
Citation: Zavala Hernández, J.G.;

Barbosa-Santillan, L.I. Virtual

Intelligence: A Systematic Review of

the Development of Neural

Networks in Brain Simulation Units.

Brain Sci. 2022, 12, 1552. https://

doi.org/10.3390/brainsci12111552

Academic Editors: Pietro Aricò and

Peter König

Received: 27 August 2022

Accepted: 26 October 2022

Published: 15 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

brain
sciences

Article

Virtual Intelligence: A Systematic Review of the Development
of Neural Networks in Brain Simulation Units
Jesús Gerardo Zavala Hernández † and Liliana Ibeth Barbosa-Santillán *,†

Department of Information Technology, Universidad de Guadalajara, Guadalajara 45100, Mexico
* Correspondence: ibarbosa@cucea.udg.mx
† These authors contributed equally to this work.

Abstract: The functioning of the brain has been a complex and enigmatic phenomenon. From the
first approaches made by Descartes about this organism as the vehicle of the mind to contemporary
studies that consider the brain as an organism with emergent activities of primary and higher order,
this organism has been the object of continuous exploration. It has been possible to develop a
more profound study of brain functions through imaging techniques, the implementation of digital
platforms or simulators through different programming languages and the use of multiple processors
to emulate the speed at which synaptic processes are executed in the brain. The use of various
computational architectures raises innumerable questions about the possible scope of disciplines such
as computational neurosciences in the study of the brain and the possibility of deep knowledge into
different devices with the support that information technology (IT) brings. One of the main interests
of cognitive science is the opportunity to develop human intelligence in a system or mechanism. This
paper takes the principal articles of three databases oriented to computational sciences (EbscoHost
Web, IEEE Xplore and Compendex Engineering Village) to understand the current objectives of neural
networks in studying the brain. The possible use of this kind of technology is to develop artificial
intelligence (AI) systems that can replicate more complex human brain tasks (such as those involving
consciousness). The results show the principal findings in research and topics in developing studies
about neural networks in computational neurosciences. One of the principal developments is the use
of neural networks as the basis of much computational architecture using multiple techniques such
as computational neuromorphic chips, MRI images and brain–computer interfaces (BCI) to enhance
the capacity to simulate brain activities. This article aims to review and analyze those studies carried
out on the development of different computational architectures that focus on affecting various brain
activities through neural networks. The aim is to determine the orientation and the main lines of
research on this topic and work in routes that allow interdisciplinary collaboration.

Keywords: computational architectures; brain functions; computational neuroscience; neural networks

1. Introduction

Brain function studies have been highly relevant to different scientific disciplines for a
long time. The sciences have focused on recognizing those epistemological aspects of brain
function (how is knowledge generated?).

Throughout history, different thinkers have been interested in understanding how
the brain works. Descartes offered the first approaches of relevance for these studies. A
separation between the body and the mind was proposed, thus originating a dualistic
problem in which cerebral activities belong to a world outside the material or human
world. This approach to the mind at a purely ideological level is housed in theoretical
assumptions about brain functioning since the mind is an immaterial entity without the
possibility of experimentation “only through the subjective exercise of the knowledge:
here and now”, Descartes’ vision brought an endless discussion of how the brain works,
resulting in the classic “mind–brain problem”. This approach and the difficulty of avoiding
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the metaphysical character of the mind brings the rejection of the study of brain activities
of a higher degree or involving aspects related to the use or presence of consciousness or
conscious states.

Consequently, a distancing between neuroscientific studies and mental phenomena
will continue for a long time (the second half of the 19th century and the first half of the
20th century). The main argument for this was the impossibility of scientific verification
of the existence of consciousness within brain activities. Currently, science has not fully
understood the problem of consciousness or conscious actions. The mind is an entity
outside the physical world; the brain, on the other hand, is presented as an organism
with a determined form and time. The reductionism of Penrose [1] or the functionalism of
Baars [2] forced us to think about how the brain works. Studies in neuroscience have mainly
focused their attention on those processes of a biological nature, which can be susceptible
to measurement, experimentation and verification from any complexity that could question
its formality as a science because the brain activities of a higher nature exceed scientific
understanding. At present, different studies have made the explanation of mental life from
observation, analysis and experimentation of the functioning of the brain possible through
technology with the support of mechanisms and devices for the simulation, storage and
processing of information to recognize the vast universe of the human mind.

The study of brain activities and IT participation in these phenomena have their
antecedents in the second half of the 20th century. The discussion about high-order activities
originated from studies by Alan Turing, where he proposed ways in which a machine or
system can resemble human behaviour through algorithms and computation. Another
of the most important principles was the one carried out by the mathematician John
Von Neumann.

The possibility of similarity between the brain and a computer was affirmed, taking
the brain functioning as a principle. The study of brain activities had been presented as a
problematic phenomenon full of questions and enigmas. As stated by Ryle [3], Descartes’s
categorical error brought the subjectivity of thought and its metaphysical character. The
indubitableness of thought and the infallibility of our experience are possible because
we are aware of these acts (we only superficially know what happens). That is, we only
know the results of these processes, not the processes themselves. The neuroscientific
community started to study brain functions, from knowing its biological behaviour [4] to
its most complex mechanisms. Various ways of thinking have emerged to explain brain
behaviour, such as Davidson’s anomalous monism [5], Searle’s biological naturalism [6],
the dynamic core hypothesis of Tononi [7] and the interactionist dualism of Eccles [8]. The
diversity of perspectives in the study of the brain and its functioning can be reduced to
positions that start from the principal basis of understanding the study of brain phenomena:
materialism and functionalism. However, as a consequence, this separation has produced
constant discussion between the elements involved in the brain activities (mainly those
related to consciousness) and how new models can be developed to explain the structure
and behaviour of this type of activity scientifically [9].

The question of how the brain works must take into account different approaches
considering how the brain works or behaves as follows:

A. Series of causes, predispositions or internal properties in the subject’s mental states
can be determined as intrinsic properties. Material descriptions seek the development
of pure neuroscience away from problems concerning Penrose’s mind [1].

B. Activities can be translated through the generation of programming languages that
seek to interpret brain-behaviour blocks scientifically [10].

C. Functional equality between a person and a digital computer which are in optimal
conditions; that is, it is based on the solid assumption that these two entities perform
the same abstraction or processing functions [11,12].

The explanatory principle of science is that brain activities and mental states arise
biologically like any other human activity. Since it cannot be denied that this activity
belongs to the physical world in the face of the findings presented by different techniques
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of brain measurement [13–15], which show the participation of certain brain parts in these
activities or processes, the explanation of the functioning of consciousness is not simple.
Different aspects such as the biochemistry presented during conscious activity or the
generation of meta-representations about lived experiences [16] still represent an enigma
that requires greater depth for computational studies in neuroscience.

However, this does not mean they should only reduce the explanation of consciousness
or mental activities to their biological roots. Scientific advances show the possibility
of exploring this enigmatic activity with new techniques and technologies that would
make it possible to decode a vital part of this phenomenon [17,18]. One of the aims is to
elaborate more specific explanations of the operation of this activity or emergent property
of human life.

Many complex brain activities are derived from conscious experiences and the cor-
relation between a neural system and its environment. These conscious activities, which
occur in the subjects, are verifiable through the verbal manifestation of the issue expe-
riencing these states and the detection of neuronal activity and plasticity through the
synaptic exchanges derived from the action potentials executed [19] during a conscious
brain process [20,21].

Conscious life on a biological level is presented through the stimuli generated from
a subjective experience. These stimuli are defined through neural patterns of activation
that determine the nature of the neural representation [22]. In turn, a neural model is
translated as a code or language, which the brain uses to represent the information of
the stimuli [23]. The task of analyzing this code is complex and can currently find its
conceptualization within the quantitative descriptions offered by the nerve conduction
equations of the computational models of experimental neuroscience [24,25].

Cognitive science development has brought with it the analysis and application of
many faculties of the mind to mechanisms or devices [26]. Faculties such as vision, language
or memory have been developed in “intelligent machines” [27,28]; however, these types of
faculties are considered at a minor or primary level to the more complex activities of human
nature. The development of these mental faculties in different machines has resulted from
elaborating execution codes within computational languages. Their explanation finds
meaning within them [29]. Currently, there are a series of questions about the possibilities
that technology has to assimilate or become aware of an automaton mechanism [30].

Both systems (the mental and the computational) “process information” from their
environment. Therefore, they are considered equivalent cognitive systems [18,31,32], as-
suming that two processing systems similarly execute certain tasks in such a way that they
cannot be distinguished from one another; these could cause them to be considered the
same or identical [33]. The task is focused on recognizing not the operations’ similarity
between one system and another, but instead, the information method processed [34].

Computational models of the mind have developed an architecture in which they
work by simulating the different processes controlled by different zones or areas of the
brain, trying to reproduce these processes in the operation of a processor [35,36]. These
mental processes synchronize and prioritize human activities working individually or in
sync with other areas [37] which are found in some brain regions and act together in human
activities. Most of the architectures in brain functions focus their attention on the primary
elements of the brain. They have developed promising models, as in the case of neural
networks [38–40].

What kind of digital architectures can be effective models for this task? The problem
focuses on the difference in information processing and interpretation capabilities between
an individual and a system.

Regarding the study of high-order brain activities or conscious human activities, a
series of projects worldwide have focused on developing simulators and platforms that
aim to execute certain brain activities. Currently, some models seek to simulate brain
functions in real time and speed in synaptic processes, data management and the capacity
to amalgamate certain brain activities related to consciousness, such as decision making.
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Understanding the functioning of consciousness has become essential for neurosci-
entific research today. Therefore, it is necessary to consider multidisciplinary work as the
basis of any approach to this organism (since we can understand biological behaviour).
However, the subjective and phenomenological factors that make each individual a unique
being continue to be incomprehensible to scientific understanding.

This paper aims to conduct a systematic review of different papers, their lines of action
and their methods focused on studying brain function within computational neurosciences.
The purpose is to recognize the main works on the development of brain simulators based
on neural network architecture and to identify those aspects that can be studied in more
detail in this line of research. The paper is organized as follows: Section 2 describes the
construction of virtual intelligence: a systematic review of the development of neural
networks in brain stimulation units and the performance metrics used to evaluate the
model and presents the results of the different experiments, while Section 3 offers some
discussion. Finally, Section 4 summarises the conclusions drawn from this work.

2. Methods and Results

The systematic review of the literature shows the results obtained in the search and
classification of different papers aimed at developing this computational architecture used
to stimulate brain function.

The present study found three main lines of research for the development of neural
networks:

1. Programming languages capable of simulating brain behaviour.
2. Brain plasticity and learning.
3. Processing and execution of cognitive tasks in real real time.

Some research has taken advantage of the development of imaging studies to gain
insight into biological functioning and the different brain areas involved in cognitive
processes. It has provided an excellent opportunity to develop computational architectures
that aim to mimic the brain as precisely as possible within scientific studies in AI.

The investigations within the computational neurosciences have developed complex
structures seeking to reconstruct the biological, anatomical and cognitive processes. They
are present in this brain activity by developing diverse computational architectures. It
interacts with their actions (neuromorphic computing, silicon chips, neural networks,
multiprocessors and others).

2.1. Research Question and Objectives

At first, the establishment of the PICO question was proposed, which could offer a
search route within this investigation to make it possible to trace the corresponding work
methodology. Therefore, to carry out this systematic review, we started with the following
research question:

What are the applications of neural networks in computational architectures for the
study of brain functions?

At the time of identifying the object of study, the search terms and criteria used to
answer the research question were obtained as follows, as shown in Figure 1:

A. Identify the primary research into developing neural networks for brain stimulation
of conscious activities.

B. Determine the key concepts within the research question for the article search.
C. Determine the exclusion or inclusion factors for the article search.
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Figure 1. The flowchart shows the selection criteria made.

2.2. Inclusion and Exclusion Criteria

We carried out the review and analysis of three specialized databases in engineering
and technology. The databases consulted are the following:

• IEEE Xplore (https://ieeexplore-ieee-org.wdg.biblio.udg.mx:8443/Xplore/home.jsp)
(accessed on 12 August 2022);

• Computing Machinery Association (https://dl-acm-org.wdg.biblio.udg.mx:8443) (ac-
cessed on 23 August 2022);

• EBSCO Host, Library, Information Science and Technology Abstract (https://web-p-
ebscohost-com.wdg.biblio.udg.mx:8443/ehost/search/basic?vid=0&sid=165ca839-ee9
6-4612-bc68-1d443e1073b7%40redis) (accessed on 29 August 2022).

Once the question was established, we focused on designing a search strategy to locate
the most relevant information for this review. Specific exclusion criteria were needed to
create the search strategy, such as the search criteria and the literary resources. It began by
using the word neural network and awareness or brain as connectors as a criterion for search
engines. From this, all academic articles written between 2017 and 2021 (full text) in English
were selected, oriented to topics such as the brain, cognition, neural networks, learning,
neurons, brain–computer interfaces, data analysis, machine learning, intelligence artificial,
deep learning, meta-analysis, behaviour, neuroscience, communication and technology.

As shown in Table 1, a total of 3328 documents were found, organized as follows:

Table 1. Total publications found in the database.

Database Publication

ACM 1511
EBSCO 306

IEEE 1511

2.3. Data Extraction

The selection criteria for our research question were provided with greater clarity to
identify relevant studies. The answer to the research question, as well as more specific
exclusion criteria, took as criteria for the selection of publication topics oriented to research

https://ieeexplore-ieee-org.wdg.biblio.udg.mx:8443/Xplore/home.jsp
https://dl-acm-org.wdg.biblio.udg.mx:8443
https://web-p-ebscohost-com.wdg.biblio.udg.mx:8443/ehost/search/basic?vid=0&sid=165ca839-ee96- 4612-bc68-1d443e1073b7%40redis
https://web-p-ebscohost-com.wdg.biblio.udg.mx:8443/ehost/search/basic?vid=0&sid=165ca839-ee96- 4612-bc68-1d443e1073b7%40redis
https://web-p-ebscohost-com.wdg.biblio.udg.mx:8443/ehost/search/basic?vid=0&sid=165ca839-ee96- 4612-bc68-1d443e1073b7%40redis
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methodology, research, research funding, machine learning, brain, brain computational
interfaces, artificial intelligence, cognition, meta-analysis, cognitive training, algorithms,
data analysis, decision making, physiology brain, cognitive ability, deep learning and
artificial neural network as shown in Table 2.

Table 2. The number of publications results after the application of exclusion criteria.

Database Publication

ACM 369
EBSCO 115

IEEE 278

Finally, relevant articles through criteria, such as reviewing titles, summaries, or
full texts of the works were selected. Studies focused on treatments or analysis of the
behaviour of patients with diseases, brain medical studies, or anatomical research through
neuro-imaging that were not oriented to the development of computational architectures
were discarded.

In addition, we considered three brain study areas as reference points for computa-
tional architectures oriented to the simulation of higher-order brain processes. The areas
taken as a decision pattern for the selection of the papers are highly relevant for studies
in computational neuroscience because it is through them that the different architectures
addressed in this study are implemented. The areas we refer to are the following: plasticity,
memory and learning.

As a result, we obtained 21 academic articles that met the characteristics of the selec-
tion criteria.

The next step was to complete the reading of the selected works and extracting and
synthesizing the recovered data. We used the quality assessment results to guide the
interpretation of the review’s findings to indicate the types of computational architectures
developed between 2017 and 2021 geared towards executing tasks similar to those of the
human brain.

The data results are as follows:
Identify journals that published the papers, discuss the main lines of research in neural

networks to the development of brain simulation units, report and discuss review findings
according to the research questions and group them into areas. During the discussion, we
interpreted the review results within the context of the research questions, in a broader
context related to the current international interest in the brain. We provided some related
works to support the findings.

2.4. Statistical Analysis

Initially, we grouped the information obtained by the type of journal and the num-
ber of publications collected. The exposure of information was carried out through the
segmentation by percentages found in each of the types of journals indicated as show in
Table 3.

We observed that 28.56% of the publications were found in 3 of the 21 reviewed
journals (IEEE Transactions on Biomedical Engineering, IEEE Transactions on Neural Networks
and Learning Systems and Frontiers in Neurorobotics with 9.52%, respectively); also, 71.44% of
the remaining articles were distributed in one publication each for the 252 journals analysed
(15 reports corresponding to 4.76% for each publication).
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Table 3. Total of publications classified by type of journal.

Journal N. Paper Title Types of Computational Architecture

Biological Cybernetics 1 A neural model of schemas and
memory encoding

Design of neural networks and learning
algorithms for classification, predictions,
memory, and learning

Computer 1 Biologically driven artificial intelligence
A critical review of the development of AI
in brain stimulation through
theoretical models

Connection Science 1 Interactive natural language acquisition in
a multi-modal recurrent neural architecture

Design of neural networks and learning
algorithms for classification, predictions,
memory, and learning

Frontiers in
Computational
Neuroscience

1 The neuroscience of spatial navigation and
the relationship to artificial intelligence

Machine learning to analyze brain datasets
(work of brain functions, measure of
brain activities)

Frontiers in
Neurorobotics 2

From near-optimal Bayesian integration to
neuromorphic hardware: a neural network
model of multisensory integration—a
brain-inspired model of theory of mind

Design of neural networks and learning
algorithms for classification, predictions,
memory, and learning—A critical review of
the development of AI in brain stimulation
through theoretical models

IEEE Access 1 Study of recall time of associative memory
in a memristive hopfield neural network

design of neural networks and learning
algorithms for classification, predictions,
memory, and learning

International Journal of
Advanced Robotic
Systems

1

A noninvasive brain–computer interface
approach for predicting motion intention of
activities of daily living tasks for an
upper-limb wearable robot

Brain–computer interfaces

IEEE Journal of
Biomedical and Health
Informatics

1
Learning discriminative spatiospectral
features of erps for accurate
brain-computer interfaces

Brain–computer interfaces

IEEE Journal on
Exploratory Solid-State
Computational Devices
and Circuits

1
Subthreshold spintronic stochastic spiking
neural networks with probabilistic hebbian
plasticity and homeostasis

Design of neural networks and learning
algorithms for classification, predictions,
memory, and learning

IEEE Journal of
Translational
Engineering in Health
and Medicine

1
Integrated development environment for
eeg-driven
cognitive-neuropsychological research

Brain software simulation

IEEE Transactions on
Biomedical Engineering 2

Modeling hierarchical brain networks via
volumetric sparse deep belief network
(VS-DBN)—feasibility of automatic error
detect-and-undo system in human
intracortical brain-computer interfaces

Design of neural networks and learning
algorithms for classification, predictions,
memory, and learning—Brain
software simulation

IEEE Transactions on
Cognitive and
Developmental Systems

1
DAC-h3: A proactive robot cognitive
architecture to acquire and express
knowledge about the world and the self

Hybrid architectures

IEEE Transactions on
Computer-Aided
Design of Integrated
Circuits and Systems

1 A compact gated-synapse model for
neuromorphic circuits Hybrid architectures

IEEE Transactions on
Neural Networks and
Learning Systems

2

Dendritic neuron model with effective
learning algorithms for classification,
approximation, and prediction—a
brain-inspired framework for evolutionary
artificial general intelligence

Design of neural networks and learning
algorithms for classification, predictions,
memory, and learning—Hybrid
architectures

IEEE Transactions on
Neural Systems and
Rehabilitation
Engineering

1
A real-time movement artifact removal
method for ambulatory brain-computer
interfaces

Machine learning to analyze brain datasets
(work of brain functions, measure of brain
activities)

IEEE Transactions on
Pattern Analysis and
Machine Intelligence

1 SimiNet: A novel method for quantifying
brain network similarity

Design of neural networks and learning
algorithms for classification, predictions,
memory, and learning

Neural Computation 1
Controlling complexity of cerebral cortex
simulations—I: CxSystem, a flexible cortical
simulation framework

Brain software simulation

Proceedings of the IEEE 1
Advancing Neuromorphic Computing
With Loihi: A Survey of Results
and Outlook

Development of neuromorphic processors
(information processing, neural
connectivity in real time [brain synapse],
and learning)
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The development of different computational architectures with the use of neural
networks has the task of mimicking brain functions as precisely as possible. Having the
rational capacity that humans show has been one of the main objectives for studies in
computational neuroscience. Knowledge of forms of learning has its primary basis in the
information inputs that come from the experience of individuals with the environment. To
acquire this knowledge, they need input channels through which the information reaches
the brain. The main input channels for humans are the senses, which receive information
and transform it into input data of different characteristics.

As shown in Table 4, the input channels found in the selected papers are the following:

Table 4. Types of inputs found in the selected papers.

Input Data Paper Related

Inputs data through visual datasets or
experience in real time 12

Inputs data through language datasets or
experience in real time 2

Others (mixes inputs data and
neural connection) 5

The input data that predominate in the development of computational architectures for
the simulation of brain functions come from visual stimuli, with 57.12% of the publications.
In second place are mixed architectures, which take input data from the environment
(visual or language [hearing or speech]) and use principles of neural connection, such as
plasticity or neuronal synapses, with 23.8%, while the input data collected from language
(hearing or speech) are in last place with 9.52%. The analysis found only two publications
of theoretical research unrelated to experimentation, comprising 9.52%.

The data show that the primary input data for developing computational architectures
for the simulation of brain functions are derived from visual information. This tendency is
due to the ability to translate data from visual stimuli into machine language.

Computational neurosciences reference the senses as input channels through which
the information reaches a processing centre. However, it has not been possible to imitate
the senses for the transcription of data that AI can transform into knowledge.

The review found that the use of neural networks to develop computational architec-
tures is oriented toward the design of the networks, followed by learning algorithms to
simulate different brain functions in 38.1% [41–48]. Next, the development of brain simula-
tion software is 14.3% [49–51], and the development of hybrid architectures (using brain
computing interfaces supported by neuromorphic processors) accounts for 14.3% [52–54].
The development and improvement of brain computing interfaces was 9.5% [55,56], as
was analysis and database storage through machine learning [57,58]. Finally, 4.8% was
shown for the design of neuromorphic processors [59]. The remaining 9.5% of the selected
publications are critical reviews on the development of AI in brain stimulation through
theoretical models [60,61].

The computational architectures developed in the reviewed publications are shown in
Table 5:

Finally, we found four application areas in which neural networks work to develop
computational architectures oriented to the simulation of brain functions. These areas or
units were classified as follows:

• New generation data collection for the study of brain activities.
• Reproduction of the brain structure and its primary functions through the develop-

ment of brain simulation software to study molecular and subcellular aspects and
neuronal functioning at a micro- and macroscopic level is shown.

• Development of cognitive computing through neuromorphic processors and sili-
con chips.

• The design of brain models for executing brain tasks, such as behaviour, decision
making and learning.
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Table 5. Computational architectures in selected publications.

Database Publication

Design of neural networks and learning
algorithms for classification, predictions,

memory, and learning.
8

Brain software simulation 3
Hybrid architectures 3

Machine learning to analyze brain datasets
(work of brain functions, measure of

brain activities)
2

Brain–computer interfaces 2
Development of neuromorphic processors

(information processing, neural connectivity in
real time [brain synapse], and learning)

1

A critical review of the development of AI in
brain stimulation through theoretical models 2

The parameter used to establish paper selection measures the degree of relevance
on a scale of 0 to 10, where 0 is considered unrelated, and 10 is regarded as a complete
relationship. Figure 2 shows the results obtained from the analysis carried out regarding
the relationship of the papers with the degree of relevance in each area.

Figure 2. Neural networks applications and the main areas in which they are apply.

3. Discussion

This systematic review shows the main studies that dealt with the development of
computational architectures designed to simulate brain function between 2017 and 2021, as
shown in Figure 3. We observed that the principal applications of these studies are directly
related to developing cognitive processes.

The architectures found are strictly logical which considers the possibility of structur-
ing architectures that may be capable of simulating some of the most complex human brain
activities or activities related to consciousness.

One of the essential aspects of our review was the low prevalence of studies in this
area in the 3328 publications we searched. Only 21 of them studied this phenomenon which
means that only 0.63% of the comprehensive studies on neural networks were directed to
this research area, according to the data presented (2.75% of the 762 studies found with
specific criteria). It should be noted that most of the publications were directed to the
development of the design of neural network structures for medical use (learning through
databases for detection of diseases such as cancer, Parkinson’s, Alzheimer’s, among others).
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Figure 3. Main types of computational architectures developed through the application of neural
networks to simulate brain tasks.

One of the principal challenges found in this study is the complexity of the multiple
data inputs of the human being and how these inputs are translated into information for
the brain. Today, the main data inputs for this type of architecture come mainly from visual
or language stimuli that can be translated through binary language. However, there is still
much to be done in the case of other data inputs for the human (touch, taste, smell) that
allow a better understanding of the environment and, therefore, better performance.

Furthermore, one of the main challenges of computational neuroscience is to design
components or architectures based on the human structure and its functioning. Currently,
the construction of computational elements with characteristics that can more accurately
simulate brain processes is proposed, from basic biological functions to complex brain
functions (development of sensors and sensory infrastructure, neural networks with the
ability to simulate chemical and electrical exchanges, synaptic capacity, sensory motor
strategies for control and cognition and knowledge transfer and diffusion), all of this
responding to the initial question of our research: how is knowledge generated?

This systematic review found specific lines of research in recent works and publications
as show in Figure 4. The application of neural networks is the main structure for generating
computational architectures for the development and simulation of brain functions. These
works mainly focused on the application of computational architectures for the study of
the following functions:

A. Memory.
B. Learning.
C. Decision making or free will.
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Figure 4. The results of the systematic review of the 21 publications show the main applications for
neural networks in the development of computational architectures (7) and the number of studies
oriented to each application.

We observed that the main ways for the collection, handling and storage of input data
and for the implementation and development of computational architectures based on
neural networks are the following:

• Recognition, classification, memory and data deduction through inputs through visuals.
• Acoustic or speech channels that are processed through electrical action potentials.
• Hybrid architectures that have neuromorphic processors with better capacities and speeds.
• Algorithms and new forms of synaptic exchanges based on chemical processes.

Faced with these challenges, international projects and initiatives have been created
that aim to generate a brain and neuroscientific research network that contributes and
disseminates the results obtained from its scientific practice. All this is from a multidisci-
plinary perspective using top-level techniques that allow the observation and measurement
of phenomena related to the brain and its functioning.

Within these projects, lines of research were identified that study brain functions and
the areas of the brain that participate in these processes through different investigations.
The principal research projects focus on the collection, management and dissemination of
data at an international level in neuroscience, brain simulation, theoretical approaches and
multiscale models of the brain, brain computing focused on data analysis and robotics and
imaging techniques for brain mapping and observation of brain processes.
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Among the main initiatives, we can point out the following:

• The Human Brain Project ( HBP ) is a collaborative European research project with a
ten-year program launched by the European Commission’s Future and Emerging Tech-
nologies in 2017 (https://www.humanbrainproject.eu) (accessed on 5 August 2022).

• The Brain Initiative was developed in the United States in 2014. It has the support of
several government and private organizations within the United States but is under
the direction and financing of the NIH (https://braininitiative.nih.gov) (accessed on
12 September 2022).

• Center for Research and Cognition in Neuroscience includes the neuroscience research
laboratory founded in 2012 as a research center of the faculty of psychological science
and education of the Université Libre de Bruxelles (https://crcn.ulb.ac.be) (accessed
on 7 September 2022).

The objective of these initiatives is to design new methods and technologies for the
study of the human brain, promote new models and images for brain exploration by
studying the behaviour of individual cells and the interaction with neural circuits in time
and space, create and operate scientific research structures for brain research, cognitive
neuroscience and other scientific disciplines related to neuroscientific studies. The results
of their work are available through their websites through different resources: journal
publications, scientific achievements and deliverables by project phase.

The results obtained from our work and the analysis of recently published literature
have shown that current works focus on developing one or more joint applications for
the development of computational architectures. In addition, it should be noted that we
identified six lines of research that verify these findings during our systematic review.
Within the lines of research for the area of computational neuroscience, the following
stand out:

A. Large-scale recording and modulation in the nervous system.
B. Next generation brain imaging.
C. Integrated approaches to brain circuit analysis.
D. Neuromorphic computing with biological neural networks as analog or digital copies

in neurological circuits.
E. Brain modeling and simulation.

These findings can agree with the results obtained in this systematic review on the
main applications of neural networks in the development of computational architectures
(Figure 5).

It is worth mentioning that the projects and initiatives mentioned are investigations
that work in medium and long-term objectives and show their results through publications
within their platforms where the main advances in their different research areas can observe
in their platforms. These initiatives stand out among the most important projects around
the world for their vision and multidisciplinary and collaborative work with international
organizations such as universities, health systems and research centers.

https://www.humanbrainproject.eu
https://braininitiative.nih.gov
https://crcn.ulb.ac.be
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Figure 5. Gaussian processes for 761 works in three clusters: plasticity, memory and learning.

4. Conclusions

The use and application of neural networks in the development of computational
architectures for the execution of tasks that involve the human brain is undoubtedly a
growing field of research. Currently, computational neuroscience studies have managed to
imitate functions of a rational nature for the human mind. However, multiple factors still
keep more complex brain tasks at a distance.

Advances in computational neuroscience studies have proven very useful in under-
standing new unknowns in brain behaviour. Consequently, multiple types of computational
architectures are applying this new knowledge in the different areas of IT.

Applying different technologies is a fundamental step in studies of the brain and
knowledge of its functioning. This knowledge allows the development of many types
of computational architectures based on a structure close to that of brain function. Neu-
ral networks have made it possible to simulate many logical processes of the brain and
how a neuron can behave in order to develop devices with a specific capacity or type
of intelligence.

As mentioned in the previous section,different initiatives are working to discover new
pathways towards understanding the brain. It is extremely important to delve into the work
from these initiatives after this study, since many of their works are still under investigation.

Although advances in neuroscience have made it possible to delve into the functioning
of brain processes at a biological and chemical level, human behaviour cannot be the object
of biological or physical reductionism in this area. However, scientific advances have
shown that achieving a complex and holistic understanding of brain function requires
a multidisciplinary vision, which must start from the basic physical foundations of this
process and be supported by emerging elements that technology could offer.
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Knowledge of brain behaviour is necessary for understanding human behaviour, but
this type of knowledge can also be of vital importance for issues related to the prevention
and treatment of brain diseases,.

Finally, the purpose of examining each of these approaches is the need to offer a
general theoretical vision of how studies in this area have been investigated and to point
out their main discussions. It should be noted that the approaches offered are a way of
showing what the main objectives around this topic have been. Within the main tasks for
the study and development of research in this field of computational neuroscience we can
point out:

• The need to build multidisciplinary projects for the study of brain functions.
• The application of multiple technologies for the simulation and modeling of brain activities.
• The creation of a global platform of free access for researchers.

However, computational neuroscience studies have as their main challenge one of the
most enigmatic parts of the brain, consciousness. Knowledge of the brain functions that
involve consciousness and the different areas of the brain that participate in this process
is one of the main objectives of these disciplines. The possibility of developing devices
capable of recognizing themselves and interacting with their environment is one of the
most critical challenges for research in these disciplines and for future developments in AI.
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