Finding the Way to Improve Motor Recovery of Patients with Spinal Cord Lesions: A Case-Control Pilot Study on a Novel Neuromodulation Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants and Study Design
2.2. Outcome Measures
2.3. Non-Invasive Brain Stimulation
2.4. Robot-Aided Rehabilitation
2.5. Statistical Analysis
3. Results
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- The National Spinal Cord Injury Statistical Center. Spinal cord injury facts and figures at a glance. J. Spinal Cord Med. 2012, 35, 197–198. [Google Scholar] [CrossRef]
- Graham, J.E.; Granger, C.V.; Karmarkar, A.M.; Deutsch, A.; Niewczyk, P.; DiVita, M.A.; Ottenbacher, K.J. The Uniform Data System for Medical Rehabilitation: Report of follow-up information on patients discharged from inpatient rehabilitation programs in 2002. Am. J. Phys. Med. Rehabil. 2014, 93, 231–244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, F.; Zhang, Q.; Xie, H.; Yang, Y.; Sun, M.; Wu, A.; Wu, J.; Chen, G.; Shen, F.; Li, C.; et al. Effects of a rehabilitation program for individuals with chronic spinal cord injury in Shanghai, China. BMC Health Serv. Res. 2020, 20, 298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mekki, M.; Delgado, A.D.; Fry, A.; Putrino, D.; Huang, V. Robotic Rehabilitation and Spinal Cord Injury: A Narrative Review. Neurotherapeutics 2018, 15, 604–617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- AuYong, N.; Lu, D.C. Neuromodulation of the Lumbar Spinal Locomotor Circuit. Neurosurg. Clin. N. Am. 2014, 25, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Martinez, M.; Brown, A. From cortex to cord: Motor circuit plasticity after spinal cord injury. Neural Regen. Res. 2019, 14, 2054–2062. [Google Scholar] [CrossRef] [PubMed]
- Jo, H.J.; Perez, M.A. Corticospinal-motor neuronal plasticity promotes exercise-mediated recovery in humans with spinal cord injury. Brain 2020, 143, 1368–1382. [Google Scholar] [CrossRef] [PubMed]
- Dietz, V.; Colombo, G.; Jensen, L.; Baumgartner, L. Locomotor capacity of spinal cord in paraplegic patients. Ann. Neurol. 1995, 37, 574–582. [Google Scholar] [CrossRef]
- Field-Fote, E.C.; Roach, K.E. Influence of a Locomotor Training Approach on Walking Speed and Distance in People with Chronic Spinal Cord Injury: A Randomized Clinical Trial. Phys. Ther. 2011, 91, 48–60. [Google Scholar] [CrossRef] [Green Version]
- Calabrò, R.S.; Cassio, A.; Mazzoli, D.; Andrenelli, E.; Bizzarini, E.; Campanini, I.; Carmignano, S.M.; Cerulli, S.; Chisari, C.; Colombo, V.; et al. Italian Consensus Conference on Robotics in Neurorehabilitation (CICERONE). What does evidence tell us about the use of gait robotic devices in patients with multiple sclerosis? A comprehensive systematic review on functional outcomes and clinical recommendations. Eur. J. Phys. Rehabil. Med. 2021, 57, 841–849. [Google Scholar]
- Swinnen, E.; Duerinck, S.; Baeyens, J.; Meeusen, R.; Kerckhofs, E. Effectiveness of robot-assisted gait training in persons with spinal cord injury: A systematic review. J. Rehabil. Med. 2010, 42, 520–526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morawietz, C.; Moffat, F. Effects of Locomotor Training After Incomplete Spinal Cord Injury: A Systematic Review. Arch. Phys. Med. Rehabil. 2013, 94, 2297–2308. [Google Scholar] [CrossRef] [PubMed]
- Fang, C.-Y.; Tsai, J.-L.; Li, G.-S.; Lien, A.S.-Y.; Chang, Y.-J. Effects of Robot-Assisted Gait Training in Individuals with Spinal Cord Injury: A Meta-analysis. BioMed Res. Int. 2020, 2020, 2102785. [Google Scholar] [CrossRef] [PubMed]
- Burns, S.P.; Golding, D.G.; Rolle, W.A.; Graziani, V.; Ditunno, J.F. Recovery of ambulation in motor-incomplete tetraplegia. Arch. Phys. Med. Rehabil. 1997, 78, 1169–1172. [Google Scholar] [CrossRef]
- van Middendorp, J.J.; Hosman, A.J.; Pouw, M.H.; Van de Meent, H.; EM-SCI Study Group. ASIA impairment scale conversion in traumatic SCI: Is it related with the ability to walk? A descriptive comparison with functional ambulation outcome measures in 273 patients. Spinal Cord 2009, 47, 555–560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takeoka, A. Proprioception: Bottom-up directive for motor recovery after spinal cord injury. Neurosci. Res. 2020, 154, 1–8. [Google Scholar] [CrossRef]
- Kumru, H.; Gunduz, A.; Rothwell, J.; Vidal, J. Non-invasive brain stimulation to promote motor and functional recovery following spinal cord injury. Neural Regen. Res. 2017, 12, 1933–1938. [Google Scholar] [CrossRef]
- Leemhuis, E.; De Gennaro, L.; Pazzaglia, A.M. Disconnected Body Representation: Neuroplasticity Following Spinal Cord Injury. J. Clin. Med. 2019, 8, 2144. [Google Scholar] [CrossRef] [Green Version]
- Pollock, A.; Farmer, S.E.; Brady, M.C.; Langhorne, P.; Mead, G.E.; Mehrholz, J.; van Wijck, F. Interventions for improving upper limb function after stroke. Cochrane Database Syst. Rev. 2013, 2014, 1–136. [Google Scholar] [CrossRef] [Green Version]
- Mazzoleni, S.; Duret, C.; Grosmaire, A.G.; Battini, E. Combining Upper Limb Robotic Rehabilitation with Other Therapeutic Approaches after Stroke: Current Status, Rationale, and Challenges. BioMed Res. Int. 2017, 2017, 8905637. [Google Scholar] [CrossRef]
- Fleerkotte, B.M.; Koopman, B.; Buurke, J.H.; Van Asseldonk, E.H.F.; Van Der Kooij, H.; Rietman, J.S. The effect of impedance-controlled robotic gait training on walking ability and quality in individuals with chronic incomplete spinal cord injury: An explorative study. J. Neuroeng. Rehabil. 2014, 11, 26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amatachaya, S.; Naewla, S.; Srisim, K.; Arrayawichanon, P.; Siritaratiwat, W. Concurrent validity of the 10-meter walk test as compared with the 6-minute walk test in patients with spinal cord injury at various levels of ability. Spinal Cord 2014, 52, 333–336. [Google Scholar] [CrossRef] [PubMed]
- Jackson, A.B.; Carnel, C.T.; Ditunno, J.F.; Read, M.S.; Boninger, M.; Schmeler, M.R.; Williams, S.R.; Donovan, W.H. Outcome Measures for Gait and Ambulation in the Spinal Cord Injury Population. J. Spinal Cord Med. 2008, 31, 487–499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Hedel, H.; Wirz, M.; Curt, A. Improving walking assessment in subjects with an incomplete spinal cord injury: Responsiveness. Spinal Cord 2005, 44, 352–356. [Google Scholar] [CrossRef] [PubMed]
- Podsiadlo, D.; Richardson, S. The Timed “Up & Go”: A Test of Basic Functional Mobility for Frail Elderly Persons. J. Am. Geriatr. Soc. 1991, 39, 142–148. [Google Scholar] [CrossRef]
- Ng, S.S.; Hui-Chan, C.W. The timed up & go test: Its reliability and association with lower-limb impairments and loco-motor capacities in people with chronic stroke. Arch. Phys. Med. Rehabil. 2005, 86, 1641–1647. [Google Scholar] [PubMed]
- Ditunno, J.F.; Ditunno, P.L.; Scivoletto, G.; Patrick, M.; Dijkers, M.; Barbeau, H.; Burns, A.S.; Marino, R.; Schmidt-Read, M. The Walking Index for Spinal Cord Injury (WISCI/WISCI II): Nature, metric properties, use and misuse. Spinal Cord 2013, 51, 346–355. [Google Scholar] [CrossRef] [Green Version]
- Ottenbacher, K.J.; Hsu, Y.; Granger, C.V.; Fiedler, R.C. The reliability of the functional independence measure: A quantitative review. Arch. Phys. Med. Rehabil. 1996, 77, 1226–1232. [Google Scholar] [CrossRef]
- Linacre, J.M.; Heinemann, A.W.; Wright, B.D.; Granger, C.V.; Hamilton, B.B. The structure and stability of the Functional Independence Measure. Arch. Phys. Med. Rehabil. 1994, 75, 127–132. [Google Scholar] [CrossRef]
- Reed, M.D.; van Nostran, W. Assessing pain intensity with the visual analog scale: A plea for uniformity. J. Clin. Pharmacol. 2014, 54, 241–244. [Google Scholar] [CrossRef] [PubMed]
- Awai, L.; Bolliger, M.; Ferguson, A.R.; Courtine, G.; Curt, A. Influence of Spinal Cord Integrity on Gait Control in Human Spinal Cord Injury. Neurorehabilit. Neural Repair 2016, 30, 562–572. [Google Scholar] [CrossRef] [Green Version]
- Shin, J.C.; Kim, J.Y.; Park, H.K.; Kim, N.Y. Effect of Robotic-Assisted Gait Training in Patients with Incomplete Spinal Cord Injury. Ann. Rehabil. Med. 2014, 38, 719–725. [Google Scholar] [CrossRef] [PubMed]
- Astolfi, L.; Bakardjian, H.; Cincotti, F.; Mattia, D.; Marciani, M.G.; De Vico Fallani, F.; Colosimo, A.; Salinari, S.; Miwakeichi, F.; Yamaguchi, Y.; et al. Estimate of causality between independent cor-tical spatial patterns during movement volition in spinal cord injured patients. Brain Topogr. 2007, 19, 107–123. [Google Scholar] [CrossRef]
- Blanc, Y.; Dimanico, U. Electrode placement in surface electromyography (sEMG) “minimal crosstalk area” (MCA). Open Rehabil. J. 2010, 3, 110–126. [Google Scholar] [CrossRef] [Green Version]
- Bönstrup, M.; Krawinkel, L.; Schulz, R.; Cheng, B.; Feldheim, J.; Thomalla, G.; Cohen, L.G.; Gerloff, C. Low-Frequency Brain Oscillations Track Motor Recovery in Human Stroke. Ann. Neurol. 2019, 86, 853–865. [Google Scholar] [CrossRef]
- Burns, A.S.; Marino, R.; Kalsi-Ryan, S.; Middleton, J.W.; Tetreault, L.A.; Dettori, J.R.; Mihalovich, K.E.; Fehlings, M. Type and Timing of Rehabilitation Following Acute and Subacute Spinal Cord Injury: A Systematic Review. Glob. Spine J. 2017, 7, 175S–194S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Winchester, P.; McColl, R.; Querry, R.; Foreman, N.; Mosby, J.; Tansey, K.; Williamson, J. Changes in supraspinal activation patterns following robotic locomotor therapy in motor-incomplete spinal cord injury. Neurorehabilit. Neural Repair 2005, 19, 313–324. [Google Scholar] [CrossRef] [PubMed]
- Sliwinski, C.; Nees, T.A.; Puttagunta, R.; Weidner, N.; Blesch, A. Sensorimotor activity partially ameliorates pain and reduces nociceptive fiber density in the chronically injured spinal cord. J. Neurotrauma 2018, 35, 2222–2238. [Google Scholar] [CrossRef]
- Nees, T.A.; Tappe-Theodor, A.; Sliwinski, C.; Motsch, M.; Rupp, R.; Kuner, R.; Weidner, N.; Blesch, A. Early-onset treadmill training reduces mechanical allodynia and modulates calcitonin gene-related peptide fiber density in lamina III/IV in a mouse model of spinal cord contusion injury. Pain 2016, 157, 687–697. [Google Scholar] [CrossRef] [PubMed]
- Mehrholz, J.; Kugler, J.; Pohl, M. Locomotor training for walking after spinal cord injury. Cochrane Database Syst. Rev. 2007, 33, 768. [Google Scholar] [CrossRef]
- Athanasiou, A.; Klados, M.A.; Pandria, N.; Foroglou, N.; Kavazidi, K.R.; Polyzoidis, K.; Bamidis, P.D. A Systematic Review of Investigations into Functional Brain Connectivity Following Spinal Cord Injury. Front. Hum. Neurosci. 2017, 11, 517. [Google Scholar] [CrossRef] [PubMed]
- Athanasiou, A.; Klados, M.A.; Styliadis, C.; Foroglou, N.; Polyzoidis, K.; Bamidis, P.D. Investigating the role of α and β rhythms in functional motor networks. Neuroscience 2016, 378, 54–70. [Google Scholar] [CrossRef] [PubMed]
- Raithatha, R.; Carrico, C.; Powell, E.S.; Westgate, P.M.; Ii, K.C.C.; Lee, K.; Dunsmore, L.; Salles, S.; Sawaki, L. Non-invasive brain stimulation and robot-assisted gait training after incomplete spinal cord injury: A randomized pilot study. NeuroRehabilitation 2016, 38, 15–25. [Google Scholar] [CrossRef] [PubMed]
- Shapkova, E.Y.; Pismennaya, E.V.; Emelyannikov, D.V.; Ivanenko, Y. Exoskeleton Walk Training in Paralyzed Individuals Benefits from Transcutaneous Lumbar Cord Tonic Electrical Stimulation. Front. Neurosci. 2020, 14, 416. [Google Scholar] [CrossRef]
- de Paz, R.H.; Serrano-Muñoz, D.; Pérez-Nombela, S.; Bravo-Esteban, E.; Avendaño-Coy, J.; Gómez-Soriano, J. Combining transcranial direct-current stimulation with gait training in patients with neurological disorders: A systematic review. J. NeuroEng. Rehabil. 2019, 16, 114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Powell, E.S.; Carrico, C.; Raithatha, R.; Salyers, E.; Ward, A.; Sawaki, L. Transvertebral direct current stimulation paired with loco-motor training in chronic spinal cord injury: A case study. NeuroRehabilitation 2016, 38, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Mao, Y.-R.; Yuan, T.-F.; Xu, D.-S.; Cheng, L.-M. Multimodal treatment for spinal cord injury: A sword of neuroregeneration upon neuromodulation. Neural Regen. Res. 2020, 15, 1437–1450. [Google Scholar] [CrossRef]
- Brunoni, A.R.; Nitsche, M.A.; Bolognini, N.; Bikson, M.; Wagner, T.; Merabet, L.; Edwards, D.J.; Valero-Cabré, A.; Rotenberg, A.; Pascual-Leone, A.; et al. Clinical research with transcranial direct current stimulation (tDCS): Challenges and future directions. Brain Stimul. 2012, 5, 175–195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Behrman, A.L.; Bowden, M.G.; Nair, P.M. Neuro-plasticity after spinal cord injury and training: An emerging paradigm shift in rehabilitation and walking recovery. Phys. Ther. 2006, 86, 1406–1425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dietz, V. Neuronal plasticity after a human spinal cord injury: Positive and negative effects. Exp. Neurol. 2012, 235, 110–115. [Google Scholar] [CrossRef]
- Jurkiewicz, M.T.; Mikulis, D.J.; McIlroy, W.E.; Fehlings, M.G.; Verrier, M.C. Sensorimotor cortical plasticity during recovery following spinal cord injury: A longitudinal fMRI study. Neurorehabil. Neural Repair 2007, 21, 527–538. [Google Scholar] [CrossRef] [PubMed]
- Lynskey, J.V.; Belanger, A.; Jung, R. Activity-dependent plasticity in spinal cord injury. J. Rehabil. Res. Dev. 2008, 45, 229–240. [Google Scholar] [CrossRef] [PubMed]
- Edgerton, V.R.; De Leon, R.D.; Harkema, S.J.; Hodgson, J.A.; London, N.; Reinkensmeyer, D.J.; Roy, R.R.; Talmadge, R.J.; Tillakaratne, N.J.; Timoszyk, W.; et al. Retraining the injured spinal cord. J. Physiol. 2001, 533, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Fregni, F.; Pascual-Leone, A. Technology insight: Non-invasive brain stimulation in neurology—perspectives on the therapeutic potential of rTMS and tDCS. Nat. Clin. Pract. Neurol. 2007, 3, 383–393. [Google Scholar] [CrossRef] [PubMed]
- Bocci, T.; Marceglia, S.; Vergari, M.; Cognetto, V.; Cogiamanian, F.; Sartucci, F.; Priori, A. Transcutaneous spinal direct current stimulation modulates human corticospinal system excitability. J. Neurophysiol. 2015, 114, 440–446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bocci, T.; Vannini, B.; Torzini, A.; Mazzatenta, A.; Vergari, M.; Cogiamanian, F.; Priori, A.; Sartucci, F. Cathodal transcutaneous spinal direct current stimulation (tsDCS) improves motor unit recruitment in healthy subjects. Neurosci. Lett. 2014, 578, 75–79. [Google Scholar] [CrossRef]
- Cogiamanian, F.; Vergari, M.; Pulecchi, F.; Marceglia, S.; Priori, A. Effect of spinal transcutaneous direct current stimulation on somatosensory evoked potentials in humans. Clin. Neurophysiol. 2008, 119, 2636–2640. [Google Scholar] [CrossRef]
- Cogiamanian, F.; Vergari, M.; Schiaffi, E.; Marceglia, S.; Ardolino, G.; Barbieri, S.; Priori, A. Transcutaneous spinal cord direct current stimulation inhibits the lower limb nociceptive flexion reflex in human beings. Pain 2011, 152, 370–375. [Google Scholar] [CrossRef] [PubMed]
- Hubli, M.; Dietz, V.; Schrafl-Altermatt, M.; Bolliger, M. Modulation of spinal neuronal excitability by spinal direct currents and locomotion after spinal cord injury. Clin. Neurophysiol. 2013, 124, 1187–1195. [Google Scholar] [CrossRef]
- Truini, A.; Vergari, M.; Biasiotta, A.; La Cesa, S.; Gabriele, M.; Di Stefano, G.; Cambieri, C.; Gruccu, G.; Inghilleri, M.; Priori, A. Transcutaneous spinal direct current stimulation inhibits nociceptive spinal pathway conduction and increases pain tolerance in humans. Eur. J. Pain 2011, 15, 1023–1027. [Google Scholar] [CrossRef] [PubMed]
- Calabrò, R.S.; Cacciola, A.; Bertè, F.; Manuli, A.; Leo, A.; Bramanti, A.; Naro, A.; Milardi, D.; Bramanti, P. Robotic gait rehabilitation and substitution devices in neurological disorders: Where are we now? Neurol. Sci. 2016, 37, 503–514. [Google Scholar] [CrossRef] [PubMed]
- Calabrò, R.S.; Naro, A.; Russo, M.; Bramanti, P.; Carioti, L.; Balletta, T.; Buda, A.; Manuli, A.; Filoni, S.; Bramanti, A. Shaping neuroplasticity by using powered exoskeletons in patients with stroke: A randomized clinical trial. J. Neuroeng. Rehabil. 2018, 15, 35. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, J.F. Source separation using higher order moments. Proc. I.C.A.S.S.P. 1989, 4, 2109–2112. [Google Scholar]
- Chen, I.-H.; Yang, Y.-R.; Lu, C.-F.; Wang, R.-Y. Novel gait training alters functional brain connectivity during walking in chronic stroke patients: A randomized controlled pilot trial. J. Neuroeng. Rehabil. 2019, 16, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, P.Y.; Lai, P.Y. Comparison of Exoskeleton Robots and End-Effector Robots on Training Methods and Gait Biomechanics. In Intelligent Robotics and Applications; Lee, J., Lee, M.C., Liu, H., Ryu, J.H., Eds.; ICIRA Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Rosenbaum, P.R.; Rubin, D.B. The Central Role of the Propensity Score in Observational Studies for Causal Effects. Biometrika 1983, 70, 41–55. [Google Scholar] [CrossRef]
Gender | Age (y) | TSO (m) | SCI Level | Etiology | AIS Score | Spasticity (Yes/No), Medication | Pain (Yes/No), Medication | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
RAR + NIBS | M | 35 | 6 | 8 | V | D | yes | no medication | yes | paracetamol | |
M | 44 | 6 | 9 | T | D | ||||||
F | 37 | 6 | 9 | T | C | yes | no medication | ||||
M | 40 | 6 | 5 | T | D | yes | no medication | ||||
F | 48 | 6 | 6 | T | D | yes | tizanidine | yes | paracetamol | ||
F | 46 | 8 | 3 | T | D | yes | tizanidine | ||||
M | 34 | 8 | 3 | TM | C | yes | gabapentin | ||||
F | 36 | 9 | 5 | TM | C | yes | tizanidine | yes | gabapentin | ||
M | 22 | 10 | 9 | V | C | yes | tizanidine | yes | carbamazepine | ||
F | 58 | 11 | 5 | T | D | yes | clonidine | ||||
M | 23 | 12 | 7 | TM | C | yes | clonidine | ||||
F | 35 | 13 | 3 | TM | C | yes | baclofen | yes | amitriptyline | ||
F | 32 | 15 | 4 | V | D | yes | baclofen | yes | amitriptyline | ||
F | 45 | 16 | 9 | T | D | yes | baclofen | ||||
F | 42 | 17 | 8 | T | D | yes | baclofen | yes | amitriptyline | ||
60% F 40% M | 38 ± 9 | 10 ± 4 | 27% TM 53% T 20% V | 40% C 60% D | 73% | 67% | |||||
RAR − NIBS | F | 65 | 6 | 6 | T | D | yes | no medication | yes | amitriptyline | |
F | 53 | 7 | 6 | TM | C | yes | tizanidine | yes | amitriptyline | ||
M | 38 | 7 | 5 | V | C | ||||||
M | 26 | 7 | 10 | V | D | yes | carbamazepine | ||||
M | 29 | 9 | 6 | T | C | ||||||
F | 35 | 9 | 3 | TM | C | yes | baclofen | yes | carbamazepine | ||
M | 35 | 10 | 3 | TM | C | yes | clonidine | yes | carbamazepine | ||
F | 51 | 10 | 3 | T | C | yes | clonidine | ||||
F | 28 | 10 | 9 | V | D | yes | no medication | ||||
M | 61 | 10 | 10 | V | D | yes | |||||
F | 64 | 12 | 4 | T | D | yes | no medication | ||||
M | 45 | 12 | 3 | T | C | yes | baclofen | yes | no medication | ||
F | 43 | 12 | 5 | T | D | yes | tizanidine | yes | gabapentin | ||
F | 53 | 13 | 6 | TM | D | yes | tizanidine | yes | gabapentin | ||
M | 18 | 13 | 8 | T | C | ||||||
F | 48 | 13 | 9 | T | D | ||||||
M | 23 | 13 | 6 | V | D | yes | baclofen | yes | amitriptyline | ||
M | 22 | 14 | 6 | TM | C | yes | clonidine | yes | gabapentin | ||
M | 42 | 14 | 5 | T | D | yes | tizanidine | yes | paracetamol | ||
F | 39 | 15 | 7 | V | C | yes | tizanidine | ||||
F | 49 | 15 | 4 | TM | D | yes | baclofen | yes | amitriptyline | ||
F | 60 | 16 | 8 | V | D | yes | no medication | yes | amitriptyline | ||
F | 62 | 16 | 7 | V | D | yes | no medication | ||||
F | 57 | 17 | 8 | V | C | yes | baclofen | ||||
M | 55 | 18 | 8 | T | C | yes | baclofen | yes | paracetamol | ||
summary | 56% F 44% M | 44 ± 14 | 12 ± 3 | 24% TM 40% T 36% V | 48% C 52% D | 72% | 64% | ||||
p-value | 0.4 | 0.1 | 0.1 | 0.2 | 0.2 | 0.3 | 0.5 | 0.4 |
T0 | T1 | T2 | ANCOVA | Between-Group | Within-Group | |||||
---|---|---|---|---|---|---|---|---|---|---|
F | p | T1–T0 | T2–T0 | T1–T0 | T2–T0 | |||||
10MWT | RAR + NIBS | 0.75 ± 0.49 | 0.98 ± 0.58 | 0.8 ± 0.53 | 10 | 0.002 | <0.0001 | 0.003 | <0.0001 | 0.01 |
RAR − NIBS | 0.65 ± 0.35 | 0.72 ± 0.39 | 0.78 ± 0.36 | <0.0001 | <0.0001 | |||||
6MWT | RAR + NIBS | 206 ± 15 | 248 ± 21 | 227 ± 24 | 0.3 | <0.0001 | <0.0001 | |||
RAR − NIBS | 212 ± 16 | 235 ± 23 | 224 ± 17 | <0.0001 | <0.0001 | |||||
FIM-L | RAR + NIBS | 3 ± 1 | 4 ± 1 | 4 ± 1 | 5 | 0.02 | 0.01 | 0.01 | <0.0001 | <0.0001 |
RAR − NIBS | 3 ± 1 | 3 ± 1 | 3 ± 1 | <0.0001 | <0.0001 | |||||
LEMS | RAR + NIBS | 31 ± 7 | 37 ± 8 | 34 ± 8 | 9 | 0.005 | <0.0001 | 0.002 | <0.0001 | <0.0001 |
RAR − NIBS | 30 ± 6 | 33 ± 7 | 31 ± 6 | <0.0001 | <0.0001 | |||||
MAS | RAR + NIBS | 1.3 ± 1 | 1 ± 0.7 | 1.1 ± 0.8 | 10 | 0.002 | <0.0001 | <0.0001 | 0.0006 | 0.001 |
RAR − NIBS | 1.4 ± 1.1 | 1.2 ± 1 | 1.3 ± 1.1 | <0.0001 | 0.0002 | |||||
TUG | RAR + NIBS | 62 ± 27 | 51 ± 22 | 55 ± 23 | 0.5 | <0.0001 | 0.0002 | |||
RAR − NIBS | 64 ± 26 | 57 ± 25 | 60 ± 24 | <0.0001 | <0.0001 | |||||
VAS | RAR + NIBS | 3 ± 2 | 2 ± 2 | 3 ± 2 | 12 | 0.0009 | <0.0001 | <0.0001 | 0.001 | 0.0009 |
RAR − NIBS | 3 ± 3 | 3 ± 3 | 3 ± 3 | 0.0002 | 0.0006 | |||||
WISCI II | RAR + NIBS | 8 ± 4 | 9 ± 5 | 9 ± 5 | 10 | 0.002 | <0.0001 | <0.0001 | 0.0004 | 0.0001 |
RAR − NIBS | 6 ± 4 | 7 ± 4 | 7 ± 4 | <0.0001 | <0.0001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naro, A.; Billeri, L.; Balletta, T.; Lauria, P.; Onesta, M.P.; Calabrò, R.S. Finding the Way to Improve Motor Recovery of Patients with Spinal Cord Lesions: A Case-Control Pilot Study on a Novel Neuromodulation Approach. Brain Sci. 2022, 12, 119. https://doi.org/10.3390/brainsci12010119
Naro A, Billeri L, Balletta T, Lauria P, Onesta MP, Calabrò RS. Finding the Way to Improve Motor Recovery of Patients with Spinal Cord Lesions: A Case-Control Pilot Study on a Novel Neuromodulation Approach. Brain Sciences. 2022; 12(1):119. https://doi.org/10.3390/brainsci12010119
Chicago/Turabian StyleNaro, Antonino, Luana Billeri, Tina Balletta, Paola Lauria, Maria Pia Onesta, and Rocco Salvatore Calabrò. 2022. "Finding the Way to Improve Motor Recovery of Patients with Spinal Cord Lesions: A Case-Control Pilot Study on a Novel Neuromodulation Approach" Brain Sciences 12, no. 1: 119. https://doi.org/10.3390/brainsci12010119
APA StyleNaro, A., Billeri, L., Balletta, T., Lauria, P., Onesta, M. P., & Calabrò, R. S. (2022). Finding the Way to Improve Motor Recovery of Patients with Spinal Cord Lesions: A Case-Control Pilot Study on a Novel Neuromodulation Approach. Brain Sciences, 12(1), 119. https://doi.org/10.3390/brainsci12010119