Putting the Pieces Together: Mental Construction of Semantically Congruent and Incongruent Scenes in Dementia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Cognitive Assessment
2.3. Scene Construction Task
2.4. Subjective Ratings
2.5. Scoring
2.6. Statistical Analyses
3. Results
3.1. Demographic and Clinical Information
3.2. Cognitive Profiles
3.3. Scene Construction Performance
3.3.1. Total Content
3.3.2. Contextual Detail Profile
3.3.3. Participant Subjective Ratings
3.4. Correlations between Scene Construction and Selected Cognitive Variables
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hassabis, D.; Kumaran, D.; Maguire, E.A. Using imagination to understand the neural basis of episodic memory. J. Neurosci. 2007, 27, 14365–14374. [Google Scholar] [CrossRef] [PubMed]
- Hassabis, D.; Maguire, E.A. The construction system of the brain. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2009, 364, 1263–1271. [Google Scholar] [CrossRef] [PubMed]
- Maguire, E.A.; Intraub, H.; Mullally, S.L. Scenes, Spaces, and Memory Traces: What Does the Hippocampus Do? Neuroscientist 2016, 22, 432–439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hebscher, M.; Levine, B.; Gilboa, A. The precuneus and hippocampus contribute to individual differences in the unfolding of spatial representations during episodic autobiographical memory. Neuropsychologia 2018, 110, 123–133. [Google Scholar] [CrossRef]
- Palombo, D.J.; Hayes, S.M.; Peterson, K.M.; Keane, M.M.; Verfaellie, M. Medial Temporal Lobe Contributions to Episodic Future Thinking: Scene Construction or Future Projection? Cereb. Cortex 2018, 28, 447–458. [Google Scholar] [CrossRef] [Green Version]
- Lind, S.E.; Williams, D.M.; Bowler, D.M.; Peel, A. Episodic memory and episodic future thinking impairments in high-functioning autism spectrum disorder: An underlying difficulty with scene construction or self-projection? Neuropsychology 2014, 28, 55–67. [Google Scholar] [CrossRef]
- Gaesser, B. Episodic mindreading: Mentalizing guided by scene construction of imagined and remembered events. Cognition 2020, 203, 104325. [Google Scholar] [CrossRef]
- Mullally, S.L.; Maguire, E.A. Memory, Imagination, and Predicting the Future: A Common Brain Mechanism? Neuroscientist 2014, 20, 220–234. [Google Scholar] [CrossRef] [Green Version]
- Mullally, S.; Hassabis, D.; Maguire, E.A. Scene construction in amnesia: An fMRI study. J. Neurosci. 2012, 32, 5646–5653. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.; Dede, A.J.O.; Hopkins, R.O.; Squire, L.R. Memory, scene construction, and the human hippocampus. Proc. Natl. Acad. Sci. USA 2015, 112, 4767–4772. [Google Scholar] [CrossRef] [Green Version]
- Cooper, J.M.; Vargha-Khadem, F.; Gadian, D.G.; Maguire, E.A. The effect of hippocampal damage in children on recalling the past and imagining new experiences. Neuropsychologia 2011, 49, 1843–1850. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hurley, N.C.; Maguire, E.A.; Vargha-Khadem, F. Patient HC with developmental amnesia can construct future scenarios. Neuropsychologia 2011, 49, 3620–3628. [Google Scholar] [CrossRef] [Green Version]
- Irish, M. On the interaction between episodic and semantic representations—Constructing a unified account of imagination. In The Cambridge Handbook of the Imagination; Abraham, A., Ed.; Cambridge University Press: New York, NY, USA, 2020; pp. 447–465. [Google Scholar]
- Addis, D.R. Are episodic memories special? On the sameness of remembered and imagined event simulation. J. R. Soc. N. Z. 2018, 48, 64–88. [Google Scholar] [CrossRef]
- Irish, M.; Addis, D.R.; Hodges, J.R.; Piguet, O. Considering the role of semantic memory in episodic future thinking: Evidence from semantic dementia. Brain 2012, 135, 2178–2191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Irish, M.; Piguet, O. The pivotal role of semantic memory in remembering the past and imagining the future. Front. Behav. Neurosci. 2013, 7, 27. [Google Scholar] [CrossRef] [Green Version]
- Abraham, A.; Bubic, A. Semantic memory as the root of imagination. Front. Psychol. 2015, 6, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Renoult, L.; Irish, M.; Moscovitch, M.; Rugg, M.D. From Knowing to Remembering: The Semantic-Episodic distinction. Trends Cogn. Sci. 2019, 23, 1041–1057. [Google Scholar] [CrossRef] [PubMed]
- Irish, M. Semantic memory as the essential scaffold for future oriented mental time travel. In Seeing the Future: Theoretical Perspectives on Future-Oriented Mental Time Travel; Michaelian, K., Klein, S.B., Szpunar, K., Eds.; Oxford University Press: New York, NY, USA, 2016; pp. 388–408. [Google Scholar]
- Paulin, T.; Roquet, D.; Kenett, Y.N.; Savage, G.; Irish, M. The effect of semantic memory degeneration on creative thinking: A voxel-based morphometry analysis. Neuroimage 2020, 220, 117073. [Google Scholar] [CrossRef] [PubMed]
- Kenett, Y.N.; Faust, M. A Semantic Network Cartography of the Creative Mind. Trends Cogn. Sci. 2019, 23, 271–274. [Google Scholar] [CrossRef]
- Summerfield, J.J.; Hassabis, D.; Maguire, E.A. Differential engagement of brain regions within a ‘core’ network during scene construction. Neuropsychologia 2010, 48, 1501–1509. [Google Scholar] [CrossRef] [Green Version]
- Dalton, M.A.; Zeidman, P.; McCormick, C.; Maguire, E.A. Differentiable Processing of Objects, Associations, and Scenes within the Hippocampus. J. Neurosci. 2018, 38, 8146–8159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mullally, S.; Maguire, E. Exploring the role of space-defining objects in constructing and maintaining imagined scenes. Brain Cogn. 2013, 82, 100–107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hassabis, D.; Spreng, R.N.; Rusu, A.A.; Robbins, C.A.; Mar, R.A.; Schacter, D.L. Imagine all the people: How the brain creates and uses personality models to predict behavior. Cereb. Cortex 2014, 24, 1979–1987. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilson, N.A.; Ahmed, R.M.; Hodges, J.R.; Piguet, O.; Irish, M. Constructing the social world: Impaired capacity for social simulation in dementia. Cognition 2020, 202, 104321. [Google Scholar] [CrossRef]
- Gaesser, B.; Schacter, D.L. Episodic simulation and episodic memory can increase intentions to help others. Proc. Natl. Acad. Sci. USA 2014, 111, 4415–4420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gilboa, A.; Marlatte, H. Neurobiology of Schemas and Schema-Mediated Memory. Trends Cogn. Sci. 2017, 21, 618–631. [Google Scholar] [CrossRef] [PubMed]
- Irish, M.; van Kesteren, M.T. New Perspectives on the Brain Lesion Approach—Implications for Theoretical Models of Human Memory. Neuroscience 2018, 374, 319–322. [Google Scholar] [CrossRef]
- Ciaramelli, E.; Luca, F.D.; Monk, A.M.; McCormick, C.; Maguire, E.A. What “wins” in vmPFC: Scenes, situations, or schema? Neurosci. Biobehav. Rev. 2019, 100, 208–210. [Google Scholar] [CrossRef]
- Van Kesteren, M.T.; Ruiter, D.J.; Fernandez, G.; Henson, R.N. How schema and novelty augment memory formation. Trends Neurosci. 2012, 35, 211–219. [Google Scholar] [CrossRef]
- Rascovsky, K.; Hodges, J.R.; Knopman, D.; Mendez, M.F.; Kramer, J.H.; Neuhaus, J.; van Swieten, J.C.; Seelaar, H.; Dopper, E.G.; Onyike, C.U.; et al. Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain 2011, 134, 2456–2477. [Google Scholar] [CrossRef]
- Irish, M.; Piguet, O.; Hodges, J.R. Self-projection and the default network in frontotemporal dementia. Nat. Rev. Neurol. 2012, 8, 152–161. [Google Scholar] [CrossRef]
- Irish, M.; Hodges, J.R.; Piguet, O. Episodic future thinking is impaired in the behavioural variant of frontotemporal dementia. Cortex 2013, 49, 2377–2388. [Google Scholar] [CrossRef] [PubMed]
- Wilson, N.A.; Ramanan, S.; Roquet, D.; Goldberg, Z.L.; Hodges, J.R.; Piguet, O.; Irish, M. Scene construction impairments in frontotemporal dementia: Evidence for a primary hippocampal contribution. Neuropsychologia 2020, 137, 107327. [Google Scholar] [CrossRef]
- McKhann, G.M.; Knopman, D.S.; Chertkow, H.; Hyman, B.T.; Jack, C.R., Jr.; Kawas, C.H.; Klunk, W.E.; Koroshetz, W.J.; Manly, J.J.; Mayeux, R.; et al. The diagnosis of dementia due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011, 7, 263–269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Irish, M.; Addis, D.R.; Hodges, J.R.; Piguet, O. Exploring the content and quality of episodic future simulations in semantic dementia. Neuropsychologia 2012, 50, 3488–3495. [Google Scholar] [CrossRef] [PubMed]
- Addis, D.R.; Sacchetti, D.C.; Ally, B.A.; Budson, A.E.; Schacter, D.L. Episodic simulation of future events is impaired in mild Alzheimer’s disease. Neuropsychologia 2009, 47, 2660–2671. [Google Scholar] [CrossRef] [Green Version]
- Irish, M.; Halena, S.; Kamminga, J.; Tu, S.; Hornberger, M.; Hodges, J.R. Scene construction impairments in Alzheimer’s disease—A unique role for the posterior cingulate cortex. Cortex 2015, 73, 10–23. [Google Scholar] [CrossRef] [Green Version]
- Dermody, N.; Wong, S.; Ahmed, R.; Piguet, O.; Hodges, J.R.; Irish, M. Uncovering the Neural Bases of Cognitive and Affective Empathy Deficits in Alzheimer’s Disease and the Behavioral-Variant of Frontotemporal Dementia. J. Alzheimers Dis. 2016, 53, 801–816. [Google Scholar] [CrossRef]
- Strikwerda-Brown, C.; Ramanan, S.; Irish, M. Neurocognitive mechanisms of theory of mind impairment in neurodegeneration: A transdiagnostic approach. Neuropsychiatr. Dis. Treat. 2019, 15, 557–573. [Google Scholar] [CrossRef] [Green Version]
- Knopman, D.S.; Kramer, J.H.; Boeve, B.F.; Caselli, R.J.; Graff-Radford, N.R.; Mendez, M.F.; Miller, B.L.; Mercaldo, N. Development of methodology for conducting clinical trials in frontotemporal lobar degeneration. Brain 2008, 131, 2957–2968. [Google Scholar] [CrossRef] [Green Version]
- Wear, H.J.; Wedderburn, C.J.; Mioshi, E.; Williams-Gray, C.H.; Mason, S.L.; Barker, R.A.; Hodges, J.R. The Cambridge Behavioural Inventory revised. Dement. Neuropsychol. 2008, 2, 102–107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsieh, S.; Schubert, S.; Hoon, C.; Mioshi, E.; Hodges, J.R. Validation of the Addenbrooke’s Cognitive Examination III in frontotemporal dementia and Alzheimer’s disease. Dement. Geriatr. Cogn. Disord. 2013, 36, 242–250. [Google Scholar] [CrossRef] [PubMed]
- So, M.; Foxe, D.; Kumfor, F.; Murray, C.; Hsieh, S.; Savage, G.; Ahmed, R.M.; Burrell, J.R.; Hodges, J.R.; Irish, M.; et al. Addenbrooke’s Cognitive Examination III: Psychometric Characteristics and Relations to Functional Ability in Dementia. J. Int. Neuropsychol. Soc. 2018, 24, 854–863. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, M. Rey Auditory and Verbal Learning Test: A handbook; Western Psychological Services: Los Angeles, CA, USA, 1996. [Google Scholar]
- Rey, A. L’examen psychologique dans les cas d’encéphalopathie traumatique. Arch. Psychol. 1941, 28, 215–285. [Google Scholar]
- Savage, S.; Hsieh, S.; Piguet, O.; Hodges, J.R.; Leslie, F.; Foxe, D.; Piguet, O.; Hodges, J.R.; Leslie, F.; Foxe, D. Distinguishing subtypes in primary progressive aphasia: Application of the Sydney Language Battery. Dement. Geriatr. Cogn. Disord. 2013, 35, 208–218. [Google Scholar] [CrossRef]
- Wechsler, D. Wechsler Memory Scale—Third Edition: Administration and Scoring Manual; Psychological Corporation: San Antonio, TX, USA, 1997. [Google Scholar]
- Reitan, R. Validity of the Trail Making Test as an indicator of organic brain damage. Percept. Mot. Ski. 1958, 8, 271–276. [Google Scholar] [CrossRef]
- Burgess, P.W.; Shallice, T. The Hayling and Brixton Tests; Thames Valley Test Company: Thurston Suffolk, UK, 1997. [Google Scholar]
- Hassabis, D.; Kumaran, D.; Vann, S.D.; Maguire, E.A. Patients with hippocampal amnesia cannot imagine new experiences. Proc. Natl. Acad. Sci. USA 2007, 104, 1726–1731. [Google Scholar] [CrossRef] [Green Version]
- Irish, M.; Hornberger, M.; Lah, S.; Miller, L.; Pengas, G.; Nestor, P.J.; Hodges, J.R.; Piguet, O. Profiles of recent autobiographical memory retrieval in semantic dementia, behavioural-variant frontotemporal dementia, and Alzheimer’s disease. Neuropsychologia 2011, 49, 2694–2702. [Google Scholar] [CrossRef]
- Irish, M.; Landin-Romero, R.; Mothakunnel, A.; Ramanan, S.; Hsieh, S.; Hodges, J.R.; Piguet, O. Evolution of autobiographical memory impairments in Alzheimer’s disease and frontotemporal dementia—A longitudinal neuroimaging study. Neuropsychologia 2018, 110, 14–25. [Google Scholar] [CrossRef]
- Piolino, P.; Chételat, G.; Matuszewski, V.; Landeau, B.; Mézenge, F.; Viader, F.; De La Sayette, V.; Eustache, F.; Desgranges, B. In search of autobiographical memories: A PET study in the frontal variant of frontotemporal dementia. Neuropsychologia 2007, 45, 2730–2743. [Google Scholar] [CrossRef] [Green Version]
- Irish, M.; Piguet, O.; Hodges, J.R.; Hornberger, M. Common and unique grey matter correlates of episodic memory dysfunction in frontotemporal dementia and Alzheimer’s disease. Hum. Brain Mapp. 2014, 35, 1422–1435. [Google Scholar] [CrossRef]
- Irish, M.; Eyre, N.; Dermody, N.; O’Callaghan, C.; Hodges, J.R.; Hornberger, M.; Piguet, O. Neural Substrates of Semantic Prospection—Evidence from the Dementias. Front. Behav. Neurosci. 2016, 10, 96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Addis, D.R.; Musicaro, R.; Pan, L.; Schacter, D.L. Episodic simulation of past and future events in older adults: Evidence from an experimental recombination task. Psychol. Aging 2010, 25, 369–376. [Google Scholar] [CrossRef] [Green Version]
- Robin, J.; Moscovitch, M. Details, gist and schema: Hippocampal-neocortical interactions underlying recent and remote episodic and spatial memory. Curr. Opin. Behav. Sci. 2017, 17, 114–123. [Google Scholar] [CrossRef]
- Rubin, D.C.; Umanath, S. Event memory: A theory of memory for laboratory, autobiographical, and fictional events. Psychol. Rev. 2015, 122, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Irish, M.; Mothakunnel, A.; Dermody, N.; Wilson, N.A.; Hodges, J.R.; Piguet, O. Damage to right medial temporal structures disrupts the capacity for scene construction—A case study. Hippocampus 2017, 27, 635–641. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Yue, T.; Huang, X.T. Episodic and Semantic Memory Contribute to Familiar and Novel Episodic Future Thinking. Front. Psychol. 2016, 7, 1746. [Google Scholar] [CrossRef] [Green Version]
- Devitt, A.L.; Addis, D.R.; Schacter, D.L. Episodic and semantic content of memory and imagination: A multilevel analysis. Mem. Cogn. 2017, 45, 1078–1094. [Google Scholar] [CrossRef]
- Irish, M.; Piolino, P. Impaired capacity for prospection in the dementias—Theoretical and clinical implications. Br. J. Clin. Psychol. 2016, 55, 49–68. [Google Scholar] [CrossRef]
- Salimi, S.; Irish, M.; Foxe, D.; Hodges, J.R.; Piguet, O.; Burrell, J.R. Can visuospatial measures improve the diagnosis of Alzheimer’s disease? Alzheimers Dement. 2018, 10, 66–74. [Google Scholar] [CrossRef]
- Strikwerda-Brown, C.; Ramanan, S.; Goldberg, Z.L.; Mothakunnel, A.; Hodges, J.R.; Ahmed, R.M.; Piguet, O.; Irish, M. The interplay of emotional and social conceptual processes during moral reasoning in frontotemporal dementia. Brain 2021, 144, 938–952. [Google Scholar] [CrossRef]
- O’Callaghan, C.; Shine, J.M.; Hodges, J.R.; Andrews-Hanna, J.R.; Irish, M. Hippocampal atrophy and intrinsic brain network dysfunction relate to alterations in mind wandering in neurodegeneration. Proc. Natl. Acad. Sci. USA 2019, 116, 3316–3321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shaw, S.R.; El-Omar, H.; Roquet, D.; Hodges, J.R.; Piguet, O.; Ahmed, R.M.; Whitton, A.E.; Irish, M. Uncovering the prevalence and neural substrates of anhedonia in frontotemporal dementia. Brain 2021, 5, 1551–1564. [Google Scholar] [CrossRef] [PubMed]
- Conti, F.; Irish, M. Harnessing visual imagery and oculomotor behaviour to understand prospection. Trends Cogn. Sci. 2021, 25, 272–283. [Google Scholar]
bvFTD M (SD) | AD M (SD) | Controls M (SD) | Group Effect (F Value) | Post hoc (Direction of Effect) | |
---|---|---|---|---|---|
N | 15 | 11 | 16 | - | - |
Sex (M:F) | 13:2 | 6:5 | 8:8 | 5.1 a | - |
Age (years) | 61.4 (9.1) | 64.7 (8.4) | 64.7 (4.4) | 1.0 | - |
Education (years) | 11.7 (2.0) | 12.6 (2.6) | 14.9 (2.2) | 8.0 ** | CN > AD, bvFTD |
Disease Duration (years) | 6.7 (3.5) | 4.6 (2.8) | - | 0.7 b | - |
Disease Severity (CDR-FTLD SoB) | 6.3 (3.6) | 6.8 (3.3) | - | 1.6 b | - |
Behavioural Change (CBI-R Total) | 38.5 (16.7) | 30.9 (17.1) | 5.0 (4.0) | 21.3 *** | AD, bvFTD > CN |
Abnormal Behaviour (CBI-R Sub-scale) | 40.6 (22.2) | 20.8 (22.7) | 3.2 (4.2) | 14.3 *** | bvFTD > AD > CN |
bvFTD M (SD) | AD M (SD) | Controls M (SD) | Group Effect (H) | Post Hoc (Direction of Effect) | |
---|---|---|---|---|---|
ACE-III Total (100) | 77.7 (6.5) | 64.8 (9.8) | 95.3 (2.5) | 32.8 ** | CN > AD, bvFTD |
RAVLT 30 min (15) | 5.2 (2.8) | 1.1 (1.7) | 10.8 (1.7) | 26.9 ** | CN > AD, bvFTD |
RCF 3 min (36) | 13.2 (6.7) | 2.4 (2.0) | 16.6 (4.2) | 18.5 ** | CN > AD; bvFTD > AD |
Hayling Overall (7) | 4.9 (1.3) | 3.6 (0.8) | 6.3 (0.7) | 18.6 ** | CN > AD, bvFTD |
Digit Span Forwards | 8.9 (2.3) | 7.9 (0.7) | 11.3 (2.8) | 9.8 * | CN > AD |
Digit Span Backwards | 5.1 (2.0) | 3.7 (1.8) | 8.3 (3.0) | 14.1 * | CN > AD, bvFTD |
TMT B-A (seconds) | 82.3 (56.7) | 142.2 (74.2) | 45.7 (14.9) | 11.4 * | CN < AD |
SydBat Naming (30) | 24.1 (2.3) | 19.6 (4.9) | 27.1 (2.3) | 16.0 ** | CN > AD |
SydBat Semantic (30) | 27.0 (2.0) | 24.3 (2.3) | 28.6 (1.0) | 18.8 ** | CN > AD |
ACE-Language (26) | 23.3 (2.5) | 21.7 (2.8) | 25.5 (0.8) | 18.1 ** | CN > AD, bvFTD |
ACE-Fluency (14) | 8.6 (2.3) | 8.0 (2.6) | 11.9 (1.6) | 19.0 ** | CN > AD, bvFTD |
bvFTD M (SD) | AD M (SD) | Control M (SD) | |||
---|---|---|---|---|---|
Difficulty | Congruent | Social | 2.1 (0.9) | 2.5 (0.9) | 2.2 (1.1) |
Non-Social | 2.9 (1.1) | 2.6 (1.1) | 2.3 (0.9) | ||
Incongruent | Social | 3.0 (1.1) | 2.7 (1.0) | 2.4 (1.0) | |
Non-Social | 2.7 (1.2) | 3.4 (1.1) | 2.6 (1.3) | ||
Vividness | Congruent | Social | 3.2 (0.9) | 3.6 (0.7) | 3.7 (0.8) |
Non-Social | 3.1 (1.0) | 3.5 (0.7) | 3.6 (1.0) | ||
Incongruent | Social | 3.1 (1.1) | 3.1 (0.9) | 3.6 (1.0) | |
Non-Social | 3.3 (1.0) | 3.6 (0.9) | 3.3 (1.1) | ||
Level of Detail | Congruent | Social Non-Social | 3.3 (0.9) 3.1 (1.0) | 2.9 (0.8) 2.7 (0.8) | 3.4 (0.8) 3.4 (0.8) |
Incongruent | Social | 3.0 (1.1) | 2.7 (0.6) | 3.3 (0.8) | |
Non-Social | 3.4 (1.0) | 2.9 (0.9) | 3.0 (0.9) | ||
Sense of Presence | Congruent | Social Non-Social | 3.5 (0.9) 3.2 (1.1) | 4.0 (0.6) 3.5 (0.8) | 3.9 (1.0) 3.6 (1.1) |
Incongruent | Social | 3.1 (1.1) | 3.4 (0.9) | 3.5 (1.1) | |
Non-Social | 3.3 (1.2) | 3.9 (0.9) | 3.4 (1.1) | ||
Realism | Congruent | Social | 3.1 (1.0) | 3.1 (0.6) | 3.3 (1.1) |
Non-Social | 2.9 (0.9) | 3.3 (0.9) | 3.4 (1.0) | ||
Incongruent | Social | 3.1 (1.1) | 3.4 (0.9) | 3.5 (1.1) | |
Non-Social | 3.3 (1.2) | 3.9 (0.9) | 3.4 (1.1) | ||
Similar to Memory | Congruent | Social Non-Social | 2.8 (1.1) 3.1 (1.3) | 2.6 (1.5) 2.4 (0.8) | 3.3 (1.0) 3.1 (1.1) |
Incongruent | Social | 4.0 (1.0) | 4.0 (1.1) | 3.9 (1.4) | |
Non-Social | 4.3 (0.8) | 3.8 (1.1) | 4.1 (1.4) |
Total Content Scores | ||||
---|---|---|---|---|
Congruent | Incongruent | |||
Social | Non-Social | Social | Non-Social | |
SydBat Semantic Association | 0.237 | 0.391 * | 0.005 | 0.483 * |
SydBat Semantic Naming | −0.181 | 0.427 * | 0.014 | 0.331 |
RCF 3 min recall | 0.347 | 0.411 * | 0.214 | 0.528 ** |
Hayling Overall Scaled | 0.393 * | 0.275 | 0.129 | 0.333 |
RAVLT 30 min recall | −0.143 | 0.090 | 0.261 | 0.177 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wilson, N.-A.; Ahmed, R.M.; Piguet, O.; Irish, M. Putting the Pieces Together: Mental Construction of Semantically Congruent and Incongruent Scenes in Dementia. Brain Sci. 2022, 12, 20. https://doi.org/10.3390/brainsci12010020
Wilson N-A, Ahmed RM, Piguet O, Irish M. Putting the Pieces Together: Mental Construction of Semantically Congruent and Incongruent Scenes in Dementia. Brain Sciences. 2022; 12(1):20. https://doi.org/10.3390/brainsci12010020
Chicago/Turabian StyleWilson, Nikki-Anne, Rebekah M. Ahmed, Olivier Piguet, and Muireann Irish. 2022. "Putting the Pieces Together: Mental Construction of Semantically Congruent and Incongruent Scenes in Dementia" Brain Sciences 12, no. 1: 20. https://doi.org/10.3390/brainsci12010020
APA StyleWilson, N. -A., Ahmed, R. M., Piguet, O., & Irish, M. (2022). Putting the Pieces Together: Mental Construction of Semantically Congruent and Incongruent Scenes in Dementia. Brain Sciences, 12(1), 20. https://doi.org/10.3390/brainsci12010020