and showed similar waveforms. These events may result from common external
noise sources or from different micro-electrodes recording activity from the same neuron. To address
the problem of duplicate recorded events, we introduce an open-source algorithm to identify these
artificial spike events based on their synchronicity and waveform similarity. Applying our method to
a comprehensive dataset of human single-unit recordings, we demonstrate that our algorithm can
substantially increase the data quality of these recordings. Given our findings, we argue that future
studies of single-unit activity recorded under noisy conditions should employ algorithms of this kind
to improve data quality.

Keywords: human single-unit recordings; artifact removal; spike sorting

1. Introduction

The opportunity to record from single neurons in the brain of behaving human
subjects increasingly contributes to the advances of cognitive and systems neuroscience.
These recordings allow researchers to investigate complex brain functions, such as percep-
tion [1–9], memory [10–14], emotion [15,16], or decision making [17,18].

In these studies, humans are implanted with intracranial electrodes solely for medical
purposes, such as the identification of the seizure onset zone in patients with pharma-
cologically intractable epilepsy [19], the treatment of movement disorders [20,21], or the
management of treatment-resistant depression [22]. In some medical centers, it is currently
possible to record the activity of single neurons from these patients while performing
cognitive experiments. As the opportunity to perform such experiments is exceedingly
rare, it is imperative that researchers optimize the quality of the recorded data. In a clinical
setting, there are many different external sources of noise, such as medical instruments
close to the patient, and only limited possibilities to control the setting [23]. The signal
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quality can be increased during the recordings by eliminating local noise sources, as well
as after the recording by detecting artifacts using advanced spike-sorting algorithms. In
animal studies, the development of polytrodes has increased the signal-to-noise ratio and
thereby the reliability of single-unit recordings [24–26]. Since polytrodes have not yet been
accredited for use in humans, most medical centers currently use microwire bundles, which
have a considerably lower signal-to-noise ratio. To take full advantage of these datasets, it
is essential that researchers identify as many artifacts and sources of noise as possible in
microwire recordings.

Despite the limitations mentioned above, various advances in electrophysiologi-
cal technology have led to a rapid increase in the total number of neurons recorded
in a given experiment. To deal with this increasing amount of data, automated spike-
sorting algorithms have become crucial to efficiently extract and cluster the neuronal spike
events. In the past two decades, numerous spike-sorting algorithms have been developed
(e.g., [26–44]) with explicit focus on the reliability of extracted units and the quality of their
separation. Some automated sorting algorithms try to increase data quality by using differ-
ent criteria to detect artificial events (e.g., [27–35]). However, even algorithms adjusted to
human single-unit recordings include only elementary methods for the identification and
removal of artificial events [27–29,41]. An important and commonly overlooked artifact
is the recording of spike events simultaneously in multiple channels. So far, no method
has been developed to address this issue in human microwire recordings. We therefore
propose a new method for detecting events occurring simultaneously in multiple channels
with similar features. We present our method as an open-source and freely available MAT-
LAB module that allows researchers to further improve the results of spike sorting from
existing cluster algorithms (Combinato Spike Sorting [29]; Wave_clus [27,41]) by removing
duplicate spike events.

1.1. Motivation

Recording single units in humans entails a clinical setting and thus a noisy environ-
ment from which it is impossible to eliminate all sources of artifacts. In order to optimize
the data quality and unit yield, it is crucial to distinguish neural spike events from artificial
spike events. Below we discuss prominent sources of noise and the characteristics of these
artificial events.

Often, technical aspects of the recording set-up itself can lead to artificial spike events,
such as electrical interference, head and cable movements, or broken wires [23]. All of
these technical issues originate from non-neural sources and can produce artifacts that may
be recorded on several channels simultaneously.

Additionally, duplicate spike events can also originate from physiological sources. For
arrays [45], or bundles of microwires, individual micro-electrodes can end up rather close
to one another. Since their individual recording volumes can overlap, the same unit can be
recorded on different channels [46,47]. Another potential physiological cause of duplicate
spike events is a biphasic shape of the signal that is extracted from the same channel
exceeding the positive and negative extraction thresholds [31,33,47]. Moreover, a spike
event may be recorded on a reference wire and thus appear inverted on multiple channels
referenced against this wire [23]. Complicating the matter, physiological coincident spikes
may also occur naturally as a reflection of temporal coding in local neuronal networks [48].
Therefore, it is crucial to distinguish between artificial and physiological or pathological
coincident spike events.

1.1.1. Artifact Detection Methods

In extracellular recordings of action potentials (‘spikes’), various approaches have
been used to identify artificial spike events. Most of these approaches can be classified into
the following categories:
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1. Artifact detection based on spike shape

As we have a fairly good understanding of the spike shapes of physiological action
potentials [49], the shape of a spike event can provide information on its origin. For
example, artificial spike events produced by electrical interference often exhibit a sinu-
soidal shape [29]. Furthermore, artificial events exhibiting an unphysiologically high
amplitude [29,31] can be easily detected.

2. Artifact detection based on spike timing

The time course of spike events in a potential unit appearing as a cluster in a spike-
sorting algorithm can provide further indications of its origin. For instance, if this cluster
contains a high proportion of inter-spike intervals below the physiological refractory period,
then these spikes cannot originate from one single unit but instead must be contributions
by other units’ activity or by artifacts [29]. A different approach is to analyze simultaneous
spike events across different channels. Several spike-sorting algorithms identify redundant
clusters (e.g., [31,33]) and remove noise outliers in the frequency domain depending on the
spatial resolution of electrodes in an array [33].

3. Manual artifact detection based on spike shape and timing

Experienced operators can combine spike-shape and spike-timing information to label
clusters as artifacts. However, manual evaluation of a large number of clusters is rather
time-consuming, especially for a large number of channels, and typically limited to a
given recording channel. Effects and interactions occurring simultaneously in different
channels are therefore typically disregarded. Recently, there have also been approaches
using deep-learning classifiers to automate this process [34,40,43,44,50].

If the spatial configuration of electrodes in polytrodes or arrays is known, then this
information can be used to differentiate more reliably between local neural spike events
and artifacts [26,30,31,33,35,39,40,42]. Due to the flexible nature of microwire bundles, it is
usually not possible to infer their precise spatial configuration.

1.1.2. Characteristics of Coincident Spike Events in Human Single-Unit Recordings

The previous section has demonstrated the need for effective strategies to detect
duplicate spike events. To develop our methods, we first looked at the characteristics of
simultaneous spike events with respect to their temporal synchrony and shape.

Close examination of our recorded data revealed that simultaneous spike events in
different channels often exhibit very similar event shapes (examples in Figures 1A and 2B).
Interestingly, this observation was made for simultaneous spike events within the same
wire bundle (spike events marked in blue in Figure 1A) as well as spike events occurring in
different wire bundles (spike events marked in red in Figure 1A). Furthermore, we found
that spike events of the real data occurring within a small time bin show a significantly
higher proportion of similar event shapes than spike events from different hemispheres
at different time bins (p = 3.3 × 10−7, Wilcoxon signed-rank test, ∆t = 50 µs, median of
real population against surrogate population per session, see Section 2.3.2.). This finding
demonstrates that simultaneous spike events exhibit more similar shapes.

Regarding the temporal synchrony, Figure 1B illustrates an example of binned event
counts in a 15 s data segment pooled across all 80 recording channels. A substantial fraction
of the 0.5 ms bins contain two or more spikes. A large proportion of these bins exceed the
red line, indicating the mean + 5 standard deviations (σ) of the spike-count-distribution
of the original data. It is worth noting that these bins show a temporal clustering (see,
e.g., Figure 1B, original data around t = 7 s) that likely corresponds to time intervals of
poor data quality (e.g., movement artifacts). In order to estimate the rate of coincident
spike events, we generated a time-shifted surrogate based on the original data by circularly
shifting all extracted spike events, independently for each cluster, by some random offset.
This procedure eliminates all effects of simultaneity in the dataset [51]. In this example,
none of the bin counts in the time-shifted surrogate exceed the 5σ threshold of the original
data, demonstrating that simultaneous spike events occur above chance.
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ing a considerable number of bins with 5 and more spikes. The red curve shows the distribution for time-shifted surrogate 
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Figure 1. Characteristics of duplicate spike events in human microwire recordings. (A) Raster plot of units recorded from
5 microwires located in the right amygdala (RA) and the left posterior hippocampus (LPH). Red and blue lines indicate
the timing of simultaneous spike-event shapes drawn next to the raster plot. The three red-shaded spike events occurred
simultaneously across bundles while the three blue-shaded events occurred within the same bundle (left hippocampus);
(B) Binned spike counts of a typical 15 s segment of data. Within each 0.5 ms time bin, the number of spike events across all
80 recording channels was counted. The red dotted horizontal line indicates the mean plus 5 standard deviations (σ) of all
bin counts. A substantial fraction of time bins exceeds this 5σ-threshold, indicating a high proportion of simultaneous spike
events. The lower panel displays a 15 s segment from the same recording session based on randomly circular time-shifted
data for each cluster. In this time-shifted surrogate data, no bin count exceeded the 5σ-threshold of the original data.
The y-axis is limited to 10 for better visualization; (C) Distribution of bins filled with different numbers of spike events
across all 51 recording sessions. The blue curve shows the proportion of bins in the original recorded data, indicating a
considerable number of bins with 5 and more spikes. The red curve shows the distribution for time-shifted surrogate data
of all 51 recordings (1000 permutations, Wilcoxon signed-rank test, N = 51, p < 0.0036); (D) Distribution of spike-event types
in filled bins. Spike events in bins with several spikes most frequently originated from artifact clusters. However, some of
these events were also found in SU (single units) and MU (multi-unit) clusters (x-axis limited to 14 for which more than half
of recordings contributed with at least 10 bins).

In order to investigate whether this effect generalizes across recording sessions, we
next calculated the frequency of simultaneous spike events across all recorded data used
in this study. For this purpose, we counted the number of spike events in each bin across
all recordings. Figure 1C shows the abundance of bins filled with different numbers of
spike events. Applying the same procedure to 1000 time-shifted surrogate data yielded
a distribution for the abundance of bins filled with different numbers of spike events
without temporal synchronization of the recorded clusters. For this surrogate dataset, the
proportion of these bins decreased rapidly compared to the original dataset. This reveals
that our recorded data contain a significantly increased number of simultaneous spike
events (see Figure 1C).

In order to better understand from where the spike events in these bins originate, we
manually classified clusters based on our spike-sorting algorithm [29] into single units
(SU), multi-units (MU), and artifacts (Art) (for details, see Section 2.1.). Figure 1D illustrates
the mean proportion of cluster types contributing to the spike events in bins with two or
more spikes, averaged across recordings. Time bins with high event counts contain more
artifact spikes than bins that are filled with only two simultaneous events. This indicates
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that spike events occurring simultaneously in numerous channels most likely belong to
artifact clusters.

Using these characteristics of spike events in real data, in the following section, we
present our algorithm to detect duplicate artificial events.

2. Materials and Methods
2.1. Data and Materials

In order to develop and optimize our algorithm, we used a dataset of 51 record-
ing sessions from 13 patients with pharmacological intractable epilepsy (for details see
Table 1). For diagnostic reasons, patients were implanted bilaterally in the medial tempo-
ral lobe (MTL) with 9–12 Behnke-Fried depth electrodes (AD-TECH Medical Instrument
Corp., Racine, WI, USA). The exact locations of depth electrodes were exclusively defined
for clinical diagnostics. Each electrode contained eight high-impedance and one low-
impedance platinum-iridium wires spreading out at the end of its tip. Using these eight
high-impedance micro-contacts, we were able to record action potentials from single units.
The ninth low-impedance wire was used as a recording reference. The data were collected
with an ATLAS recording system (Neuralynx Inc., Bozeman, MT, USA). All data were ref-
erentially recorded, filtered at a frequency range of 0.1–9000 Hz, and sampled at 32,768 Hz.
We analyzed 51 recording sessions lasting about 25 min each (mean: 25.6 min, SD: 3.6 min),
that were used to screen for visually responsive units [6,8]. After data collection, spike
events were automatically extracted, sorted, and manually evaluated using the Combinato
software package [29] (see Appendix A, Table A1). Spike events with positive and negative
deflections in Combinato were sorted separately using the default parameters from [29].
Each extracted event shape was sampled by 64 data points spanning a time window of 2 ms.
Using the Combinato software package, the sorted clusters were automatically labeled
as artifacts or multi-units. During manual evaluation the automated sorting results were
checked and optimized, and units were classified as single units, multi-units, or artifacts
based on their firing characteristics and spike shapes (see e.g., [46,47]).

Units showing characteristic peaks in their inter-spike interval (ISI) histograms stem-
ming from electrical sources (e.g., 50 Hz line noise resulting in peaks at multiples of 20 ms),
or having an unphysiological spike-event shape, that were not automatically labeled as
artifacts, were merged together with all other artifacts into one artifact cluster. To label a
cluster as a single unit, several conditions had to be fulfilled: a physiological waveform
in the density plot with a well-defined shape and a steep increase; an asymmetrical spike-
event shape with respect to the maximum of the mean cluster shape, and an ISI < 3 ms for
less than 5% of all spike events in a cluster. Units that were not labeled as artifacts and did
not meet all of the above criteria were labeled as multi-units.

Table 1. Overview of recorded sessions used to optimize the DER algorithm.

Patients Recording Sessions SU MU Art #Events

13 51 2217 2212 4078 22,341,989

As we are specifically interested in artifacts during human single-unit recordings in a
clinical setting, in the following regard, these data serve as a gold-standard since there is
no ground truth data available for these types of recordings.

2.2. Structure of the Duplicate Event Removal Algorithm

To identify spike events that are spuriously recorded or detected multiple times, we
implemented the duplicate event removal algorithm (DER algorithm) consisting of three
parts (see Figure 2):
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• Part I. Detect simultaneous spike events between different bundles.
• Part II. Identify duplicate detected biphasic spike events on the same channel and

simultaneous spike events on different channels within the same bundle.
• Part III. Detect duplicate spike events based on unphysiologically high zero-lag cross-

correlation between clusters.

The open-source code of the DER algorithm and further instructions are accessible at
GitHub (https://github.com/Geaht/DER, accessed on 20 May 2021).

2.3. Part I—Detection of Artifacts across Bundles

Sources of noise originating from the environment and the clinical setup are often
recorded on several bundles simultaneously. As these artifacts can lead to spike events
that look very similar to action potentials of neurons (see Figures 1A and 2C), they can be
extracted by automatic spike-sorting algorithms but may not be labeled as artifacts. Part I
of the DER algorithm identifies these artifacts by detecting spike events of similar shape
recorded in different bundles at the same time.

2.3.1. Detection of Simultaneous Artifacts

If more than two spike events (nosim) appeared within a time window of ∆tmax = 50 µs
(see Section 2.3.2) in two or more different bundles, we compared the shape of each pair
of spike events. We extracted the features of each spike-event shape with a five-level
discrete wavelet decomposition (Haar wavelets). Next, we reduced the dimensionality of
the feature space to the 10 dimensions in which the distribution of the wavelet coefficients
differed most strongly from a normal distribution (quantified with a Kolmogorov–Smirnov
test statistic). This feature extraction of spike-event shapes is motivated by the feature
extraction used by the spike-sorting algorithms Wave_clus and Combinato [27,29]. For each
spike-event pair, the Euclidean distance of their selected wavelet coefficients was calculated
as a measure of shape similarity. If the median Euclidean distance of all combinations of
events within this time window was below the threshold of dthr = 14.6 (see Section 2.3.2
and Table 4), all spike events in this time bin were labeled as artifacts, since only these
spike events are likely to fulfill both criteria.

2.3.2. Definition of Thresholds of the Euclidean Distance and the Time Window

In Part I and Part II of the algorithm, two thresholds are needed to define spike events
appearing simultaneously with a similar shape: a maximum difference in occurrence
time (as a measure of simultaneity) and a maximum Euclidean distance (representing the
similarity of two event shapes).

The best proxy for actual duplicate artifacts in our data are spike events occurring
simultaneously in different bundles that have been manually labeled as artifacts during
the clustering process. To define a threshold for the similarity of coincident artificial spike
events in different bundles, we compared two populations of previously labeled artifacts.

From these artifacts we randomly chose 10,000 pairs of spike events per recording
session from different hemispheres that did not occur within a time window of ∆t (surrogate
population) and 10,000 spike-event pairs from different bundles that did occur within this
time window (real population). The corresponding two distributions of Euclidean distances
(see Figure 3A) were used to calculate the ROC (receiver operating characteristics) curve
shown in Figure 3B. Going in steps of 0.1 from zero to the highest Euclidean distance of
both populations, each point in the ROC curve was calculated by counting the number of
true and false positives as well as true and false negatives. The point on the ROC curve
with minimal distance from the point (0,1) was chosen as the operating point (see [52]),
representing the best threshold (dthr) to separate the two distributions.

https://github.com/Geaht/DER
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Figure 2. Schematic and illustrative examples for the three parts of the DER algorithm for the detection of spikes events
that were recorded or detected multiple times. (A) Schematic flow chart of the algorithm. (B) In Part I we compare all
combinations of the shapes of spike events appearing in a time window of 50 µs on different bundles. An example of
event shapes recorded in different bundles is shown (red: left posterior hippocampus (LPH), green: left parahippocampal
cortex (LPHC)). (C,D) In Part II, we first identify biphasic events that are detected with positive and negative polarity on
the same channel within a time window of 650 µs. Panel (C) illustrates an example of biphasic event shapes (LPHC 5).
Furthermore, similar events within the same wire bundle are identified if they appear within a time window of 50 µs and
have highly similar shapes (example in (D) from LPHC). In Part III cross-correlograms are calculated for each combination
of two clusters. If the central bin exceeds a certain threshold, the spike events within the central bin are considered to be
duplicate. Subfigure (E) shows an example of the cross-correlograms of two single units that were recorded on two different
microwires in the left amygdala. Both units have a large fraction of simultaneous spikes and a similar mean spike shape
(shown in red and blue). For each part of our algorithm, we define criteria to determine which event to retain and which to
label as artifacts (see also Tables 2 and 3).
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Figure 3. Selection of optimized parameters for the DER algorithm based on the recorded data. (A) Distributions of
Euclidean distances between simultaneous artifact-cluster events (red) and between non-simultaneous artifact-cluster
events randomly drawn from different hemispheres (blue). These distributions were used to determine the threshold of
event shape similarity in Part I of the algorithm. (B) ROC curve for separating the two distributions of the Euclidean
distances in Part I. The operating point on the ROC curve (closest point to the upper left corner) defines the threshold of the
Euclidean distance (d = 14.6, marked by the red dot). (C) Equivalent distributions for joint single- and multi-unit clusters are
plotted to define a threshold of the Euclidean distance used in Part II (detection within the same bundle). (D) The resulting
ROC curve yields a threshold of d = 8.4 for Part II (marked by the red dot). (E) Distributions of z-values of the central bin in
the cross-correlograms between single-unit clusters from different hemispheres (red) and artifact clusters within the same
bundle (blue). The corresponding ROC curve is shown in (F), including operating points for different thresholds of the
central z-value of the cross-correlograms. (G) Matrix of central z-values for all cross-correlograms from a recording session
with 80 microwires (left (L) or right (R) hemisphere: amygdala (A), anterior hippocampus (AH), entorhinal cortex (EC),
posterior hippocampus (PH), parahippocampal cortex (PHC)). Large z-values (red) indicate clusters with a large number
of simultaneous spikes; (H) Matrix of central z-values for the same recording after removal of all spike events that were
detected in Part III of the algorithm (zthr = 5). Note that isolated z-values above 5 can result from changes in the background
distributions of spike counts in the cross-correlograms. (I) Proportion of spikes detected in Part III of the algorithm for
different cluster types (SU, MU, and artifacts), averaged across all 51 recording sessions, for different threshold values zthr.
Error bars indicate standard error of the mean.
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To define the threshold for the maximum time lag of spike events considered as
simultaneous, we used these two populations of artifacts and calculated for different time
windows (32 µs–1 ms) the operating point in the ROC curve and the area under the ROC
curve (AUC) (see Figure A1). The best separation of these two populations was achieved
by maximizing the AUC leading to small time windows, especially ∆tmax = 32 µs and
∆tmax = 50 µs. As there was virtually no difference in AUC for these two thresholds, we
chose ∆tmax = 50 µs as detection threshold in time, yielding a threshold of the Euclidean
distance of dthr = 14.6 (Table 4).

2.4. Part II—Duplicate Events in the Same Bundle

Part II of our detection algorithm focuses on neuronal spike events that were extracted
multiple times on the same channel or recorded simultaneously on different wires in the
same bundle.

2.4.1. Same Channel

The positive and negative amplitude of biphasic spikes can cross the positive and
negative extraction thresholds leading to the same spike event being extracted twice with
opposite polarity. Previous studies [53,54] have distinguished putative interneurons from
principal cells based on spike duration, using a classification threshold of 650 µs from a
spike-shape’s peak to its trough (see all parameters in Table 4). As interneurons tend to
have a biphasic spike shape, we used this time window to detect duplicate spike events
of biphasic shapes. If two spike events on the same channel are detected within that time
window and have opposite signs in their amplitudes, they are labeled as duplicate spikes.
To decide which of the two spike events to retain and which to label as artificial, we use the
following criteria based on the existing unit classification:

• If one of the two duplicate events was labeled as an artifact by an automated clustering
algorithm or by manual reclustering, this event is labeled as artificial (Table 2, Case 1).

• If the two events have different unit labels (i.e., one is a single- and the other a multi-
unit), we keep the spike event from the single-unit and mark the other one as an
artifact (Table 2, Case 3).

• If both spike events are of the same unit class (both single- or multi-unit), we calculate
the signal-to-noise ratio (SNR, peak amplitude/spike extraction threshold) of each
event and keep the event corresponding to the higher value (Table 2, Case 4). For
further details about the thresholds of spike extraction, see [27,29].

Table 2. Criteria for labelling two coincident spikes events in Part II.

Case Cluster Combination Spike Events Labelled as Artifacts

1 pair of artifact and (SU or MU) within
the same channel spike event in the artifact cluster

2 pair of artifact and (SU or MU) both coincident spike events

3 SU and MU in the same bundle coincident spikes in the MU

4 two SU or two MU in the same bundle coincident spikes in the lower SNR

2.4.2. Same Bundle

In the next step, we investigated physiological and non-physiological duplicate
recorded spike events within the same bundle.

To detect spike events recorded simultaneously in different channels of the same
bundle, we looked again for spike events that appeared within a short time interval.
For any pair of events fulfilling this criterion, we compared their shape (the Euclidean
distance for each pair) as described in Section 2.3.1. To compare event shapes within the
same bundle, we took into account that these spike events might be caused by neural
action potentials recorded on more than one microwire. One of the criteria to label a unit
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as single- or multi-unit is its cluster shape. If the cluster shape is in accordance with a
physiologically expected signal [49], this indicates a neuronal origin. Consequently, single-
and multi-units have a smaller variety of cluster shapes than artifacts whose origin may
vary (see Section 1.1). Therefore, we calculated the thresholds for the detection of duplicate
spike events in the same bundle according to Section 2.3.2, but using two populations
of SU and MU (SU/MU within the same bundle compared to SU/MU from different
hemispheres). This led to the same maximum time difference as in Part I (∆tmax = 50 µs)
for two spike events to be considered as duplicate detections, and a resulting threshold
for their Euclidean distance of dthr = 8.4 (see Figure 3C,D, Figure A1 and Table 4). If the
compared spike events fulfilled these criteria, we decided which spike event to retain using
similar criteria as in Section 2.4.1 (see Table 2, Case 2–4).

2.5. Part III—Cross-Correlations

A standard method for assessing relationships in the firing patterns of two recorded
units is provided by analyzing their cross-correlation (e.g., [55]). In our dataset we identified
multiple cross-correlations exhibiting a prominent increase in the central time bin of the
cross-correlograms (see e.g., Figure 2E). Besides physiological synchronization, these cross-
correlations might originate from simultaneous artifact events on different channels or
from units that are recorded with more than one microwire.

2.5.1. Calculation of all Cross-Correlations

In order to identify potential spurious cross-correlations across all possible pairs
of recorded units, we calculated for each recording session a cross-correlation matrix
C (Ncluster × Ncluster × Ntime-bins). The cross-correlogram of two clusters i and j can be
obtained from C as C(i,j,:). To achieve nearly linear computational scaling with increasing
spike-event counts, our algorithm loops only once through a list of all time-ordered spike
times of a recording session. Each spike is checked for subsequent spikes within a maximal
time lag of the cross-correlation tmax (e.g., 20.25 ms for tbin = 0.5 ms; Nbins = 81; tmax = 1

2
tbin · Nbins). For each spike event detected with a time delay of ∆t < tmax, the count in the
corresponding time bin of C is increased by 1. Since cross-correlations are skew symmetric
(Cij = −Cji), it is sufficient to consider only subsequent spike events and complete the
cross-correlation matrix afterwards. The magnitude of the spike-event counts within the
central time-bin (e.g., from −250 µs to +250 µs) can be assessed by calculating a z-score for
the central bin based on the mean and standard deviation of spike-event counts in all other
time bins of the cross-correlogram. This method yields one z-score for each combination of
recorded clusters (see Figure 3G).

2.5.2. Detection of Suspicious Cross-Correlations

If the spiking of two recorded neurons were independent, the cross-correlogram
would be expected to be flat without an asymmetry or a central peak. However, there are
several physiological and technical reasons that could cause increased simultaneous firing
of two units: A possible physiological reason for increased simultaneous firing are two
neurons receiving a direct synaptic input from a third neuron (e.g., [55]). An asymmetry in
the cross-correlogram can be caused by a direct or indirect synaptic connection between the
two neurons [56]. Moreover, sensory inputs may also cause increased simultaneous firing
of different neurons, even without direct synaptic connections [57]. Beside physiological
reasons, there are several technical reasons that can also lead to an increased number of
simultaneous spike events (see Section 1.1). This can result in a high z-score of the central
bin of the cross-correlogram.

In order to identify spike events originating from one of the sources described above,
we propose the following procedure: First, identify cluster pairs that exceed a given
z-threshold for the spike-event count in the central bin (zcentral > 5, see Section 2.5.3).
Depending on the cluster pair combination, spike events within the central bin of the
cross-correlogram are labeled according to the scheme in Table 3. Spike events labeled this
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way might be considered for later deletion as they are likely caused by artifacts (Cases 1 &
2) or represent duplicate recordings of the same neuronal spike events (Cases 3 & 4).

Table 3. Criteria for labelling coincident spikes events in Part III.

Case Cluster Combination Spike Events Labelled as Artifacts

1 pair of artifact and (SU or MU) all coincident spike events

2 two clusters in different
wire bundles all coincident spikes

3 SU and MU in the same bundle coincident spikes in the MU

4 two SU or two MU
in the same bundle

coincident spikes in the
lower SNR cluster

2.5.3. Threshold for the Central Bin of the Cross-Correlogram

For the method described above, a threshold zthr must be determined. Coincident
spike events in two given clusters which exceed this threshold are considered artificial
or duplicate. Such a threshold can be derived from our recorded data by using the dis-
tributions of central z-values across different cluster pairs. Artifact clusters within the
same wire bundle were recorded from the same anatomical region and shared the same
processing electronics (wires, connectors, etc.). Therefore, they are expected to contain a
high proportion of coincident spike events. In contrast, single units recorded from different
hemispheres should not contain spurious duplicate spike events. In our dataset, we indeed
found that the central z-values of SU pairs originating from different hemispheres were
significantly smaller than the z-values from pairs of artifact clusters within the same region
(p = 8.9 × 10−16, Wilcoxon signed-rank test of the medians across sessions, NSessions = 51).

We analyzed how well these two distributions (Figure 3E) can be separated by a single
threshold zthr. All counts below this threshold may be considered to belong to the SU pairs,
while all the others are assigned to the artifact pairs. This procedure allowed us to calculate
the number of true and false positive as well as true and false-negative counts for different
threshold values zthr. The resulting sensitivity and specificity values are plotted as a ROC
curve (Figure 3F). The minimal distance to the point (0,1) is given by the operating point at
z = 3 (as used in Figure 3B,D, see e.g., [52]). This indicates that cluster pairs with a central
z-value above 3 in the cross-correlogram resemble pairs of artifact clusters within the same
wire bundle rather than independent units. To avoid false positive detections of artifacts
(i.e., spuriously discarding neuronal spikes as artifacts), we chose a more conservative
threshold of zthr = 5 for our algorithm (Table 4). Spike events occurring within this central
bin of the cross-correlogram are labeled following the description in Table 3.

For further validation, we analyzed the type of events detected in Part III of our
algorithm by identifying from which type of cluster (SU/MU/artifact—as determined by
the spike-sorting procedure) they originated. Figure 3I displays the percentage of artifacts,
MU, and SU that were detected, averaged across all 51 recording sessions, using different
thresholds for the central z-value. For instance, for z = 5, about 35% of all manually
clustered artifact events are detected by Part III of our algorithm, while only 13% of the
MU and just 9% of the SU events were labeled as duplicate spike events. Remarkably, the
percentage of artifacts labeled by the algorithm strongly decreases for higher z thresholds
while the percentage of labeled MU and SU decreases only marginally. These observations
demonstrate that most of the detected spike events correspond to artificial events.
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Table 4. Default parameters of the DER algorithm.

Part Parameter Threshold Value

I
min. number of simultaneous spike events nosim 3

max. time difference ∆t 50 µs
max. Euclidean distance of spike-event shapes dthr 14.6

II
max. time difference in the same channel ∆tsame channel 650 µs
max. time difference in the same bundle ∆tsame bundle 50 µs

max. Euclidean distance of spike-event shapes dthr 8.4

III
width of time bins in the cross-correlograms tbin 500 µs

max. z-value of central bin count in cross-correlograms zthr 5

3. Results

In this section, we report the performance of our algorithm on real data. First, we
present two examples of data that are contaminated by duplicate spike events and demon-
strate the improvement achieved by the DER algorithm. We then illustrate the proportions
of detected duplicate spike events for the different types of clusters as well as for the
different parts of the DER algorithm.

3.1. Examples of Improved Data Quality

Figure 4A shows three raster plots of the same 30 s data segment for all clusters
(including clusters labeled manually as artifacts) from two wire bundles in the left posterior
hippocampus and entorhinal cortex. The left panel of this figure shows the original data
before the DER algorithm. Note the simultaneous spike events on every wire, occurring
approximately seven seconds after the beginning of the recording. These spike events are
likely caused by external noise sources as they appear on different bundles in parallel. The
middle panel illustrates spike events marked by the different parts of the DER algorithm.
The suspicious spike events around the seventh second in the raster (and several others)
are detected by the algorithm. To illustrate the resulting raster plot we show in the right
panel all remaining spike events. A comparison of the raster plots before (left) and after
(right) duplicate event removal indicates that the majority of suspicious synchronous spike
events were removed, and the data quality was enhanced.

A second example of the improvement in data quality is shown in Figure 4B. We
noticed on several occasions that units of similar shape from different microwires within
the same wire bundle responded to the same stimuli [2]. Illustrating this phenomenon,
Figure 4B (upper two panels; spike events are marked according to the different parts
of the DER algorithm using the same colors as in Figure 4A) shows two single units
recorded in the right posterior hippocampus (RPH2 and RPH4) within the same bundle,
but on different microwires. The first unit (RPH2) shows a clear response to the image
of the German comedian Otto Waalkes (stimulus 2). The second unit (RPH4) primarily
responds to the German singer Helene Fischer (stimulus 1), but also increases its firing-rate
in response to Otto Waalkes. Note that the spikes of the second unit occur at similar time
points as the spikes of the first unit during presentation of the second stimulus. This
overlap in the response behavior and the similarity of their cluster shapes (see density plots
in Figure 4B) hint towards this being a duplicate recording of neuronal spike events.

After applying the DER algorithm to these data, most spike events during the response
period in the second unit are detected as duplicate events and are therefore removed (see
red framed raster in Figure 4B), while both primary responses remain unchanged. This
example highlights the importance of detecting duplicate spike events when investigating
the response behavior (e.g., selectivity) of concept cells. Furthermore, statistics in single-
unit studies are commonly performed across the population of all recorded units, and
single units are often analyzed independently (e.g., [1–12,15–18]).
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Our algorithm systematically reduces dependencies across recorded units which may
originate from duplicate detected spike events.

3.2. Overall Performance of the DER Algorithm

To assess the overall performance of the DER algorithm, we applied it to the complete
dataset of 51 recording sessions and analyzed how many spike events were detected by
each part of the algorithm. We further separated the detected spike events based on the
type of cluster to which they belonged (SU, MU, artifacts).

Altogether, our algorithm marked more than a fifth of all recorded spike events
(22.05%) as duplicate and/or artificial (Figure 4C and Table 5). This proportion is rather
high since we included all artifact clusters as well as spike detection with positive and
negative deflection. In particular, spike events with negative deflections in Combinato
were significantly more often detected than spike events with positive defections (50.44%
vs. 16.13%, p = 8.9 × 10−16, Wilcoxon signed-rank test across recordings; N = 51).

Interestingly, the detection of biphasic spikes within the same channel (Part II—Same
channel) deleted 6.46% of all spikes, which were almost exclusively (98.25%) found in
artifact clusters, with only 0.55% in SU and 1.20% in multi-unit clusters. This indicates that
a high portion of artifacts exhibit a biphasic shape (e.g., a sine-wave-like shape).

Moreover, our algorithm was able to detect more than half (50.77%) of all the events
in clusters that were manually labeled as artifacts. The DER algorithm found a smaller but
relevant proportion of duplicate spikes in clusters marked as single units (10.50%).

As a control, we analyzed the performance of our algorithm in the same dataset
with clusters automatically labeled by Combinato and without manual evaluation. In this
dataset, which consisted only of multi-units and artifacts, we detected 19.84% of all spike
events (see also Figure A2). Most of the detected spike events in the automatically labeled
clusters were also detected in the manually labeled dataset (95.91%). The small difference in
the detected spike events affected mostly multi-units (80.32%) in the automatically labeled
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dataset. This difference was caused by the criterion to label spike events depending on
unit classes (Tables 2 and 3) since the number of clusters labeled as artifacts is lower in
the automatically clustered data. This demonstrates that the DER algorithm is suitable for
manually labeled as well as automatically sorted data. Therefore, the DER algorithm can
be easily integrated in existing fully automated spike-sorting routines.

As the three parts of the algorithm can be run independently on the data, it is possible
that spike events are detected in more than one part. To visualize the interactions, we
created Venn diagrams of detection overlaps, separating the number of detected spike
events into single, multi-units, and artifacts (see Figure 4D). As expected, the highest
fraction of duplicate spike events was identified in clusters manually labeled as an artifact.
While all three parts show an overlap in the detected duplicate spike events, there is
an individual fraction of spike events that is detected within each part, underlining the
importance of each step of the algorithm. Most duplicate spike events were detected based
on the cross-correlations between clusters (Part III). This is the only step of the algorithm
that uses the correlation of clusters across the entire time of recording and can therefore
also identify a different population of duplicate spike events than the other parts that
only compare simultaneous spike events. Note that Part I has a large overlap with the
other two parts. This might be caused by artificial events (e.g., electrical noise) recorded
simultaneously across several bundles which also fulfil the detection criteria of Part II or III.

Table 5. Total percentage of spike events detected within each part of the DER algorithm (percentage
of all extracted 22 341 989 spike events).

Part I Part II Part III

Unit Class Different Bundle Same Channel Same Bundle Cross-Correlation

Artifacts 1.34% 6.35% 2.26% 9.27%
Multi-units 0.94% 0.08% 0.61% 3.45%
Single units 2.08% 0.04% 1.93% 4.30%

3.3. Estimation of False-Positive Rate

In order to obtain an estimate for the false-positive rate of the DER algorithm, we used
three different datasets (manually sorted original data, cluster-wise time-shifted surrogate
data, and simulated data [58]). Figure 5 shows the percentage of detected spike events for
these three datasets separately for different unit classes and for the different parts of the
DER algorithm in which the spike events were detected. Percentages of detected events
within the manually sorted data (original, blue bars) are the same as in Table 5 and are
shown to visualize the comparison to actual false positives.

To estimate the false positive rate, we altered the manually sorted data by shifting
each cluster circularly by a random offset time (cf. Figure 1B). The detected spike events
are shown in red in Figure 5, indicating that the false positive rate is in a range of 0.01%
with the notable exception of biphasic spike events in artifact clusters. This is due to the
merging of artifact clusters in Combinato. Extracting spike events using both a positive
and a negative threshold leads to biphasic spike events being extracted and sorted twice,
but if both belong to an artifact cluster, they are merged into one cluster as there is only one
artifact cluster per channel. Therefore, shifting the data in time by a constant random offset
per cluster will not affect the detection of biphasic artifacts within each channel. All other
comparisons between different clusters in the same channel are affected, which is reflected
by an absolute decrease of 2.3% for artifacts detected by this part of the DER algorithm.

Finally, we estimated the false-positive rate using simulated data [58]. We used 80
individually simulated channels, each containing the activity of 2 to 20 neurons. Single
units were computed using a Poisson distribution with a mean firing rate of 0.1–2 Hz
(randomly selected), whereas the mean firing rate of multi-units was set to 5 Hz. No
artifacts were included in this dataset (70.03% SU & 29.97% MU spike events). The mean
firing rate of these simulated channels was 15.78 Hz. The number of detected spike events
using our DER algorithm is shown in Figure 5 as yellow bars. The resulting percentages
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of false-positive detections are similar to those of the cluster-shifted data except for the
biphasic events and the SU spike events detected by Part III. The simulation included only
positive spike events, leading to zero detections of biphasic events in Part II of the DER
algorithm. The higher fraction of spike events of single-unit clusters detected in Part III is
due to the significantly higher firing rates in the simulated data compared to our original
dataset (15.78 Hz vs. 4.64 Hz on average) and the larger number of SU clusters in the
simulation. This does not affect the detection of multi-units in Part III because of the smaller
fraction of multi-units in the simulated data. Thus, both the time-shifted surrogate data
and the simulated data demonstrate that our algorithm produces a rather low percentage
of false positive detection and thus operates at a rather high specificity.
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As an additional control analysis, we repeated our DER algorithm on several spike
extraction thresholds of Combinato (see Figure A3). Combinato’s standard extraction
threshold of 5 σ seems to be optimal for our data, as the number of detected artifacts using
the DER algorithm is strongly reduced compared to 4 σ, whereas only small changes appear
when we increase the extraction threshold to 6 σ or 7 σ (while losing many low-amplitude
spike events).

The overall results of our algorithm (cf. Figure 4) demonstrate that human single-unit
recordings contain a substantial percentage of duplicate spike events. The DER algorithm
is an effective way to clean these events and increase overall data quality.
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4. Discussion

In this study, we have introduced a method to deal with the problem of coincident
event detections in human single-unit recordings. We have demonstrated that coincident
spike events appear considerably more often in actual recordings than expected based on a
time-shifted surrogate distribution. In human single-unit studies, these duplicate spike
events are typically not accounted for, although their removal represents a way to optimize
data quality.

The clinical environment in which single units are recorded contains numerous sources
of environmental noise. Different approaches can reduce the influence of noise, such as
carefully optimizing every aspect of the setup, or identifying and eliminating sources of
noise before the recording. It has been analyzed how different implantation-, cutting-, and
splicing-techniques may improve data quality [23]. Nevertheless, in a clinical setup it is
impossible to eliminate all disruptive influences. Therefore, identifying artificial influences
in the data is essential. Algorithms used for the extracting, sorting, and clustering of
spike events from neuronal activity recorded by microwire bundles incorporate basic
artifact detection. Nevertheless, most of these algorithms do not take into account that
artificial events often appear simultaneously on different recording channels. Simulated
data are widely used to test spike-sorting algorithms because they allow a comparison of
the resulting unit classification to ground truth [27–29,41]. However, this is not feasible
for the development of our method as the different noise sources in a clinical recording
setup cannot be convincingly simulated. Therefore, we employed a data-driven approach
based on a large and reliable dataset of recordings that were manually reclustered. Due to
the lack of ground truth telling us whether a detected duplicate spike event represents an
artifact or a physiological phenomenon, we employed bootstrap approaches to arrive at
reasonable assumptions.

The proposed DER algorithm primarily detected events in clusters that had been
labeled as artifacts in our dataset. This observation underlines that our method is in
good accordance with human operators. Nevertheless, manual clustering leads to a more
conservative dataset, as an operator tends to label an entire cluster as an artifact if it is
contaminated by many artificial events even though it might contain some neural events as
well. We showed that manual reclustering of automated sorted data is not essential for the
detection of duplicate spike events. This entails the possibility to run the DER algorithm
also before manual reclustering, minimizing such contaminations and complementing
manual evaluation. Alternatively, executing the DER algorithm after manual evaluation
allows the algorithm to use the labeling information for detecting artificial or duplicated
spikes (see also Tables 2 and 3). Therefore, we recommend using the DER algorithm after a
manual evaluation of clusters.

The evaluation of our algorithm on different surrogate datasets (cluster-wise time-
shifted and simulated data) demonstrated a low false-positive rate and thus good specificity
of the DER algorithm. The precise false-positive rate depends on many factors such as
firing rate, number of channels and clusters, percentage of artifacts, etc. The best estimate
for our setup is provided by the time-shifted dataset as it conserves these factors. The
low percentages of resulting false-positive detections further encourages the use of our
algorithm.

Despite the convincing results of the presented method, we recommend that users
take the DER algorithm with a grain of salt. For studies specifically investigating coinci-
dent spikes (e.g., [56,59–61]), the manipulations of the DER algorithm could be counter-
productive. Nevertheless, it is important to note that our algorithm only deletes events
within a rather narrow time window (Parts I, II, and III use 0.05 ms, 0.65 ms, and 0.5 ms,
respectively; see Table 4). This still facilitates to measure certain asymmetries in the firing of
neurons caused by direct synaptic connections [56] as well as common synaptic inputs [62].
The default parameters of the DER algorithm (see Table 4) can be easily adjusted to different
recording setups and research questions. It is currently compatible to the spike-sorting
algorithms Combinato spike sorter [29] and Wave_clus [27,41] and can easily be adjusted
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to others (for further information see https://github.com/Geaht/DER, accessed on 20
May 2021).

All data used in this study were recorded referentially against a low-impedance
reference microwire that was stripped of insulation. Our spike-sorting program Combinato
extracted spike events by independently applying both positive and negative detection
thresholds. This led to biphasic spike events that are extracted twice if both amplitudes
(positive and negative) exceeded the extraction threshold of our spike-sorting algorithm.
In a recording setup that uses a bipolar montage, simultaneous biphasic events are likely
to occur at a much higher frequency as a result of subtracting one channel’s activity from
another. As the search for simultaneous biphasic spike events within a channel of our DER
algorithm (Part II) is calibrated for referential recordings, we recommend adjusting this
part of the algorithm for bipolar montages or skipping it completely. The findings of our
study encourage future systematic investigation into how duplicate events are affected by
wire bundle splicing and cutting. Furthermore, possible influences of different referencing
techniques (e.g., local- vs. bipolar-referencing) should be further analyzed. In order to
further optimize data quality, it is desirable to combine datasets from different recording
sites and identify individual as well as shared noise sources. Including recordings from
different amplifier types may also yield additional insights into the origins of artificial spike
events. Today, the gold standard for single-unit recordings are intracellular recordings.
Combining these with extracellular recordings (e.g., [26,46,47]) and focusing on artificial
events that are recorded only on extracellular electrodes would allow us to further improve
our understanding of noise sources.

We have demonstrated that, for recordings with microwire bundles in human patients,
it is useful to examine possible interactions between different channels. Future single-unit
studies should include similar algorithms to deal with this problem.
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