Brain Connectivity Affecting Gait Function after Unilateral Supratentorial Stroke
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients and Study Design
2.2. Mini-Mental Status Examination
2.3. Functional Ambulation Category
2.4. MRI Acquisition and Preprocessing
2.5. Statistical Analysis
3. Results
3.1. Patients’ Characteristics
3.2. Brain Areas Associated with Functional Ambulation Category
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kyeong, S.; Kim, D.H. Lesion-based structural and functional networks in patients with step length asymmetry after stroke. NeuroRehabilitation 2020. [Google Scholar] [CrossRef]
- Boissoneault, C.; Grimes, T.; Rose, D.K.; Waters, M.F.; Khanna, A.; Datta, S.; Daly, J.J. Innovative long-dose neurorehabilitation for balance and mobility in chronic stroke: A preliminary case series. Brain Sci. 2020, 10, 555. [Google Scholar] [CrossRef] [PubMed]
- Kyeong, S.; Kim, S.M.; Jung, S.; Kim, D.H. Gait pattern analysis and clinical subgroup identification: A retrospective observational study. Medicine 2020, 99, e19555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jang, S.H.; Chang, C.H.; Lee, J.; Kim, C.S.; Seo, J.P.; Yeo, S.S. Functional role of the corticoreticular pathway in chronic stroke patients. Stroke J. Cereb. Circ. 2013, 44, 1099–1104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miyai, I.; Yagura, H.; Hatakenaka, M.; Oda, I.; Konishi, I.; Kubota, K. Longitudinal optical imaging study for locomotor recovery after stroke. Stroke J. Cereb. Circ. 2003, 34, 2866–2870. [Google Scholar] [CrossRef] [PubMed]
- Miyai, I.; Yagura, H.; Oda, I.; Konishi, I.; Eda, H.; Suzuki, T.; Kubota, K. Premotor cortex is involved in restoration of gait in stroke. Ann. Neurol. 2002, 52, 188–194. [Google Scholar] [CrossRef]
- Miyai, I.; Suzuki, T.; Kang, J.; Kubota, K.; Volpe, B.T. Middle cerebral artery stroke that includes the premotor cortex reduces mobility outcome. Stroke J. Cereb. Circ. 1999, 30, 1380–1383. [Google Scholar] [CrossRef] [Green Version]
- Picard, N.; Strick, P.L. Motor areas of the medial wall: A review of their location and functional activation. Cereb. Cortex 1996, 6, 342–353. [Google Scholar] [CrossRef] [Green Version]
- Chieffo, R.; Comi, G.; Leocani, L. Noninvasive neuromodulation in poststroke gait disorders: Rationale, feasibility, and state of the art. Neurorehabilit. Neural Repair 2016, 30, 71–82. [Google Scholar] [CrossRef]
- Ennis, D.B.; Kindlmann, G. Orthogonal tensor invariants and the analysis of diffusion tensor magnetic resonance images. Magn. Reson. Med. 2006, 55, 136–146. [Google Scholar] [CrossRef]
- Folstein, M.F.; Folstein, S.E.; McHugh, P.R. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 1975, 12, 189–198. [Google Scholar] [CrossRef]
- Teasell, R.W.; Foley, N.; Salter, K.; Canadian Stroke, N. Ebrsr: Evidence-Based Review of Stroke Rehabilitation; Heart and Stroke Foundation of Ontario: London, ON, Canada, 2005. [Google Scholar]
- Flandin, G.; Friston, K.J. Analysis of family-wise error rates in statistical parametric mapping using random field theory. Hum. Brain Mapp. 2017. [Google Scholar] [CrossRef]
- Assaf, Y.; Pasternak, O. Diffusion tensor imaging (dti)-based white matter mapping in brain research: A review. J. Mol. Neurosci. 2008, 34, 51–61. [Google Scholar] [CrossRef]
- Kyeong, S.; Kang, H.; Kyeong, S.; Kim, D.H. Differences in brain areas affecting language function after stroke. Stroke J. Cereb. Circ. 2019, 50, 2956–2959. [Google Scholar] [CrossRef] [PubMed]
- Douaud, G.; Jbabdi, S.; Behrens, T.E.; Menke, R.A.; Gass, A.; Monsch, A.U.; Rao, A.; Whitcher, B.; Kindlmann, G.; Matthews, P.M.; et al. Dti measures in crossing-fibre areas: Increased diffusion anisotropy reveals early white matter alteration in mci and mild Alzheimer’s disease. NeuroImage 2011, 55, 880–890. [Google Scholar] [CrossRef]
- Jang, S.H.; Kwon, H.G. Injury of the cortico-ponto-cerebellar tract in a patient with mild traumatic brain injury: A case report. Medicine 2017, 96, e8749. [Google Scholar] [CrossRef] [PubMed]
- Schulz, R.; Frey, B.M.; Koch, P.; Zimerman, M.; Bönstrup, M.; Feldheim, J.; Timmermann, J.E.; Schön, G.; Cheng, B.; Thomalla, G.; et al. Cortico-cerebellar structural connectivity is related to residual motor output in chronic stroke. Cereb. Cortex 2017, 27, 635–645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.; Lee, S.K.; Lee, J.D.; Kim, Y.W.; Kim, D.I. Decreased fractional anisotropy of middle cerebellar peduncle in crossed cerebellar diaschisis: Diffusion-tensor imaging-positron-emission tomography correlation study. AJNR Am. J. Neuroradiol. 2005, 26, 2224–2228. [Google Scholar]
- Marshall, R.S.; Zarahn, E.; Alon, L.; Minzer, B.; Lazar, R.M.; Krakauer, J.W. Early imaging correlates of subsequent motor recovery after stroke. Ann. Neurol. 2009, 65, 596–602. [Google Scholar] [CrossRef]
- Kim, D.H.; Kang, C.S.; Kyeong, S. Robot-assisted gait training promotes brain reorganization after stroke: A randomized controlled pilot study. NeuroRehabilitation 2020, 46, 483–489. [Google Scholar] [CrossRef] [PubMed]
- Luft, A.R.; Forrester, L.; Macko, R.F.; McCombe-Waller, S.; Whitall, J.; Villagra, F.; Hanley, D.F. Brain activation of lower extremity movement in chronically impaired stroke survivors. NeuroImage 2005, 26, 184–194. [Google Scholar] [CrossRef] [PubMed]
- Luft, A.R.; Smith, G.V.; Forrester, L.; Whitall, J.; Macko, R.F.; Hauser, T.K.; Goldberg, A.P.; Hanley, D.F. Comparing brain activation associated with isolated upper and lower limb movement across corresponding joints. Hum. Brain Mapp. 2002, 17, 131–140. [Google Scholar] [CrossRef]
- Martin, J.H.; Radzyner, H.J.; Leonard, M. Neuroanatomy: Text and Atlas; McGraw-Hill: New York, NY, USA, 2012. [Google Scholar]
- Richmond, S.B.; Fling, B.W. Transcallosal control of bilateral actions. Exerc. Sport Sci. Rev. 2019, 47, 251–257. [Google Scholar] [CrossRef]
- Banich, M.T. Interhemispheric Processing: Theoretical Considerations and Empirical Approaches; MIT Press: Cambridge, MA, USA, 1995; pp. 427–450. [Google Scholar]
- Joseph, B. Hemispheric Asymmetry-What’s Right and What’s Left; Harvard University Press: Cambridge, MA, USA, 1993. [Google Scholar]
- Giovannelli, F.; Borgheresi, A.; Balestrieri, F.; Zaccara, G.; Viggiano, M.P.; Cincotta, M.; Ziemann, U. Modulation of interhemispheric inhibition by volitional motor activity: An ipsilateral silent period study. J. Physiol. 2009, 587, 5393–5410. [Google Scholar] [CrossRef] [PubMed]
- Sohn, Y.H.; Jung, H.Y.; Kaelin-Lang, A.; Hallett, M. Excitability of the ipsilateral motor cortex during phasic voluntary hand movement. Exp. Brain Res. 2003, 148, 176–185. [Google Scholar] [CrossRef] [PubMed]
- Domin, M.; Lotze, M. Parcellation of motor cortex-associated regions in the human corpus callosum on the basis of human connectome project data. Brain Struct. Funct. 2019, 224, 1447–1455. [Google Scholar] [CrossRef] [PubMed]
- Bonzano, L.; Tacchino, A.; Roccatagliata, L.; Abbruzzese, G.; Mancardi, G.L.; Bove, M. Callosal contributions to simultaneous bimanual finger movements. J. Neurosci. 2008, 28, 3227–3233. [Google Scholar] [CrossRef] [PubMed]
- Fling, B.W.; Curtze, C.; Horak, F.B. Gait asymmetry in people with parkinson’s disease is linked to reduced integrity of callosal sensorimotor regions. Front. Neurol. 2018, 9, 215. [Google Scholar] [CrossRef] [Green Version]
- Fling, B.W.; Dale, M.L.; Curtze, C.; Smulders, K.; Nutt, J.G.; Horak, F.B. Associations between mobility, cognition and callosal integrity in people with parkinsonism. NeuroImage Clin. 2016, 11, 415–422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variables | Patient |
---|---|
Demographic characteristics | |
Age (years, mean ± SD) | 73.2 ± 7.1 |
Sex (male:female) | 124:3 |
Duration after stroke (day, mean ± SD) | 1076.2 ± 1782.2 |
Mini-Mental Status Examination (mean ± SD) | 25.8 ± 3.4 |
Stroke type (number, %) | |
Anterior cerebral artery infarction | 7 (5.5%) |
Middle cerebral artery infarction | 87 (68.5%) |
Posterior cerebral artery infarction | 5 (3.9%) |
Watershed infarction (between ACA and MCA) | 2 (1.6%) |
Lacunar infarction | 4 (3.2%) |
Basal ganglia hemorrhage | 9 (7.1%) |
Thalamic hemorrhage | 9 (7.1%) |
Frontoparietal hemorrhage | 4 (3.2%) |
Lesioned hemisphere (Rt:Lt) | 61:66 |
Lesion volume (cm3) | 471.6 ± 823.6 |
Functional ambulation category (number, %) | |
0 | 20 (15.8%) |
1 | 13 (10.2%) |
2 | 19 (15.0%) |
3 | 25 (19.7%) |
4 | 34 (26.8%) |
5 | 16 (12.6%) |
Regions | Side | Peak MNI Coordinate | Cluster | Max T | Value | ||
---|---|---|---|---|---|---|---|
x | y | z | Size | ||||
middle cerebellar peduncle | Non-lesioned | 23 | −43 | −38 | 73 | 5.97 | FA |
midbrain | Lesioned | −17 | −15 | −11 | 57 | 6.27 | FA |
midbrain | Non-lesioned | 17 | −21 | −9 | 59 | 6.27 | FA |
anterior corpus callosum | Non-lesioned | 11 | 29 | 0 | 57 | 6.08 | FA |
anterior corpus callosum | Non-lesioned | 12 | 32 | 9 | 62 | 5.71 | FA |
posterior corpus callosum | Lesioned | −20 | −52 | 12 | 51 | 6.07 | FA |
corona radiata | Non-lesioned | 15 | −45 | 14 | 50 | 5.84 | FA |
corona radiata | Non-lesioned | 30 | −13 | 22 | 81 | 6.02 | FA |
corona radiata | Non-lesioned | 13 | 11 | 28 | 32 | 5.66 | FA |
corpus callosum | Lesioned | −10 | −36 | 14 | 23 | 5.80 | MO |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, H.-A.; Kim, D.-H. Brain Connectivity Affecting Gait Function after Unilateral Supratentorial Stroke. Brain Sci. 2021, 11, 870. https://doi.org/10.3390/brainsci11070870
Lee H-A, Kim D-H. Brain Connectivity Affecting Gait Function after Unilateral Supratentorial Stroke. Brain Sciences. 2021; 11(7):870. https://doi.org/10.3390/brainsci11070870
Chicago/Turabian StyleLee, Hyun-Ah, and Dae-Hyun Kim. 2021. "Brain Connectivity Affecting Gait Function after Unilateral Supratentorial Stroke" Brain Sciences 11, no. 7: 870. https://doi.org/10.3390/brainsci11070870
APA StyleLee, H. -A., & Kim, D. -H. (2021). Brain Connectivity Affecting Gait Function after Unilateral Supratentorial Stroke. Brain Sciences, 11(7), 870. https://doi.org/10.3390/brainsci11070870