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Abstract: Variability in the response of individuals to various non-invasive brain stimulation protocols
is a major problem that limits their potential for clinical applications. Baseline motor-evoked potential
(MEP) amplitude is the key predictor of an individual’s response to transcranial magnetic stimulation
protocols. However, the factors that predict MEP amplitude and its variability remain unclear. In
this study, we aimed to identify the input–output curve (IOC) parameters that best predict MEP
amplitude and its variability. We analysed IOC data from 75 subjects and built a general linear model
(GLM) using the IOC parameters as regressors and MEP amplitude at 120% resting motor threshold
(RMT) as the response variable. We bootstrapped the data to estimate variability of IOC parameters
and included them in a GLM to identify the significant predictors of MEP amplitude variability. Peak
slope, motor threshold, and maximum MEP amplitude of the IOC were significant predictors of MEP
amplitude at 120% RMT and its variability was primarily driven by the variability of peak slope and
maximum MEP amplitude. Recruitment gain and maximum corticospinal excitability are the key
predictors of MEP amplitude and its variability. Inter-individual variability in motor output may be
reduced by achieving a uniform IOC slope.

Keywords: input output curve; transcranial magnetic stimulation; motor threshold; inter-individual
variability; peak slope

1. Introduction

Transcranial magnetic stimulation (TMS) is a non-invasive brain stimulation technique
that works on the principle of Faraday’s law of electromagnetic induction. A rapidly chang-
ing electric field in the coil generates a magnetic field that penetrates the skull painlessly
and induces electrical current over the cortical area of interest. If strong enough, the induced
electric current can trigger an action potential in the neurons of the outermost layers of the
brain [1]. If the coil is positioned over the motor cortex (M1), the induced current activates
the pyramidal neurons of the corticospinal tract trans-synaptically, triggering volleys down
the corticospinal pathway resulting in the generation of motor-evoked potentials (MEPs) in
target muscles [2]. The amplitude of these MEPs recorded using surface electromyography
(EMG) is a good measure of corticospinal excitability (CSE) [3,4]. Measuring MEPs at a
range of stimulation intensities rather than at a single intensity could offer valuable insights
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to the physiological mechanisms underlying motor excitability [5–8]. Plotting the MEP
amplitudes against the corresponding stimulation intensities yields an MEP recruitment
curve or the input–output curve (IOC) (Figure 1), which can be described by the Boltz-
mann sigmoid function equation [9–12]. Different aspects of the IOC represent different
physiological characteristics of motor excitability.
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Figure 1. Input–output curve of one participant from this study. The labels describe the following
parameters: (1) Resting motor threshold (RMT), (2) 120% RMT, (3) Intensity at half-maximum
amplitude (S50) (4) MEP amplitude at 120% RMT (MEPamp). The offset and MEPmax is visible in the
IOC as maximum and minimum MEP values, respectively. Peak Slope (PS) is the maximum slope of
the curve which can be obtained at S50.

The minimum stimulation intensity needed to generate a recordable EMG response
agreed to be around 50 µV peak-to-peak from target muscle at rest in at least 50% of
the trials is often defined as resting motor threshold (RMT) [13]. It corresponds to the
stimulation intensity at the first positive inflection point on the IOC. The RMT depends on
the membrane potential of the neurons stimulated by TMS, excitability of synapses between
excitatory inputs and corticospinal neurons at the cortex level, and the excitability of
synapses between corticospinal terminals and neurons at the spinal cord level. These factors
contribute to the generation of MEP at the threshold intensity [14]. Stimulation intensity
beyond the motor threshold generates the exponential phase of the IOC until it reaches
a plateau representing maximum MEP output (MEPmax) achievable in the target muscle.
The saturation point in MEP amplitude indicates recruitment of all corticospinal neurons
available for TMS stimulation. MEPmax is influenced by the number of corticospinal volleys
generated by the TMS pulse, the number of facilitatory synapses per corticospinal fibre
and the total number of available corticospinal fibres [14]. All subjects may not necessarily
show MEP max even at 100% stimulator output intensity, which represents an inherent
technical limitation. The slope of the IOC is highest at S50 (stimulation intensity that
elicits a response equal to 50% of the maximum) and this peak slope (PS) represents the
distribution of excitability of synapses in the cortex and spinal cord. PS of the sigmoid
curve represents the recruitment gain and the MEP amplitudes represent the output of the
descending CS pathway [9,15–18]: the activation of large number of corticospinal fibres
within a narrow stimulation intensity range results in a steeper IOC. This is the reason why
an activated muscle, which is driven by more uniform corticospinal synaptic excitability,
will have a steeper IOC and higher PS than the same muscle at rest [19].



Brain Sci. 2022, 12, 1401 3 of 14

A suprathreshold TMS pulse usually activates both excitatory and inhibitory neurons
within the primary motor cortex, therefore representing the net activity of the corticospinal
pathway [4]. By adjusting the TMS pulse intensity and waveform, it is possible to acti-
vate different classes of neurons, enabling the study of corticospinal excitability in much
finer detail [20,21]. However, the major challenge with TMS studies is the large vari-
ability in MEP amplitude both within and across individuals. Carrol et al. (2001) and
Kukke et al. (2014) [10,19] have addressed the problem of MEP amplitude variability
within individuals by suggesting measures that increase reproducibility. Kukke et al. (2014)
demonstrated excellent test–retest intra-individual reliability for all the parameters of the
IOC when a minimum of 40 TMS pulses (2 pulses/intensity and 20 intensities distributed
equally between 5% and 100% MSO) were used to construct the IOC. However, the issue
of large inter-individual variability [22] in MEP amplitude across individuals remains
unaddressed. Many studies have attempted to identify the factors driving this variability.
Factors such as age [23,24], gender [23,25], stimulation intensity [26,27] and the stimulated
hemisphere [28,29] seem to be important contributors to the inter-individual variability.
However, the findings have not been consistent across studies, most likely due to small
sample sizes [30]. Recent work by Corp et al. collated data from 35 studies and revealed
that the response of healthy individuals to repetitive and to paired-pulse TMS protocols
is best predicted by the baseline MEP amplitude [31,32]. Leodori et al. showed that the
variability in plasticity associated with theta burst stimulation depends partially on baseline
corticospinal excitability [33]. Most TMS studies use the MEP amplitude at stimulation in-
tensity equal to 120% RMT (MEPamp) to measure baseline corticospinal excitability [34,35].
Some others use 1 mV intensity. Although the stimulation intensity could be optimized
using 120% RMT intensity across individuals, the variability in their response to TMS
protocols still persists.

Corp et al. (2021) [32] rightly state that the non-availability of IOC data is an important
limitation of their study. This is because IOC data contain information about corticospinal
output across the entire spectrum of stimulation intensities, serving as an accurate repre-
sentation of motor excitability. Unfortunately, the majority of the studies do not record
IOC, primarily due to time constraints. In the current study, we aimed to identify the most
important IOC parameters that can predict the MEP amplitude at stimulation intensity
equal to 120% RMT. For this, we collated IOC data recorded from individuals who partici-
pated in three different studies at the Human Motor Control Section, NINDS, Bethesda,
USA. This is the first study that has examined the role of IOC parameters in predicting
the motor output using a relatively large sample size. We also intended to identify IOC
parameters that drive the inter-individual variability of MEPamp. Since the IOC offers
a more detailed characterisation of CSE, we expect to obtain valuable insights into the
physiological processes that drive inter-individual variability in motor output, a problem
that limits the clinical potential of non-invasive brain stimulation.

2. Materials and Methods
2.1. Participants

The IOC data from 84 healthy adult individuals (mean age: 38 ± 12 years; 39 females)
who participated in three different TMS studies (15, 33 & 36) at the Human Motor Control
Section, NINDS, Bethesda, USA were analysed. All three studies were approved by the
Combined Neuro Sciences IRB of the National Institute of Neurological Disorders and
Stroke (NINDS) and conformed to the guidelines of the Declaration of Helsinki. All
participants gave written informed consent before participation. None of the participants
had any contraindications for undergoing TMS and no adverse events were reported.
We excluded data from 6 subjects because their IOC did not saturate at 100% stimulator
intensity. We also excluded 3 subjects whose IOC parameters were beyond 3 standard
deviations (or 99.73% confidence interval) from mean value. The data from the remaining
75 subjects were included for analysis.
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2.2. Input–Output Curve (IOC)

Participants were seated comfortably on a reclining chair with their right hand resting
on a pillow by the side. Surface EMG electrodes were placed over one of the hand muscles–
abductor pollicis brevis (APB) or abductor digiti minimi (ADM). Single monophasic TMS
pulses were delivered using Magstim 2002 (Magstim Ltd., Whitland, UK) connected to a
70 mm figure-of-eight coil. The coil was positioned at an angle of about 45◦ from the midline
and the handle pointing backwards so as to deliver a postero-anteriorly directed current in
the brain. The motor hotspot of the hand muscle was first identified while the hand was
fully relaxed. The EMG signal was amplified (gain = 1000) and filtered (20–2000 Hz) by
an EMG system (Nihon Kohden Neuropack MEB 2200, v.08.15, Tokyo, Japan). The signal
was then digitized at 5000 Hz using the CED micro 1401 laboratory interface (Cambridge
Electronic Design Ltd., Cambridge, UK) and stored for offline analysis using their Signal
version 7 software. To record the IOC, TMS pulses were delivered at 20 different stimulator
intensities—from 5% to 100% of maximum stimulator output in increments of 5%. The
order of the stimulation intensities was randomized. Thus, 60 pulses with at least 3 pulses
per intensity were delivered. We estimated the peak-to-peak MEP amplitude for each trial,
plotted it against the corresponding stimulation intensity, and fitted a Boltzmann sigmoid
function to the data [9].

Boltzmann Sigmoid Function:
MEPx = Offset + (MEPmax − Offset)/[1 + exp{(S50 − x)/k}]
The variables are:
MEPx = MEP amplitude at x % maximum stimulator output.
Offset = The offset value or minimum MEP amplitude obtained for the subject.
MEPmax = The MEP amplitude where saturation point of the curve has been reached.
S50 = Stimulator intensity that elicits half the maximum MEP amplitude.
k = Slope of the curve.
Additionally, for each subject, we estimated parameters such as Motor Threshold (MT),

Peak Slope at the midpoint of the curve (PS), MEP amplitude at 120% RMT (MEPamp),
and the S50 from the IOC. MT was obtained by calculating the mean of the intensity
corresponding to the point of maximum curvature at the rising phase of the IOC and
the intensity that elicited 5% of maximum MEP amplitude. All the above analyses were
performed using custom MATLAB R2022a (The MathWorks, Inc., Natick, MA, USA) scripts.

Since IOC was obtained from abductor digiti minimi (ADM) in some subjects and
abductor pollicis brevis (APB) in others, we compared the IOC parameters between the
two groups to ensure that there was no significant difference before pooling them together
(Supplementary Table S1).

2.3. Predicting MEP Amplitude

The parameters—PS, MEPamp and MEPmax—were not normally distributed in the
dataset as tested by Shapiro–Wilk test (Supplementary Table S2). Hence, all IOC parame-
ters were log-transformed to achieve normal distribution and Pearson’s correlation was
performed. A principal component analysis (PCA) correlation circle was also generated to
better visualize the results [36]. The PCA correlation circle was generated using FactoMineR
package for multivariate analysis in R [37]. To examine the inter-individual variability
in MEP amplitude at 120% RMT, a General Linear Model (GLM) was built by taking
the other parameters (PS and MEPmax) as independent variables. Z-score normalization
was performed on the independent variables before running the GLM. Non-significant
predictors were removed and the GLM was run again to derive an accurate estimate of
the contribution of the significant predictors. The variance inflation factor (VIF) was also
checked in the final model to ensure that there was no multicollinearity [38].

Furthermore, to evaluate the performance of the GLM in predicting MEP amplitude
at 120% intensity, we performed 5-fold cross validation resampling procedure where the
dataset was divided into 5 groups with equal number of samples. The predictive model is
trained on 4 such groups or “folds” and its accuracy at prediction was tested on the remain-
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ing fifth group by checking root-mean-square error (RMSE). This was repeated until all
5 folds were tested against. If a predictor variable had a strong non-linear relationship with
MEPamp, a GLM model would not account for it. Hence, we compared the accuracy of our
GLM with a non-linear model such as the Random Forest (RF) machine learning algorithm
using a similar 5-fold cross validation procedure. The evaluation of the performance of the
models was performed using a custom script in R Studio using ‘train’ function available
in the ‘caret’ package (version 4.47) [39]. The RF used 500 decision trees with 4 variables
at each split as optimized by the function according to performance. To ensure that there
is no seeding bias, we ran the above analysis 1000 times and then compared the mean
and standard deviation of RMSE of the two models. We used Student’s two-sample t-test
when samples had equal variance and Welch’s two-sample t-test for samples with unequal
variance as determined by an F test. All of the analyses mentioned above were performed
using custom scripts in R.

2.4. Variability in MEP Amplitude

We used coefficient of variation (CV) as a measure of inter-individual variability [40],
which was calculated using the following formula:

CV = SD/mean

where CV = Coefficient of variation; SD = Standard deviation; mean = Mean value of parameter.
To assess the variability of the different IOC parameters, the data were bootstrapped

without replacement by choosing subsamples of 50 subjects from a total sample size of
75 in 1000 iterations. This yielded 1000 CV values of MEPamp, MT, PS, MEPmax and S50
that represented the distribution of inter-individual variability within our dataset. The
bootstrapped CV values for each predictor variable were plotted against the CV values
of MEPamp. To identify the IOC parameters that best predicted the variability in MEPamp,
a GLM was built using the CVs of the bootstrapped variables. Variables that showed
high collinearity (VIF ≥ 2.5) [38,41,42] and those with p value >0.05 were excluded and
the GLM was re-run with the significant, non-collinear variables. The GLM and a non-
linear RF model were trained on the bootstrapped data using 10-fold cross validation, as
described previously. The RF model used 500 decision trees with 2 variables at each split as
optimized according to performance. To avoid seeding bias, the calculated mean RMSE
from 1000 iterations from both the models were calculated and compared. A flowchart
illustrating the entire data analysis pipeline described above is shown in Figure 2.
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3. Results
3.1. Correlation Analysis

A PCA correlation circle and a correlation matrix were generated using the MT, PS,
MEPamp, MEPmax and S50 parameters obtained from the IOC (Figure 3). Among them, the
following pairs of IOC parameters showed significant levels of correlation: MT vs. S50
(rho = 0.86, p < 0.0001), PS vs. 120% MEPamp (rho = 0.96, p < 0.0001), PS vs. MEP max
(rho = 0.78, p < 0.0001), PS vs. S50 (rho = −0.40, p = 0.0004), MEPamp vs. MEPmax (rho = 0.78,
p < 0.0001) and MEPmax and S50 (rho = −0.25, p = 0.0325). The correlations between MT
vs. PS (rho = −0.01, p = 0.9071), MT vs. MEPamp (rho = 0.22, p = 0.0547), MT vs. MEPmax
(rho = −0.15, p = 0.2051) and MEPamp vs. S50 (rho = −0.15, p = 0.1954) were not significant.
The regression curves for each pair of variables and their Pearson’s correlation coefficients
are discussed in the Supplementary Document (Supplementary Figure S1).
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Figure 3. Correlation between the different IOC parameters. (A) PCA correlation circle where the
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(B) A Pearson’s correlation matrix for the significant parameters is shown. (N.S. = non-significant
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3.2. General Linear Model (GLM) for Predicting MEP Amplitude

A GLM was built using MEPamp as dependent variable and z-score normalized MT,
PS, MEPmax and S50 as predictor variables (Supplementary Table S3). Among the pre-
dictor variables, the VIFs of S50 and MT were 10.814 and 8.865 indicating very high
collinearity, making the coefficients non-interpretable in the GLM. Hence, another GLM
was generated after removing S50 which had the highest VIF. The model had the following
properties: residual SE = 0.2301 on 71 degrees of freedom, r2 = 0.9468, adjusted r2 = 0.9446,
F(3,71) = 421.4, p < 0.0001 (Table 1).

The final model was a very strong predictor of MEPamp (adjusted R-squared = 0.9446),
indicating that MT, PS and MEPmax could predict more than 94% of the variance in MEPamp.
Since all the predictor variables were z-score normalized before running the model, a larger
coefficient indicates greater contribution of that predictor in predicting MEPamp. The
coefficient of PS was much larger than that of MT or MEPmax. Thus, in our model, PS is
the crucial parameter that best predicts MEPamp. VIF < 2.5 for all predictors indicating the
absence of significant collinearity; hence, the coefficients accurately reflect the contribution
of the predictors. The accuracy of the GLM did not change significantly when S50 was
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removed as a predictor (Supplementary Figure S2), implying that it was not as important
in predicting MEPamp as the other variables.

Table 1. General Linear Model (GLM) of MEPamp with MT, PS and MEPmax as predictor variables.

Coefficient
(β)

Standard Error
(SE) t-Stat p-Value VIF

Intercept 1.3733 0.0266 51.697 <0.0001

MT 0.3210 0.0271 11.856 <0.0001 1.0252

PS 0.7650 0.0365 20.928 <0.0001 1.8684

MEPmax 0.2270 0.0368 6.166 <0.0001 1.8958

3.3. Strength of the Predictive Model

The root-mean-square error (RMSE) is a measure of the accuracy of continuous
predictive models. The mean RMSE obtained through five-fold cross validation across
1000 iterations of the GLM was compared with the RMSE of a random forest (RF) machine
learning model which is a robust non-linear predictive model (Figure 4). The significant
variables for the GLM were MT, PS and MEPmax which showed a linear relationship with
MEPamp. In the non-linear RF model, MT, PS, MEPmax and S50 were taken into account
as predictor variables for MEPamp. The testing RMSE results of both models showed a
significant difference in variance (F(4999, 4999) = 0.1899, p < 0.0001); hence, we used Welch’s
two-sample t-test and found a significant difference between the means (t(6831.4) = −50.736,
p< 0.0001).
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Figure 4. Performance of the General Linear Model (GLM) and Random Forest (RF) model after 5-fold
cross validation iterated 1000 times to eliminate seed bias for the training and testing data. The solid line
represents median Root Mean Square Error (RMSE), the upper and lower hinges form the 1st and 3rd
quartiles while the whiskers extend to the highest and lowest value within 1.5 times inter-quartile range
from the two hinges. The black dots represent outliers beyond the range of whiskers.

The overall predicting power of the GLM (RMSE (mean ± SD) = 0.2453 ± 0.0583) was
significantly better than that of the RF model (RMSE = 0.3499 ± 0.1338). This implies that
a simple linear model with MT, PS and MEPmax as predictors is more accurate than a RF
model which takes into account non-linear relationships between all five IOC variables.
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We also checked for overfitting in both models by comparing their training versus
testing performance (Supplementary Table S4). Although both models showed significant
difference between training and testing RMSE, the RF model had a much larger difference
than GLM.

3.4. Analysing the Variability of Parameters

Having found that MT, PS, and MEPmax are significant linear predictors of MEPamp,
we wanted to see how the variability of these predictors affected the variability of MEPamp.
To measure the variability within the entire dataset, the coefficients of variation (CV) of all
the IOC parameters were calculated (Supplementary Figure S3). The CV of PS, MEPamp
and MEPmax were much larger than that of MT and S50 implying larger inter-individual
variability observed in those three parameters.

Using bootstrapping without replacement, we obtained a distribution of CV values of
all the IOC parameters within our dataset. We wanted to see whether this distribution of
CV of the predictor variables could be used to predict the CV of MEPamp, thereby directly
associating the inter-individual variability of IOC parameters to that of MEP amplitude.
For this, we built a GLM using CV of all the previously used predictor variables to predict
the CV of MEPamp. We then determined the GLM parameters from 10-fold cross validation
model training using bootstrapped data (Supplementary Table S5). Our results showed
that CV of S50 and MT show collinearity; hence, we removed the predictor with the largest
VIF (S50, VIF = 3.6727) and ran the model again (Supplementary Table S6). After removing
the CV of S50 from the model, the CV of MT became a non-significant predictor (p = 0.192).
Hence, we construct a final model with only the CV of PS and CV of MEP max as the
predictors. The model had the following properties: residual SE = 0.0259 on 997 degrees of
freedom, r2 = 0.6425, adjusted r2 = 0.6418, F(2,997) = 895.9, p < 0.0001 (Table 2).

Table 2. GLM for predicting CV of MEPamp with CV of PS and MEPmax as predictor variables.

Coefficient
(β)

Standard Error
(SE) t-Stat p-Value VIF

Intercept −0.0235 0.0175 −1.348 0.178

CV of PS 0.4781 0.0187 25.581 <0.0001 1.1138

CV of MEPmax 0.7482 0.0315 23.780 <0.0001 1.1138

The final GLM could predict about 64% of the change in CV of MEPamp using the variabil-
ity of only PS and MEPmax. The coefficients of the CV of MEPmax (β = 0.7482) are much higher
than that of PS (β = 0.4781) in the final model indicating that it is a more important predictor of
MEPamp variability. A GLM using the CV of all the IOC parameters as predictors has similar
performance to a GLM using only PS and MEPmax, thus validating that only CV of PS and CV
of MEPmax are the crucial parameters in our linear model (Supplementary Figure S4). There
is also a strong correlation between CV of MEPamp with CV of PS (rho = 0.66, p < 0.0001) and
CV of MEPmax (rho = 0.64, p < 0.0001) (Supplementary Figure S5).

We checked the performance of the GLM with only these two predictors against a
RF algorithm using 10-fold cross validation run through 1000 iterations to minimize bias
(Figure 5). The testing RMSE results of both models had unequal variances
(F(9999, 9999) = 80.149, p < 0.0001); hence, we used Welch’s two-sample t-test which
showed a significant difference between the testing RMSE means of the two models
(t(10248) = 3.0692, p = 0.0021) with the GLM model having better performance than the
RF model.



Brain Sci. 2022, 12, 1401 9 of 14

Brain Sci. 2022, 12, x FOR PEER REVIEW 9 of 15 
 

on 997 degrees of freedom, r2 = 0.6425, adjusted r2 = 0.6418, F(2,997) = 895.9, p < 0.0001 
(Table 2). 

Table 2. GLM for predicting CV of MEPamp with CV of PS and MEPmax as predictor variables. 

 
Coefficient 

(β) 

Standard 
Error 
(SE) 

t-Stat p-Value VIF 

Intercept −0.0235 0.0175 −1.348 0.178   

CV of PS 0.4781 0.0187 25.581 <0.0001  1.1138  

CV of 
MEPmax 0.7482 0.0315 23.780  <0.0001  1.1138 

The final GLM could predict about 64% of the change in CV of MEPamp using the 
variability of only PS and MEPmax. The coefficients of the CV of MEPmax (β = 0.7482) are 
much higher than that of PS (β = 0.4781) in the final model indicating that it is a more 
important predictor of MEPamp variability. A GLM using the CV of all the IOC parameters 
as predictors has similar performance to a GLM using only PS and MEPmax, thus validating 
that only CV of PS and CV of MEPmax are the crucial parameters in our linear model (Sup-
plementary Figure S4). There is also a strong correlation between CV of MEPamp with CV 
of PS (rho = 0.66, p < 0.0001) and CV of MEPmax (rho = 0.64, p< 0.0001) (Supplementary 
Figure S5). 

We checked the performance of the GLM with only these two predictors against a RF 
algorithm using 10-fold cross validation run through 1000 iterations to minimize bias (Fig-
ure 5). The testing RMSE results of both models had unequal variances (F(9999, 9999) = 
80.149, p < 0.0001); hence, we used Welch’s two-sample t-test which showed a significant 
difference between the testing RMSE means of the two models (t(10248) = 3.0692, p = 
0.0021) with the GLM model having better performance than the RF model. 

 
Figure 5. Performance of the General Linear Model (GLM) and Random Forest (RF) model after 10-
fold cross validation in 1000 iterations. The solid line represents median Root mean square error 

Figure 5. Performance of the General Linear Model (GLM) and Random Forest (RF) model after
10-fold cross validation in 1000 iterations. The solid line represents median Root mean square
error (RMSE) while the whiskers represent maximum and minimum value within 1.5 times of inter-
quartile range from the hinges. The black dots represent outliers beyond the range of whiskers.
(GLM: Testing = 0.0248 ± 0.0018; Training = 0.0247 ± 0.0002; RF model: Testing = 0.0262 ± 0.0019,
Training = 0.0118 ± 0.0001).

We found significant difference between training and testing RMSE in both models
(Supplementary Table S7). However, the testing versus training RMSE of the RF model had
a large difference, indicating overfitting to the training dataset.

4. Discussion

This is the first study to examine the role of different IOC parameters on MEP ampli-
tude in a large sample size. Our results show that MEPmax and peak slope of IOC are the
key predictors of MEP amplitude and its variability. We also show that MT and S50 do not
contribute significantly towards the inter-individual variability in motor output.

Kemlin et al. (2019) [36] conducted a study on the IOC parameters of 24 healthy
subjects and 40 stroke survivors. In healthy subjects, they found strong positive correlation
of PS with MEP amplitude at 140% RMT (rho = 0.76, p < 0.001), PS and MEPmax (rho = 0.85,
p < 0.001) and between MEPmax and MEP amplitude at 140% RMT (rho = 0.73, p <0.001).
Our study used MEP amplitude at 120% RMT instead of 140%, but our results are similar.
They reported non-significant correlation between 140% RMT MEP and S50, similar to our
120% RMT and S50. However, we found significant negative correlation between PS and
S50 and between MEPmax and S50, while they did not find any significant correlation. A
point of note is that they used the measure of %RMT on the x-axis for constructing their
IOC; thus, their IOC slope shows recruitment gain for different increments of stimulator
output intensity. In our study, we used absolute maximum stimulator output percentage as
the x-axis measure. This might be the reason for the difference in some of the results. In
addition to just examining correlations, we also delve deeper into identifying the crucial
parameters that drive motor output and its variability.

After removing non-significant and high collinearity variables, our GLM revealed
MT, PS, and MEPmax as significant predictors of MEPamp. Since all the predictors were
z-score normalized, their coefficients indicate their level of importance in the linear model.
PS showed the highest positive correlation with MEPamp and was its best predictor. Our
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simple linear model with only the MT, PS, and MEPmax as predictors was sufficient to
predict MEPamp with good accuracy implying a strong linear relationship between these
IOC parameters and MEP amplitude. MT is determined significantly by the synaptic
excitabilities of the spinal and cortical neurons that constitute the corticospinal pathway,
while PS represents the distribution of this excitability [14]. MEPmax reflects the excitability
ceiling at a particular brain state. These parameters combined represent the excitability
of the subset of corticospinal fibres activated by the TMS pulse at a certain brain state;
therefore, it is not surprising that they are sufficient to accurately predict the MEP at a
particular stimulator intensity.

Among the IOC parameters, the strongest correlation was observed between PS and
MEPamp. This is expected because a steeper slope in the rising phase of the IOC corresponds
to higher recruitment gain in the corticospinal pathway resulting in larger MEP at 120%
RMT intensity. S50 showed moderate and weak negative correlation with PS and MEP max,
respectively. It is worth noting that we did not find any significant correlation between PS
and MT, in contrast to the findings of Peterchev et al. (2013) [43], which showed significant
negative correlation between them. This might be due to methodological differences as we
used the standard Magstim 2002 monophasic pulse of 80 µs pulse width, while they used
controllable pulse width TMS with monophasic pulses of 30 µs, 60 µs and 120 µs pulse
widths. Moreover, they studied a much smaller number of subjects (n = 12), which might
be the main reason for this difference.

One of our primary objectives was to find a correlation between inter-individual
variability of IOC parameters with that of MEPamp. We used the CV of the different IOC
parameters as a measure of inter-individual variability. PS, MEPamp and MEPmax had the
highest CV values in our dataset. Furthermore, we showed that variability in the MEPamp
across individuals is mainly driven by the PS and MEPmax, which reflect the recruitment
gain and the maximum excitability of the motor neuronal pool at a certain brain state,
respectively. However, our GLM could explain only about 64% of variability in MEPamp
implying that the inter-individual variability in MEP amplitude can only be partially
described by the inter-individual variability in IOC parameters. A recent study by Goetz
et al., 2022 has revealed the crucial role of spinal excitability component in determining the
variability in motor output. The relationships between different IOC parameters and their
variabilities are summarized by Figure 6.

Our study shows that inter-individual variability of MEP amplitude can be accounted
for to a fair extent by the inter-individual variability of PS and MEPmax. MEPmax in an
individual may be constant at a particular brain state, whereas the recruitment gain (PS) may
be modulated by changing the stimulation parameters, for example, the TMS pulse width
as reported previously by Peterchev et al. (2013) [43]. They demonstrated that pulse width
of monophasic single pulse TMS has a positive correlation with the slope of the IOC. This
might be because the increased energy transferred by a larger pulse width might recruit a
larger number of target cortical neurons or it might also employ a different corticospinal
excitatory network. Both may result in a higher recruitment gain and thereby a steeper
PS of the IOC. The implication would be that we can obtain IOC with uniform PS across
individuals by modulating the width of the stimulating pulse. Furthermore, we speculate that
individualizing the TMS pulse widths to achieve similar recruitment gains across subjects
would reduce the inter-individual variability of MEP amplitude. Future studies should
test this hypothesis which is possible using a controllable TMS system [44–46]. One of the
main limitations of our study is that we estimated MEP amplitude at 120% RMT from the
Boltzmann equation rather than measuring it experimentally. This is because we performed
a retrospective analysis on data collected in past studies in our lab. Our prediction model
needs to be tested on experimental data. That said, this is still an important study where
parameters from such a large number of complete IOCs (n = 75) across multiple studies
have been analysed to determine their relationships with MEP amplitude. We would also
like to point out that our study has focused entirely on the output of the motor cortex to
TMS while the muscle was at rest; therefore, MEP amplitude was used as the sole marker
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of corticospinal excitability. This is because MEP amplitude is the most widely recorded
outcome measure in TMS studies for which we have a large amount of data from multicentric
studies [31,32]. However, recent studies have revealed the importance of cortical silent period
as a neurophysiological index to assess the status of cortical and spinal motor neurons [47].
Considering other such parameters may further enhance our understanding of the neural
underpinnings of inter-individual variability. Furthermore, the motor cortex has been the
preferred brain region for TMS studies due to its superficial location and availability of an
objective peripheral outcome measure—MEP amplitude. Although the results of the current
study are extremely useful in understanding the neurophysiological mechanisms underlying
TMS, their implications for other brain regions need to be considered with caution owing to
differences in their neuronal architecture and physiological properties. A well-known example
is the significant difference in the resting motor threshold of the primary motor cortex and
the phosphene threshold of the primary visual cortex [48]. Hence, we cannot assume that
the IOC properties of the primary visual cortex would be similar to that described in our
study. Another important aspect that the current study could not address is the influence of
cortico-cortical interaction [49] and instantaneous brainstate [50] on motor output and their
temporal dynamics [51]. These are more complex, yet extremely important questions that
remain to be addressed in future studies.
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5. Conclusions

In summary, we have shown that PS, RMT and MEPmax can predict the MEP amplitude
at 120% RMT. MEPmax and PS are the most important linear predictors of inter-individual
variability in MEP amplitude at 120% RMT intensity. RMT, which is commonly used as a
reference to individualize TMS stimulation, is not a good predictor of MEP amplitude at
120% RMT, and is not significant in predicting its variability across subjects.
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27. Ilić, T.V.; Meintzschel, F.; Cleff, U.; Ruge, D.; Kessler, K.R.; Ziemann, U. Short-Interval Paired-Pulse Inhibition and Facilitation of
Human Motor Cortex: The Dimension of Stimulus Intensity. J. Physiol. 2002, 545, 153–167. [CrossRef]

28. Ilic, T.V.; Jung, P.; Ziemann, U. Subtle Hemispheric Asymmetry of Motor Cortical Inhibitory Tone. Clin. Neurophysiol. 2004,
115, 330–340. [CrossRef]

29. Maeda, F.; Gangitano, M.; Thall, M.; Pascual-Leone, A. Inter- and Intra-Individual Variability of Paired-Pulse Curves with
Transcranial Magnetic Stimulation (TMS). Clin. Neurophysiol. 2002, 113, 376–382. [CrossRef]

30. Fried, P.J.; Jannati, A.; Davila-Pérez, P.; Pascual-Leone, A. Reproducibility of Single-Pulse, Paired-Pulse, and Intermittent
Theta-Burst TMS Measures in Healthy Aging, Type-2 Diabetes, and Alzheimer’s Disease. Front. Aging Neurosci. 2017, 9, 263.
[CrossRef]

31. Corp, D.T.; Bereznicki, H.G.K.; Clark, G.M.; Youssef, G.J.; Fried, P.J.; Jannati, A.; Davies, C.B.; Gomes-Osman, J.; Stamm, J.;
Chung, S.W.; et al. Large-Scale Analysis of Interindividual Variability in Theta-Burst Stimulation Data: Results from the ‘Big TMS
Data Collaboration’. Brain Stimul. 2020, 13, 1476–1488. [CrossRef] [PubMed]

http://doi.org/10.1007/s00221-008-1294-z
http://doi.org/10.1152/jn.00532.2005
http://doi.org/10.1007/PL00005641
http://doi.org/10.1016/S0165-0270(01)00468-X
http://doi.org/10.1016/S0165-0270(97)02250-4
http://doi.org/10.3109/00207454.2012.738734
http://www.ncbi.nlm.nih.gov/pubmed/23057813
http://doi.org/10.1016/0013-4694(94)90029-9
http://doi.org/10.1016/j.clinph.2006.01.016
http://www.ncbi.nlm.nih.gov/pubmed/16595189
http://doi.org/10.1016/S0924-980X(97)00041-6
http://doi.org/10.1016/S1388-2457(01)00523-5
http://doi.org/10.1002/mus.1083
http://doi.org/10.1093/brain/awl002
http://doi.org/10.1097/WNP.0000000000000057
http://doi.org/10.1016/j.brs.2016.09.008
http://doi.org/10.1523/JNEUROSCI.1960-14.2014
http://www.ncbi.nlm.nih.gov/pubmed/25232119
http://doi.org/10.3389/fnhum.2016.00504
http://www.ncbi.nlm.nih.gov/pubmed/27774060
http://doi.org/10.1097/00004691-200309000-00009
http://www.ncbi.nlm.nih.gov/pubmed/14701998
http://doi.org/10.1016/S0304-3940(01)02239-X
http://doi.org/10.1016/j.clinph.2016.03.009
http://www.ncbi.nlm.nih.gov/pubmed/27178853
http://doi.org/10.1016/j.brs.2019.11.002
http://doi.org/10.1113/jphysiol.2002.030122
http://doi.org/10.1016/j.clinph.2003.09.017
http://doi.org/10.1016/S1388-2457(02)00008-1
http://doi.org/10.3389/fnagi.2017.00263
http://doi.org/10.1016/j.brs.2020.07.018
http://www.ncbi.nlm.nih.gov/pubmed/32758665


Brain Sci. 2022, 12, 1401 14 of 14

32. Corp, D.T.; Bereznicki, H.G.K.; Clark, G.M.; Youssef, G.J.; Fried, P.J.; Jannati, A.; Davies, C.B.; Gomes-Osman, J.; Kirkovski, M.;
Albein-Urios, N.; et al. Large-Scale Analysis of Interindividual Variability in Single and Paired-Pulse TMS Data. Clin. Neurophysiol.
2021, 132, 2639–2653. [CrossRef] [PubMed]

33. Leodori, G.; Fabbrini, A.; de Bartolo, M.I.; Costanzo, M.; Asci, F.; Palma, V.; Belvisi, D.; Conte, A.; Berardelli, A. Cortical Mecha-
nisms Underlying Variability in Intermittent Theta-Burst Stimulation-Induced Plasticity: A TMS-EEG Study. Clin. Neurophysiol.
2021, 132, 2519–2531. [CrossRef] [PubMed]

34. Fujiyama, H.; Hinder, M.R.; Schmidt, M.W.; Tandonnet, C.; Garry, M.I.; Summers, J.J. Age-Related Differences in Corticomotor
Excitability and Inhibitory Processes during a Visuomotor RT Task. J. Cogn. Neurosci. 2012, 24, 1253–1263. [CrossRef]

35. Vaalto, S.; Säisänen, L.; Könönen, M.; Julkunen, P.; Hukkanen, T.; Määttä, S.; Karhu, J. Corticospinal Output and Cortical
Excitation-Inhibition Balance in Distal Hand Muscle Representations in Nonprimary Motor Area. Hum. Brain Mapp. 2010, 32,
1692–1703. [CrossRef]

36. Kemlin, C.; Moulton, E.; Leder, S.; Houot, M.; Meunier, S.; Rosso, C.; Lamy, J.C. Redundancy among Parameters Describing the
Input-Output Relation of Motor Evoked Potentials in Healthy Subjects and Stroke Patients. Front. Neurol. 2019, 10, 535. [CrossRef]

37. Lê, S.; Josse, J.; Husson, F. FactoMineR: An R Package for Multivariate Analysis. J. Stat. Softw. 2008, 25, 1–18. [CrossRef]
38. Senaviratna, N.A.M.R.; Cooray, T.M.J.A. Diagnosing Multicollinearity of Logistic Regression Model. Asian J. Probab. Stat. 2019,

5, 1–9. [CrossRef]
39. Kuhn, M. Building Predictive Models in R Using the Caret Package. J. Stat. Softw. 2008, 28, 1–26. [CrossRef]
40. Reed, G.F.; Lynn, F.; Meade, B.D. Use of Coefficient of Variation in Assessing Variability of Quantitative Assays. Clin. Vaccine

Immunol. 2002, 9, 1235–1239. [CrossRef]
41. Johnston, R.; Jones, K.; Manley, D. Confounding and Collinearity in Regression Analysis: A Cautionary Tale and an Alternative

Procedure, Illustrated by Studies of British Voting Behaviour. Qual. Quant. 2018, 52, 1957–1976. [CrossRef] [PubMed]
42. Allison, P.D. Multiple Regression: A Primer; Pine Forge Press: Newbury Park, CA, USA, 1999; Volume 20.
43. Peterchev, A.V.; Goetz, S.M.; Westin, G.G.; Luber, B.; Lisanby, S.H. Pulse Width Dependence of Motor Threshold and Input-

Output Curve Characterized with Controllable Pulse Parameter Transcranial Magnetic Stimulation. Clin. Neurophysiol. 2013,
124, 1364–1372. [CrossRef] [PubMed]

44. Peterchev, A.V.; Murphy, D.L.; Lisanby, S.H. Repetitive Transcranial Magnetic Stimulator with Controllable Pulse Parameters
(CTMS). In Proceedings of the 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology Society,
EMBC’10, Buenos Aires, Argentina, 31 August–4 September 2010.

45. Peterchev, A.V.; Jalinous, R.; Lisanby, S.H. A Transcranial Magnetic Stimulator Inducing Near-Rectangular Pulses with Controllable
Pulse Width (CTMS). IEEE Trans. Biomed. Eng. 2008, 55, 257–266. [CrossRef] [PubMed]

46. Huang, Y.Z.; Sommer, M.; Thickbroom, G.; Hamada, M.; Pascual-Leonne, A.; Paulus, W.; Classen, J.; Peterchev, A.V.; Zangen, A.;
Ugawa, Y. Consensus: New Methodologies for Brain Stimulation. Brain Stimul. 2009, 2, 2–13. [CrossRef]

47. Zeugin, D.; Ionta, S. Anatomo-Functional Origins of the Cortical Silent Period: Spotlight on the Basal Ganglia. Brain Sci. 2021, 11, 705.
[CrossRef]

48. Boroojerdi, B.; Prager, A.; Muellbacher, W.; Cohen, L.G. Reduction of Human Visual Cortex Excitability Using 1-Hz Transcranial
Magnetic Stimulation. Neurology 2000, 54, 1529–1531. [CrossRef]

49. Strigaro, G.; Ruge, D.; Chen, J.C.; Marshall, L.; Desikan, M.; Cantello, R.; Rothwell, J.C. Interaction between Visual and Motor
Cortex: A Transcranial Magnetic Stimulation Study. J. Physiol. 2015, 593, 2365–2377. [CrossRef]

50. Churchland, M.M.; Yu, B.M.; Cunningham, J.P.; Sugrue, L.P.; Cohen, M.R.; Corrado, G.S.; Newsome, W.T.; Clark, A.M.; Hosseini,
P.; Scott, B.B.; et al. Stimulus Onset Quenches Neural Variability: A Widespread Cortical Phenomenon. Nat. Neurosci. 2010,
13, 369–378. [CrossRef]

51. Perruchoud, D.; Fiorio, M.; Cesari, P.; Ionta, S. Beyond Variability: Subjective Timing and the Neurophysiology of Motor Cognition.
Brain Stimul. 2018, 11, 175–180. [CrossRef]

http://doi.org/10.1016/j.clinph.2021.06.014
http://www.ncbi.nlm.nih.gov/pubmed/34344609
http://doi.org/10.1016/j.clinph.2021.06.021
http://www.ncbi.nlm.nih.gov/pubmed/34454281
http://doi.org/10.1162/jocn_a_00201
http://doi.org/10.1002/hbm.21137
http://doi.org/10.3389/fneur.2019.00535
http://doi.org/10.18637/jss.v025.i01
http://doi.org/10.9734/ajpas/2019/v5i230132
http://doi.org/10.18637/jss.v028.i05
http://doi.org/10.1128/CDLI.9.6.1235-1239.2002
http://doi.org/10.1007/s11135-017-0584-6
http://www.ncbi.nlm.nih.gov/pubmed/29937587
http://doi.org/10.1016/j.clinph.2013.01.011
http://www.ncbi.nlm.nih.gov/pubmed/23434439
http://doi.org/10.1109/TBME.2007.900540
http://www.ncbi.nlm.nih.gov/pubmed/18232369
http://doi.org/10.1016/j.brs.2008.09.007
http://doi.org/10.3390/brainsci11060705
http://doi.org/10.1212/WNL.54.7.1529
http://doi.org/10.1113/JP270135
http://doi.org/10.1038/nn.2501
http://doi.org/10.1016/j.brs.2017.09.014

	Introduction 
	Materials and Methods 
	Participants 
	Input–Output Curve (IOC) 
	Predicting MEP Amplitude 
	Variability in MEP Amplitude 

	Results 
	Correlation Analysis 
	General Linear Model (GLM) for Predicting MEP Amplitude 
	Strength of the Predictive Model 
	Analysing the Variability of Parameters 

	Discussion 
	Conclusions 
	References

