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Abstract: The perception of physical exertion is the cognitive sensation of work demands associated
with voluntary muscular actions. Measurements of exerted force are crucial for avoiding the risk of
overexertion and understanding human physical capability. For this purpose, various physiological
measures have been used; however, the state-of-the-art in-force exertion evaluation lacks assessments
of underlying neurophysiological signals. The current study applied a graph theoretical approach
to investigate the topological changes in the functional brain network induced by predefined force
exertion levels for twelve female participants during an isometric arm task and rated their perceived
physical comfort levels. The functional connectivity under predefined force exertion levels was
assessed using the coherence method for 84 anatomical brain regions of interest at the electroen-
cephalogram (EEG) source level. Then, graph measures were calculated to quantify the network
topology for two frequency bands. The results showed that high-level force exertions are associated
with brain networks characterized by more significant clustering coefficients (6%), greater modularity
(5%), higher global efficiency (9%), and less distance synchronization (25%) under alpha coherence.
This study on the neurophysiological basis of physical exertions with various force levels suggests
that brain regions communicate and cooperate higher when muscle force exertions increase to meet
the demands of physically challenging tasks.

Keywords: electroencephalogram; EEG; functional connectivity; force exertion; graph theory;
perceived exertion

1. Introduction

Perceived exertion is the cognitive sensation of work demands associated with vol-
untary muscular actions [1]. Measurements of exerted force help in determining human
physical capability, which is crucial for avoiding the risk of overexertion. Studies on how
the brain works and perceives an exerted force are very promising in the field of ergonomics.
This understanding is not gained by studying the function of brain regions in isolation
but by relating to the pattern of interactions between different brain regions. The human
brain can be conceptualized as a complex network. The recent confluence of network
science, modern network modeling, advanced computation paradigms, and developments
in neurophysiological technologies has shed light on new ways of studying complex in-
tracortical interactions. This field of study is commonly known as brain connectivity or

Brain Sci. 2022, 12, 1575. https://doi.org/10.3390/brainsci12111575 https://www.mdpi.com/journal/brainsci

https://doi.org/10.3390/brainsci12111575
https://doi.org/10.3390/brainsci12111575
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/brainsci
https://www.mdpi.com
https://orcid.org/0000-0002-1551-4499
https://orcid.org/0000-0002-9134-3441
https://orcid.org/0000-0003-0103-6008
https://orcid.org/0000-0001-8514-131X
https://doi.org/10.3390/brainsci12111575
https://www.mdpi.com/journal/brainsci
https://www.mdpi.com/article/10.3390/brainsci12111575?type=check_update&version=1


Brain Sci. 2022, 12, 1575 2 of 31

the “connectome” [2,3]. Currently, there are three ways to quantify brain connectivity:
(1) structural connectivity, which is determined from anatomical brain links; (2) functional
connectivity, which is estimated from statistical dependencies between different brain
regions; (3) effective connectivity, which reflects causal relations between activated brain
areas [4]. Accordingly, several techniques with different properties and capabilities have
been developed to study brain connectivity patterns [5–12]. The most commonly used
functional connectivity estimators have been recently discussed by Ismail and Karwowski
(2020) [13].

Evaluations of communication patterns can contribute to our understanding of in-
formation processing and brain functional organization during the execution of a motor
task [14]. Predominant frontal-motor coupling in the alpha band and fronto-occipital
coupling in the beta band have been found during a suboptimally controlled task [15].
Moderate changes in brain activity in the prefrontal cortex and greater changes in the pari-
etal lobe have been observed with the elevation of exercise intensity [16]. Porter et al. [17]
reported an increase in the functional brain network of the frontal region associated with
physical and cognitive exertion tasks. High-resistance pedal exertion strengthens intrac-
erebral connections [18]. High coherence values have suggested an increase in functional
connectivity during a muscle exertion task [19]. Previous evidence suggests that corti-
cal brain function is influenced by various exercise modes, preferences, intensities, and
workloads [20–23]. Recently, a graph theoretical approach has been applied to characterize
changes in functional network efficiency during physical activities [24]. Graph theory is
a powerful mathematical tool [25] that provides a conceptual framework for studying
neurophysiological data to characterize brain topological organization and explore brain
connectivity patterns [26–28].

In the graph theory approach, the brain is graphically modeled as a network consisting
of nodes and edges [28,29]. On a macroscopic scale, the graph nodes represent anatomical
brain regions (either scalp or cortex sources), and the graph edges represent statistical
measures of association, such as anatomical, functional, or effective connections [30]. A
variety of graph theoretical measures can be calculated to investigate the topological
organization of the brain network as a whole (i.e., global measures) or as individual nodes
(i.e., local measures) [31–37].

Global graph theory measures aim to reveal network functional segregation and global
integration of information flows within the brain network. Segregation identifies the degree
to which a network’s elements form separate clusters and can be defined by calculating the
clustering coefficient, modularity, transitivity, or local efficiency [35]. Integration defines
the capacity of a network to exchange information and can be defined by calculating the
characteristic path length or global efficiency [33,38]. The network modularity should be
calculated to determine the integration and segregation between sub-networks [39,40].

Local graph theory measures, such as betweenness, degree, eigenvector centrality,
and nodal efficiency [30,41], are commonly used to evaluate nodal centrality and detect
network hubs. Watts and Strogatz [42] demonstrated that the nervous system has small-
world properties characterized by strong local clustering among network nodes with
short path lengths between neighboring nodes [26]. Small-world networks balance the
segregation and integration of information [38,43,44]. Studies of functional and effective
brain analysis suggest that the brain has small-world properties that ensure high local and
global information transfer efficiency with low wiring costs [44–46].

Currently, graph measures are primarily applied to display the function of the central
nervous system in clinical investigations [47–58]. A few studies have investigated brain net-
works using graph measures during physical activity. For example, a temporary reduction
in brain network efficiency was found when participants approached voluntary exhaustion
during an incremental treadmill exercise [18]. Additionally, a significant reduction in local
functional measures was found in the theta band when task difficulty increased [17].

The present study aimed to investigate the topological changes in functional brain
networks induced by predefined levels of physical exertion using electroencephalogram
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(EEG) source data in a group of healthy female participants. EEG signatures of brain
regions were recorded during several isometric force exertion tasks. We employed EEG
coherence analysis to examine and visualize functional connectivity patterns at various
levels of force exertion for the alpha and beta bands. We then applied a graph theoretical
framework to compare the global measures between various levels of exertion in the alpha
and beta bands.

It should be noted here that EEG task-based studies have been previously performed
at the scalp level, creating spurious connectivity patterns due to volume-conduction phe-
nomena associated with EEG signals [59]. Most previous studies ignored the quantification
of local measures, leading to a loss of balance for the most efficacious type of brain connec-
tivity measures [38]. Considering the limitations of previous studies, we studied functional
connectivity patterns in EEG data at the source level using coherence analysis methods
for female participants only [60,61]. In this work, we consider sex as a factor, as previ-
ous findings have suggested sex and hormone-based differences in brain networks when
comparing male and female individuals [62,63] and due to the limited number of EEG-
based studies on female participants only [13,64]. Furthermore, recent studies support
“the importance of considering sex as a biological variable in brain research” [65] for the
future development of sex-specific models to ascribe cognitive functional significance [66]
and an understanding of sex-related diseases [67]. We also calculated the most commonly
used global and local graph theory measures for two frequency bands (alpha and beta).
Based on the study objectives, the following research questions were posed: Are functional
connectivity patterns altered by different force exertion levels? Are topological network
properties affected by specific force exertion levels?

This paper is organized as follows: Section 2 outlines the methods and procedures,
and Section 3 describes the statistical analyses. Section 4 describes the results. Section 5
provides a discussion, and Section 6 discusses study limitations and future implications. In
the final section, we present our conclusions.

This study was based on a Ph.D. dissertation titled “Topological Changes in the
Functional Brain Networks Induced by Isometric Force Exertions Using a Graph Theoretical
Approach: An EEG-based Neuroergonomics Study” [68].

2. Materials and Methods

In this section, a pipeline for EEG data pre-processing and processing, coherence
estimation, and graph theory measures are described.

2.1. Methodological Pipeline

An overview of the novel methodological pipeline proposed in this work is shown
in Figure 1. First, EEG data were collected for all participants using 64 channel locations
to define the network nodes. Then, the collected EEG time-series signals underwent pre-
processing. A fast Fourier transform algorithm using Hanning windows was used to
calculate cross spectra for each frequency band for each participant’s exertion level for the
cleaned and filtered EEG epochs. Using the exact low-resolution brain electromagnetic
tomography (eLORETA) transformation matrix, we transformed the cross spectra for
each subject and frequency band to eLORETA files [69,70], and we reconstructed the EEG
source. The solution space estimated by source localization was then parcellated into
brain anatomical structures according to the Brodmann atlas, which was used to define
84 Brodmann area (BA) regions of interest (ROIs) (i.e., graph nodes) for brain network
construction. Functional connectivity was estimated across all pairs of brain regions. This
step yielded an adjacent matrix (sized 84 × 84) for each participant and EEG frequency band
at each force exertion level, which was binarized to remove weak connections [71]. Graph
theoretical measures were then used to compute the local and global network properties.
Finally, statistical analyses based on nonparametric permutation tests were applied to
assess brain topological changes under experimental conditions.
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lution brain electromagnetic tomography (eLORETA) software. (e) Parcellating the cortex according 
to the Brodmann area (BA) atlas. (f) Constructing the adjacent matrix after estimating the connec-
tivity patterns. (g) Binarizing the network using a threshold value. (h) Constructing the functional 
connectivity patterns between regions of interest (ROIs). (i) Calculating graph theoretical measures 
to compute local and global network properties. (j) Applying a nonparametric permutation test to 
assess brain topological changes. 

2.2. Participant Selection and Ethical Code 
Twelve healthy adult female participants (mean age 28 ± 6 y) performed a physical 

task of isometric arm exertion. All participants met the experimental requirements, in-
cluding the absence of fatigue-related or chronic physical disorders, musculoskeletal dis-
ease, back pain, injuries, mental illness, history of cardiovascular problems, and neurolog-
ical disorders. Pregnant female participants were excluded from the study. All partici-
pants were instructed not to consume any medication, coffee, or alcohol for 24 h and not 
to engage in any exercise for 48 h prior to the experiment. Experiments were conducted 

Figure 1. Methodological pipeline. (a) Collecting electroencephalogram (EEG) data using 64 channel
locations. (b) Recording the EEG time series. (c) Filtering, cleaning, and epoching the EEG time-series
signals. (d) Reconstructing the EEG source from the EEG cross spectra using exact low-resolution
brain electromagnetic tomography (eLORETA) software. (e) Parcellating the cortex according to the
Brodmann area (BA) atlas. (f) Constructing the adjacent matrix after estimating the connectivity
patterns. (g) Binarizing the network using a threshold value. (h) Constructing the functional
connectivity patterns between regions of interest (ROIs). (i) Calculating graph theoretical measures
to compute local and global network properties. (j) Applying a nonparametric permutation test to
assess brain topological changes.

2.2. Participant Selection and Ethical Code

Twelve healthy adult female participants (mean age 28 ± 6 y) performed a physical task
of isometric arm exertion. All participants met the experimental requirements, including
the absence of fatigue-related or chronic physical disorders, musculoskeletal disease, back
pain, injuries, mental illness, history of cardiovascular problems, and neurological disorders.
Pregnant female participants were excluded from the study. All participants were instructed
not to consume any medication, coffee, or alcohol for 24 h and not to engage in any exercise
for 48 h prior to the experiment. Experiments were conducted in a temperature-controlled
and sound-attenuated environment in the computational neuroergonomics laboratory
at the University of Central Florida to control for possible confounds in our study. All
experiments were carried out with the approval of the Institutional Review Board at the
University of Central Florida (STUDY00000535). All participants signed an informed
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consent form after the experimental protocol had been explained by a researcher, and the
collected data were treated confidentially.

2.3. Apparatus

The isometric arm exertion task was performed using a Jackson Strength Evaluation
System [72]. The experimental protocol was recommended by Chaffin et al. [73]. Par-
ticipants were asked to exert a force by pulling a chain upward using their flexed arms
without any body movement [73,74]. A TORBAL FC 5k series force measurement device
was attached to the handle to record the exerted arm forces.

2.4. Experimental Design

The laboratory experiment was designed to record EEG signals during an isometric
arm exertion task at predefined levels of exertion. The participants were instructed to
avoid any unnecessary movement during the experiment. The detailed timeline for the
experimental sessions is shown in Figure 2.
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Figure 2. The study protocol for arm force exertion task. MVC: maximum voluntary contraction.

The experiment consisted of two tasks: (1) maximum voluntary contraction (MVC)
and (2) isometric force exertion. In the MVC task, the participants were asked to apply
the maximum force for 3 s for each of the three trials, with a 30 s rest period between
each trial. Then, a 5 min rest was provided to avoid muscle fatigue. In the isometric arm
flexion task, participants were asked to exert a force that matched one of five predefined
exertion levels: (1) extremely light, (2) light, (3) somewhat hard, (4) hard, and (5) extremely
hard. These predefined force levels were adapted from a 6–20 scale of the rate of perceived
exertion (RPE) proposed by Borg [75], a well-known and validated scale commonly used
in ergonomics research [76,77]. The participants were asked to maintain steady-state
exertion for 3 s for three trials, with a 120 s rest period between each trial. After each
trial, the participants were asked to subjectively assess the level of physical comfort that
corresponded to the exerted force (N) using an 11-point scale of perceived physical comfort
proposed by Karwowski, W. [78] (see Figure 3). The order of force exertion levels was
randomly determined to prevent potential learning effects.
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2.5. EEG Data Acquisition

For the experimental setup, we have followed the recommended procedure addressed
in previous studies [79,80]. We used a gel-based EEG wireless system composed of 64 EEG
channels and an elastic electrode cap in different sizes with active Ag/AgCl electrodes
positioned according to the 10–10 international montage system, trigger, and wireless
amplifier (Figure 4a). We began with a manual abrasion of the participants’ scalps with
a hard-bristle comb for removing dead skin. Participants were asked to wash their hair
without additives such as hair styling products or conditioners to avoid greasing layers.
Then, we measured the distance between the participants’ nasion and inion to ensure that
the Cz electrode was placed at the center of the head, followed by measuring the nasion
to the Cz to ensure that the distance was half of the distance from nasion to inion. We
mounted the cap on the participant’s head and tightened the cap with a chin strap. Then,
we turned on the EEG device and checked the wireless connection. A cotton swab with
isopropyl alcohol was used to clean the skin for each electrode opening in the cap.
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Figure 4. EEG data acquisition system and its components. (a) Device components. (b) Placing cap
and injecting gel. (c) Isometric arm exertion task. (d) PC. (e) Raw EEG Signal.

Then we filled the electrode cap opening by injecting superVisc electrolyte gel with a
small syringe to reduce impedance and interference (Figure 4b), which will increase the
connectivity between the scalp and electrodes. Applying too much gel may create a bridge
between the signals of neighboring electrodes. The impedance was kept below 10 kΩ with
continuous monitoring throughout the experiment. Physiological signals were sampled at
500 Hz with a bandpass filter of 0.1–100 Hz to avoid anti-aliasing. The participant starts to
exert the required forced (Figure 4c), as heard from the stimulus generation software using
E-prime 3.0 software [81], which sends markers to the computer (Figure 4d). The collected
raw EEG signals (Figure 4d) were acquired using Cognionics acquisition software [82].

2.6. EEG Pipeline Analysis

The data processing workflow consisted of ten stages (see Figure 5), including data
curation, cleaning, artifact removal, dipole localization, feature extraction, source recon-
struction, ROI definition, functional connectivity estimation, graph theory calculations, and
statistical analyses.
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The first four stages primarily relate to data pre-processing, followed by five main
steps for processing. Because raw EEG data are most likely contaminated with artifacts,
filtering, denoising, and cleaning are crucial for enhancing the signal-to-noise ratio [83–85].
EEG pre-processing was performed using EEGLAB (version 14.1.2 [86], an open-source
toolbox that runs on MATLAB R2019b software (MathWorks, Natick, MA, USA)).

Curation (Stage 1): The raw EEG data were imported, ensuring a double-precision
option [87]. The data were visually inspected, and the sample was reduced from 500 to
250 Hz for easier storage and faster processing. The Montreal Neurological Institute (MNI)
coordinates were used for defining channel locations, and the head center was optimized
to fit the head sphere.

Cleaning (Stage 2): EEG signals were filtered through a 1–50 Hz zero-phase Hamming
window known as a finite impulse response bandpass filter [88–91]. The spectra for the
64 channels were plotted and manually visualized. Then, an automatic bad channel
rejection process was applied using the EEGLAB toolbox known as clean_raw data [92].
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This automatic toolbox can detect and separate noisy channels and low-frequency drifts.
Interpolation was applied after bad channels had been detected and removed to alleviate
the bias resulting from an unequal number of electrodes between the right- and left-brain
hemispheres. An average re-reference procedure was applied to reset the data to zero-sum
across channels.

Artifact removal (Stage 3): An artifact substance reconstruction method that subspaces
unusually large-amplitude data was applied first for artifact removal and correction. This
method does not consider eye-blinking or small-amplitude contamination [93,94]. Conse-
quently, an independent-component analysis (ICA) decomposition method based on the
Blind Source Separation technique was used. Motor Imagery Classification Based on Sorted
Blind Source Separation, Continuous Wavelet Transform, and Convolutional Neural Net-
work could be used [83]. Before ICA was applied, the continuous EEG data were epoched
based on the task structure. For each participant, three MVCs and five isometric exertion
levels were repeated three times, resulting in a total of 18 epochs. Thus, for twelve partici-
pants, there was a total of 216 epochs. An adaptive mixture ICA (AMICA) algorithm was
used to decompose EEG signals into independent components (ICs) [95]. AMICA has been
shown to outperform all other ICA approaches [96,97]. An automated classifier known as
IC Label was used to distinguish between the brain and non-brain sources [98,99]. AMICA
software was retrieved from https://sccn.ucsd.edu/~jason/amica_web.html accessed 10
December 2020.

Dipole localization (Stage 4): Before any ICs were rejected, the sources were localized to
separate IC components. An equivalent current dipole and bilateral model were computed
for each IC using a boundary element head model [100,101] based on MNI coordinates.
DIPFIT version 3, an EEGLAB plugin (Oostenveld and Oostendorp, 2002), was used to
calculate the dipole localization. A nonlinear optimization technique using the MATLAB
optimizer toolbox was used to locate the best position for a single or bilateral dipole [102].
Residual variances were kept below 40%.

Components that appear to be eye movements or artifacts from blinking, electrocar-
diography, motion, lines, or noise channels were manually removed after the dipole had
been localized. Following the protocol of Nguyen et al. [103], the entire experiment would
be rejected if the number of rejected ICs was more than 50% of the total ICs.

Feature extraction (Stage 5): EEG cross spectra were extracted based on a fast Fourier
transform using Hanning windows with a 10% onset. The cross spectra were averaged
across 50% overlapping windows considering two frequency bands (alpha = 8–13 Hz;
beta = 13–30 Hz) for each participant using eLORETA software (freely available at http:
//www.uzh.ch/keyinst/loreta.htm, accessed on 21 February 2021).

Source reconstruction (Stage 6): Cross spectra for each participant and each frequency
band were transformed into eLORETA files using the eLORETA transformation matrix.
This resulted in the three-dimensional intracerebral current source density of the electrical
neuronal generators for each participant [104]. eLORETA is a genuine inverse solution with
exact zero-error localization in the presence of measurements and structured biological
noise [69,70,105]. The software uses a realistic head model [106] based on the MNI 152
template [107], with the three-dimensional solution space restricted to the cortical gray
matter and hippocampi, as determined by the probabilistic Talairach atlas [108]. The
software helps to solve the inverse solution by parcellating the spectral current density
into 6,239 voxels with a spatial resolution of 5 mm3. eLORETA has been used extensively
and has been validated in several studies using real human data [109–115]. eLORETA
helps to determine the distribution of current density across voxels in the brain [116] and
has been demonstrated to be more robust and accurate than other source localization
methods [37,117].

ROI determination (Stage 7): The cortex was parcellated into ROIs based on anatomical
labels corresponding to BAs provided by eLORETA, according to the Talairach Daemon
(http://www.talairach.org/, accessed on 1 February 2021) (Supplementary Material A).

https://sccn.ucsd.edu/~jason/amica_web.html
http://www.uzh.ch/keyinst/loreta.htm
http://www.uzh.ch/keyinst/loreta.htm
http://www.talairach.org/
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Source functional connectivity estimation (Stage 8): EEG source-based functional
connectivity matrices were computed using eLORETA software via the coherence method
to estimate patterns of statistical dependencies among 84 ROIs for two EEG frequency
bands (alpha and beta). The 84 × 84 coherence connectivity matrices were converted to a
binary matrix using a set of sparsity threshold ranges to maintain strong connections [71].
Wide sparsity values in the range of 5–50% with steps of 5% were used to prevent the
formation of a disconnected network and maintain network reachability.

Network matrices and analysis (Stages 9 and 10): Global and local graph measures
were computed for all force exertion levels for two EEG frequency bands. Finally, the
network properties were assessed using a nonparametric permutation-based statistical
method [118].

2.7. Estimation of Functional Connectivity of EEG Cortical Sources

Coherence is a parameter that is widely used to study the functional brain
network [15,119–124] and is reliable for evaluating physiological abnormalities [125,126].
Coherence refers to the degree of association between two brain regions. According to
Walter [127], coherence reflects the phase synchrony of EEG signals recorded between pairs
of electrodes in the frequency domain. Mathematically, coherence is defined as the absolute
value of the cross spectra of two signals normalized by the spectral power between two
signal x and y [6], as shown in Equation (1):

Cxy( f ) =

∣∣Wxy( f )
∣∣2

Wx( f )∗ Wy( f )
(1)

where f is the frequency, Wx is the power spectral density (or simply power spectrum) of
signal x at frequency f, Wy is the power spectral density (or simply power spectrum of
signal y at frequency f, and Wxy( f ) is the cross-spectrum between two signals x and y at
frequency f,. In this study, the coherence was computed for 84 ROIs using the eLORETA
connectivity algorithm [128] for each subject and EEG frequency band (alpha and beta).

2.8. Graph Analysis and Computation of Measures

The most common global and local graph measures for each exertion level and fre-
quency band across the network densities (ranging from 0.1 to 0.5, with a step size of 0.05)
were calculated.

Global graph measures included the average clustering coefficient, characteristic path
length, global efficiency, and small-worldness. The clustering coefficient is a measure of
the degree to which nodes in a graph tend to cluster together. The characteristic path
length is the average of the shortest route between all pairs of nodes in the network and
measures the ability of the network to transfer serial information [129]. Global efficiency is the
inverse of the characteristic path length, which measures the network’s ability to transfer
parallel information [130]. The small-worldness is the ratio of the clustering coefficient to the
characteristic path length. A small-worldness index greater than 1 indicates a small-world
organization of the brain network [42]. The local efficiency measures the efficiency of
information transfer limited to neighboring nodes. Modularity is the ability of a graph to
be subdivided into modules that are maximally connected within a module and sparsely
connected between modules [39].

Local graph theory measures provide information regarding the properties of individ-
ual nodes, including degree and betweenness centrality and nodal efficiency [131]. These
measures can be used to quantify the relative importance of a node within the overall net-
work [44]. Degree centrality is the number of edges connecting a node to all other nodes. The
greater the degree of centrality, the more important the node is in the network. Betweenness
centrality quantifies the number of times that a node acts as a bridge along the shortest
path between two other nodes [132]. Betweenness centrality helps in identifying the most
central nodes in a network. Nodal efficiency measures the ability of information propagation



Brain Sci. 2022, 12, 1575 10 of 31

between a node and the remaining nodes in the network [133]. A node with high centrality
is known as a network hub [134] and could be classified into different groups of a connector
or provincial [131].

3. Statistical Analyses

This section presents statistical analyses for the isometric force exerted, rate of per-
ceived comfort, coherence estimated, and graph theory measures at predefined physical
exertion levels.

3.1. Isometric Force

An analysis of variance (ANOVA) was used to assess the effect of predefined physical
exertion levels on the generated arm forces. Tukey’s post hoc multiple-comparison test was
also performed to identify significant differences in exerted forces.

3.2. Rate of Perceived Physical Comfort

To assess the effect of predefined physical exertion levels on the rate of perceiving phys-
ical comfort (RPPC) scores, an ANOVA was used. Tukey’s post hoc multiple-comparison
test was also performed to identify significant differences in the RPPC.

3.3. Source Functional Connectivity Estimations

For functional connectivity analysis, we utilized a method that applies a single voxel at
the centroid of each BA using eLORETA software [109,110,135,136]. A connectivity analysis
between pairs of 84 ROIs in two EEG frequency bands was conducted for all physical exer-
tion levels using independent sample t-tests that were corrected for multiple comparisons
using a nonparametric randomization method based on the “maximal statistic.” The same
permutation test was applied with 5,000 randomizations to identify the critical probability
thresholds at significant levels and to correct type 1 errors.

3.4. Brain Network Analysis

For graph theoretical measures, a nonparametric permutation test [137] was used to
find significance and compare the topological brain properties for predefined force exertion
levels, namely: (1) extremely light, (2) light, (3) somewhat hard, (4) hard, and (5) extremely
hard. Briefly, for each network measure, we first calculated the between-group differences
in the mean values. An empirical distribution of the differences was then obtained by
randomly reallocating all values into two predefined force exertion levels and recalculating
the mean differences between the two randomized groups (30,000 permutations). The 95th
percentile points of the empirical distribution were used as critical values in a one-tailed
test to determine whether the observed group differences could occur by chance. For
comparisons of nodal measures, Bonferroni correction procedures were used to correct for
multiple comparisons [138].

4. Results

This section provides results for anthropometric, isometric force, and physical comfort
data, functional connectivity patterns, and graph topological measures for the global and
local network for all predefined exertion levels.

4.1. Anthropometric Characteristics

A summary of anthropometric measurements and static arm flexion strength for all
participants is given in Table 1.

4.2. Isometric Arm Forces

Descriptive statistics across all subjects (N = 12) for isometric arm forces at various
levels of predefined physical exertion are displayed in Table 2. We calculated the percentage
of MVC to normalize the forces exerted by each participant, a commonly accepted approach
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utilized in ergonomics studies [139,140]. ANOVA results regarding the effect of exertion
level on the generated arm force (N) are summarized in Table 3, whereas Tukey pairwise
comparisons of forces for various exertion levels at the 95% confidence level are shown in
Table 4.

Table 1. Descriptive statistics of anthropometric measurements and maximum voluntary contraction
(MVC) measured in newton(N). SD: standard deviation.

Variable Mean SD

Age (year) 27.4 6.2
Body Weight (kg) 60.2 11

Shoulder Height (cm) 135.85 7.50
Hip Height (cm) 98.04 6.08

Knee Height (cm) 51.65 2.84
Arm Height (cm) 106.26 5.90

Knuckle Height (cm) 73.98 6.28
Body Height (cm) 163.00 7.260

MVC (N) 115.00 47.60

Table 2. Statistics of isometric arm exertion forces, including the mean, standard deviation (SD),
range, and percentage of maximum voluntary contraction (MVC) at different physical exertion levels.

Predefined Level of Physical Exertion

Isometric Arm Force (N)

Mean SD
Range % MVC

Min Max Mean Min Max

Extremely hard 67.35 35.25 2 18 49% 3% 99%
Hard 41.83 18.9 3 28 30% 4% 60%

Somewhat hard 34.58 16.7 3 66 25% 2% 48%
Light 13.61 6.76 6 82 10% 2% 20%

Extremely light 8.04 5.32 4 136 4% 1% 13%

Table 3. ANOVA results for the effect of exertion level on the exerted arm force (N). D: degree of
freedom, MS: mean sum of squares, and SS: sum of squares.

Source Df Adj SS Adj MS F-Value p-Value

Participant 11 11,374 1034.0 4.05 0.00
Exertion level 4 27,108 6777.085 26.54 0.00

Error 44 11,236 255.4
Total 59 49,718

Table 4. Summary statistics for arm forces exerted at different levels of physical exertion (Tukey
pairwise comparison at the 95% confidence level).

Exertion Level Mean Grouping

Extremely hard 67.4 A
Hard 41.83 B

Somewhat hard 34.57 B
Light 13.62 C

Extremely light 8.04 C

Pairwise comparisons among exertion levels (extremely hard, hard, somewhat hard,
light, and extremely light) were performed using Tukey’s post hoc test, and adjusted p-
values were computed (see Table 5). Results revealed no significant differences for hard vs.
somewhat hard or light vs. extremely light exertion (Figure 6).
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Table 5. Results of Tukey’s post hoc simultaneous tests for differences in means for forces exerted at
different physical exertion levels. EL: extremely light, L: light, SWH: somewhat hard, H: hard, EH:
extremely hard, CI: confidence interval, NS: not significant, and SE: standard error.

Difference in
Exertion Level

Difference in
Mean

SE of
Difference Simultaneous 95% CI T-Value Adj p-Value

EL-EH −59.31 6.52 (−77.85, −40.76) −9.09 0.000
H-EH −25.52 6.52 (−44.06, −6.97) −3.91 0.003
L-EH −53.73 6.52 (−72.28, −35.19) −8.24 0.000

SWH-EH −32.77 6.52 (−51.32, −14.23) −5.02 0.000
H-EL 33.79 6.52 (15.25, 52.34) 5.18 0.000
L-EL 5.58 6.52 (−12.97, 24.12) 0.85 NS

SWH-EL 26.53 6.52 (7.99, 45.08) 4.07 0.002
L-H −28.22 6.52 (−46.76, −9.67) −4.33 0.001

SWH-H −7.26 6.52 (−25.80, 11.29) −1.11 NS
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4.3. Rate of Perceived Physical Comfort

Descriptive statistics across all subjects (N = 12) for RPPC scores at predefined levels
of physical exertion are displayed in (Table 6).

Table 6. Mean and standard deviation for the rate of perceived physical comfort at each exertion level.

Exertion Level RPPC Mean RPPC Standard Deviation

Extremely light 8.80 1.48
Light 8.16 1.63

Somewhat hard 5.47 1.68
Hard 5 2.11

Extremely hard 3.9 2.30
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The ANOVA results for the effect of exertion level on the RPPC scores are summarized
in Table 7. A Tukey pairwise comparison of perceived comfort for various exertion levels at
the 95% confidence level is shown in Table 8.

Table 7. ANOVA results for the effect of exertion level on the rate of perceived physical comfort
scores. DF: degree of freedom, MS: mean sum of squares, and SS: sum of squares.

Source Df Adj SS Adj MS F-Value p-Value

Participants 11 61.71 5.60 7.56 0.000
Exertion levels 4 119.36 29.84 40.23 0.000

Errors 44 32.64 0.7417
Total 59 213.71

Table 8. Summary statistics for the rate of perceived physical comfort scores at various levels of
physical exertion (Tukey pairwise comparison at the 95% confidence level).

Exertion Level Mean Grouping

Extremely hard 4.583 A
Hard 5.375 AB

Somewhat hard 5.729 B
Light 7.750 C

Extremely light 8.23 C

There were no significant differences in the perceived comfort ratings between the
exertions of hard and extremely hard, somewhat hard and hard, or extremely light and
light (Table 9 and Figure 7).
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Table 9. Results of Tukey’s simultaneous tests for differences in the rate of perceived physical comfort
scores at various levels of physical exertion. NS: not significant.

Difference in
Exertion Level

Difference in
Mean

SE of
Difference Simultaneous 95% CI T-Value Adj

p-Value

EL-EH 3.646 0.352 (2.646, 4.645) 10.37 0.000
H-EH 0.792 0.352 (−0.208, 1.791) 2.25 0.180
L-EH 3.167 0.352 (2.167, 4.166) 9.01 0.000

SWH-EH 1.146 0.352 (0.146, 2.145) 3.26 0.017
H-EL −2.854 0.352 (−3.854, −1.855) −8.12 0.000
L-EL −0.479 0.352 (−1.479, 0.520) −1.36 NS

SWH-EL −2.500 0.352 (−3.499, −1.501) −7.11 0.000
L-H 2.375 0.352 (1.376, 3.374) 6.75 0.000

SWH-H 0.354 0.352 (−0.645, 1.354) 1.01 NS
SWH-L −2.021 0.352 (−3.020, −1.021) −5.75 0.000

4.4. Functional Connectivity
4.4.1. Functional Brain Patterns

Coherence matrices were computed for 84 ROIs using the eLORETA connectivity
algorithm for each subject and frequency band (alpha and beta) [128]. An overview of
the functional brain network for each force exertion level, determined via the coherence
method in the alpha and beta frequency bands (research question 1), is provided in Figure 8.
The functional interactions between neighboring and distant brain regions were visualized
using BrainNet Viewer (http://www.nitrc.org/projects/bnv/, accessed 3 April 2021), a
MATLAB toolbox [141]. Overall, the beta coherence networks were found to have more
connections in the frontal and temporal lobes than the alpha coherence networks at all
force exertion levels, including the left superior frontal gyrus (BA 10), left precentral gyrus
(BA 44), right precentral gyrus (BA 44), left inferior frontal gyrus (BA 45), middle frontal
gyrus (BA 46), middle temporal gyrus (BAs 21 and 39), left fusiform gyrus (BA 37), and left
transverse temporal gyrus (BA 42).
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For the alpha band, strong coupling occurs between the left paracentral (BA 5) and
the left lingual gyrus (BA 17) and between the left superior frontal gyrus (BA 10) and the
middle frontal gyrus (BA 11) when the exertion level increases. Disconnections were found
across the middle frontal gyrus (BA 14) and the anterior cingulate (BA 33).

For the beta band, strong coupling occurs between the right superior frontal gyrus
(BA 10) and the parahippocampal gyrus (BA 34) when the exertion level increases.

http://www.nitrc.org/projects/bnv/
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4.4.2. Multiple Comparisons of Functional Connectivity

For multiple comparisons between different exertion levels, eLORETA software [69]
was used to develop wire diagrams. The significant connected regions are mapped in red
lines, and the significant disconnected regions are mapped in blue lines. Comparisons
of connectivity between the extremely hard exertion level and all other exertion levels,
including hard, somewhat hard, light, and extremely light, for each frequency band are
shown in Figure 9. We found a significant increase in alpha coherence when the extremely
hard exertion is compared with other exertion levels. Disconnections between the left and
right hemispheres in the beta network are also present.
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Figure 9. eLORETA wire diagram comparing extremely hard exertion with other exertion levels
for each frequency band. EL: extremely light, L: light, SWH: somewhat hard, H: hard, and EH:
extremely hard.

Comparisons of connectivity between the hard exertion level and the somewhat hard,
light, and extremely light levels for each frequency band are shown in Figure 10. The
alpha coherence network was significantly weaker for the hard exertion level than the other
exertion levels. No significant differences were observed between the hard and somewhat
hard exertion levels. The beta band network showed a significantly greater functional
brain network for hard exertion than for the somewhat hard level. In contrast, significant
disconnections were found when comparing the light and extremely light exertion levels.
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Comparisons of connectivity between the somewhat hard vs. light and vs. extremely
light exertion levels for each frequency band are shown in Figure 11. For the somewhat
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hard exertion level, the alpha network was found to have denser connections in the
frontocentral brain region than networks for the light and extremely light exertion levels.
No significant alterations were found in the beta coherence network between somewhat
hard and extremely light exertion.
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Figure 12 shows a comparison of connectivity between extremely light and light
exertion for each frequency band. Significant increases in the coherence connectivity for
some cortical regions were found for the alpha and beta networks.
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Figure 12. eLORETA wire diagram comparing light with extremely light exertion for each frequency
band. EL: extremely light and L: light.

4.5. Brain Network Results

This section discusses the topological differences between global and local network
measures (research question 2). Global measures were computed using the Brain Connec-
tivity Toolbox (http://www.brain-connectivity-toolbox.net, accessed on 14 April 2021) [34]
(http://www.nitrc.org/projects/gretna/, accessed 17 April 2021), while local measures
were computed based on a developed Python code.

4.5.1. Topological Differences in the Global Network for Alpha Coherence Network

A network with a higher small-worldness value was observed for the extremely hard
exertion level in the alpha coherence network compared with the other exertion levels
(permutation test, p < 0.05). Significant changes in the characteristic path length were found
for the various exertion levels, with a significant reduction in characteristic path length for
hard vs. somewhat hard (permutation test, p < 0.0089), hard vs. light (permutation test,
p < 0.0233), and hard vs. extremely light (permutation test, p < 0.0179) (Figure 13a).

http://www.brain-connectivity-toolbox.net
http://www.nitrc.org/projects/gretna/
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A significant increase in the network’s global efficiency was also observed for high
exertion levels (see Figure 13b). Significant changes in the clustering coefficient were
found for the various exertion levels (Figure 13c). A significant increase was observed
between extremely hard and hard (permutation test, p < 0.0123), hard and somewhat hard
(permutation test, p < 0.0353), and hard and extremely light exertion levels (permutation
test, p < 0.032). A significant reduction was observed between the somewhat hard and light
exertion levels (permutation test, p < 0.0209). Significant increases in network local efficiency
were found for extremely hard vs. hard exertion (permutation test, p < 0. 0115), hard vs.
somewhat hard (permutation test, p < 0.0434), hard vs. extremely light (permutation test,
p < 0.0277), and somewhat hard vs. extremely light exertion levels (permutation test,
p < 0.0426). However, there was a significant reduction between somewhat hard and light
(permutation test, p < 0.0247). The extremely hard and hard exertion levels provoked more
densely connected neighboring nodes within the network than the light and extremely
light exertion levels, as evidenced by the local efficiency shown in (Figure 13d).

4.5.2. Topological Differences in the Global Network for Beta Coherence Network

The permutation test for global measures yielded significant differences in beta coher-
ence among the various exertion levels. A significant small-world network was exhibited
for extremely hard exertion vs. somewhat hard (permutation test, p < 0.0396), somewhat
hard vs. hard (permutation test, p < 0.0042), somewhat hard vs. both light (permutation test,
p < 0.0385) and extremely light (permutation test, p < 0.001), and extremely light vs. light
exertion levels (permutation test, p < 0.0309). Maximum values for both the characteristic
path length and clustering coefficient were observed at extremely hard exertion, whereas
minimum values were found at the extremely light exertion level (Figure 14a). A significant
reduction in characteristic path length was observed for extremely hard vs. hard exertion
(permutation test, p < 0.0239), extremely hard vs. light (permutation test, p < 0.00), and
extremely hard vs. extremely light (permutation test, p < 0.0027). There were significant
declines between hard and light (permutation test, p < 0.00) and between light and ex-
tremely light (permutation test, p < 0.00). However, a significant increase in characteristic
path length was found for hard compared with both somewhat hard (permutation test,
p < 0.0171) and light (permutation test, p < 0.00). Overall, there was a significant increase
in global efficiency for the lower exertion levels compared with higher exertion levels
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(Figure 14a). A sharp decline in the clustering coefficient was observed for extremely light
exertion compared with the other exertion levels (Figure 14c). Consequently, significant
reductions in local efficiency were observed for the extremely light exertion level compared
with the other exertion levels (Figure 14d).
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4.5.3. Topological Differences in the Local Network
Betweenness Centrality Results

For all exertion levels, the key nodes were located in the left superior frontal (BA 10),
right inferior frontal (BAs 45 and 47), left precuneus (BAs 7 and 31), right middle temporal
(BA 21), left fusiform gyrus (BA 37), left superior temporal (BA 41), and right lingual
gyrus (BA 17) regions for the alpha band. For the beta network, significant differences were
observed only in the inferior frontal region (BA 47) for all force exertion levels. The key node
with the highest betweenness centrality for the alpha network at the extremely hard exertion
level was located in the superior frontal gyrus in the right frontal lobe, corresponding to BA
10. For all other exertion levels, the key node with the highest betweenness centrality was
found in the left superior frontal brain region, corresponding to BA 11. The key node with
the highest betweenness centrality in the beta network for all exertion levels was located in
the left lingual gyrus in the occipital lobe (BA 17).

Degree Centrality Results

From 84 BAs, we selected the 30% with the highest degree centrality values for all
subjects at all exertion levels for the alpha coherence, as shown in Figure 15. The extremely
light exertion level exhibited a higher degree of centrality in all network nodes than the
other exertion levels. For all exertion levels, the superior frontal gyrus in the orbitofrontal
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region, corresponding to (BA 11-left), was found to be the most important node in the alpha
network in terms of the number of edges incident upon a node.
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Figure 15. Results for degree centrality for the alpha coherence network at exertion levels extremely
hard (orange), hard (gray), somewhat hard (yellow), light (blue), and extremely light (green).

From 84 BAs, we selected the 30% with the highest degree centrality values for all
subjects at all exertion levels for the beta coherence, as shown in Figure 16. For all exertion
levels, the precentral gyrus region of the frontal lobe, corresponding to BA 44, was the most
important node in the beta network in terms of the number of edges incident upon a node.
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Figure 16. Results for degree centrality for the beta coherence network at exertion levels extremely
hard (orange), hard (gray), somewhat hard (yellow), light (blue), and extremely light (green).

Nodal Efficiency

For all exertion levels in the alpha band, the highest regional efficiencies were found
in the middle frontal gyrus of the frontal lobe, corresponding to BA 11, and the posterior
cingulate of the limbic lobe, corresponding to BA 29. The lowest regional efficiencies
were found in the superior frontal of the frontal lobe (BA 10), the inferior frontal region
of the frontal lobe (BAs 45 and 47), the precuneus of the parietal lobe (BAs 7 and 31), the
middle temporal gyrus of the temporal lobe (BA 21), the fusiform gyrus of the temporal
lobe (BA 37), and the lingual gyrus of the occipital lobe (BA 17). Interestingly, for the beta
network, the highest nodal efficiency was found in the precentral gyrus of the frontal lobe
(BA 44) and the lingual gyrus of the occipital lobe (BA 17). The minimum nodal efficiency
was present in the inferior frontal gyrus of the frontal lobe (BA 47) and the middle temporal



Brain Sci. 2022, 12, 1575 20 of 31

gyrus of the temporal lobe (BA 21). A summary of the highest nodal centralities for the
alpha and beta bands for each exertion level is given in Table 10.

Table 10. Summary of the highest nodal centrality for the alpha and beta networks for each exer-
tion level.

Nodal Centrality Frequency
Band

Extremely
Hard Hard Somewhat

Hard Light Extremely
Light

Betweenness centrality Alpha BA 10 BA 11 BA 11 BA 11 BA 11
Betweenness centrality Beta BA 17 BA 17 BA 17 BA 17 BA 17

Degree centrality Alpha BA 11 BA 11 BA 11 BA 11 BA 11
Degree centrality Beta BA 44 BA 44 BA 44 BA 44 BA 44
Nodal efficiency Alpha BA 11, 29 BA 11, 29 BA 11, 29 BA 11, 29 BA 11, 29
Nodal efficiency Beta BA 44 BA 44 BA 44 BA 44 BA 44

5. Discussion

To the best of our knowledge, this report describes the first task-based EEG study
investigating the effect of force exertion on the EEG functional brain network at the source
level for healthy female participants using a graph theoretical approach. We demonstrated
that graph theoretical measures applied to source EEG data could be used to identify
brain network topological properties induced by different force exertion levels. First, we
established an EEG pre-processing flow chart to construct the EEG functional brain network
at the source level. Second, using the coherence method, we computed the functional
connectivity patterns induced by various force exertion levels at different frequency bands.
Finally, we computed global and local graph theoretical measures to characterize the
functional brain network for each exertion level and frequency band.

We obtained findings concerning (a) force measures and RPPC scores, (b) functional brain
patterns, and (c) global and local graph theoretical measures for both frequency measures.

5.1. Force Measures and RPPC Scores

Our study revealed no significant differences in exerted forces between hard vs.
somewhat hard or light vs. extremely light levels. As expected, a negative correlation
between the RPPC and exerted force was also found. These results suggest that, as the level
of exerted force in a physical task increases, the participant’s feeling of task comfort declines.
This observation sheds light on the effect of perceived physical comfort on neural activity.

5.2. Functional Brain Patterns

Functional connectivity estimators were computed using the coherence method, which
has been shown to be sufficient to capture the amount of shared activity between brain
regions in the frequency domain [15,119–124].

The alpha network demonstrated stronger coupling in the frontoparietal brain regions
at the highest exertion level compared with all other exertion levels. It should be noted
that the frontoparietal alpha network reflects attention modulation and perceptual regula-
tion [142]. Furthermore, increments in functional connectivity over the frontoparietal lobe
may indicate the progression of muscular fatigue [143]. In detail, when the exertion level
increases, there is a strong coupling between the left paracentral (BA 5) and left lingual
gyrus (BA 17) in the alpha band. The BA 5 region is involved in somatosensory processing,
motor control, and association [144], whereas BA 17 is involved in discerning the intensity
of an object (i.e., primary visual cortex). This study identified a strong coupling between the
left superior frontal gyrus (BA 10) and the middle frontal gyrus (BA 11). In general, BA 10 is
involved in various executive brain functions, whereas BA 11 involves planning, decision-
making, and reward processing. Disconnections were found between the middle frontal
gyrus (BA 14) and the anterior cingulate (BA 33) as the exertion level increased. Because
the anterior cingulate plays an important role in cognitive control, emotions [145], working
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memory processing, and decision-making, such disconnections might indicate impairment
in cognitive performance leading to a deterioration in the task response time [146–149].

The beta network was found to reflect strong coupling in the right superior frontal
gyrus and parahippocampal gyrus for the highest exertion level compared with all other
levels. These findings suggest that physical activity may be associated with larger brain
gray matter volume [150], as physical activity is associated with the hippocampus and
prefrontal cortex [151,152].

5.3. Brain Network

Using graph theoretical measures, we investigated global and local alterations in the
cortical functional connectivity network in the alpha and beta bands for all predefined force
exertion levels.

5.3.1. Global Measures

A higher clustering coefficient for alpha and beta coherence was observed for extremely
hard vs. extremely low exertion. This observation suggests an increase in the functional
segregation of the brain network during high-force exertions. An increase in the clustering
coefficient during an isometric finger movement task was previously reported by Storti
et al. [153], indicating a strong connection between neighbor nodes in the network during a
voluntary arm movement task. However, high mental workload tasks have been found
to reduce local clustered connectivity [154]. Others have suggested that increases in the
clustering coefficient are associated with better working memory performance [37].

The reduction in characteristic path length at high exertion levels in the alpha network
may reflect a higher global efficiency for transferring parallel information. Therefore, we
postulate that the brain is more efficient in processing and transferring information when a
physical task requires more exertion. These results align with previous studies [155–158].
Furthermore, the exhibition of small-world organization for the alpha coherence network
might indicate a high level of local segregation and globally integrated networks under
extremely hard vs. extremely low exertion levels. These results are also consistent with
a study by Ren et al. [46], who found an increase in small-worldness in the alpha band
during the performance of a task with a high workload level compared with an easy
task. We found that the functional brain network shifted to a more ordered configuration
for the beta network. Similar phenomena have been observed in brain activity after a
sustained-attention task [159].

The global efficiency increased during the hard exertion condition for the alpha band
but not for the beta band. This finding suggests enhanced performance during the hard
exertion task, with a higher level of processing integration in the brain network. The
higher global structure in the alpha band might be attributed to the importance of the alpha
network in information processing, the cognitive domain, and the need for certain types of
attention for coping with high-force tasks [160].

Greater cognitive efforts induce the presence of human functional brain networks that
are more efficient but also exhibit less economical network configurations [161]. Further-
more, mentally fatiguing tasks have been associated with human functional brain networks
that are more economical but also less efficient [45,162]. In this study, an increase in local
efficiency for both frequency bands was associated with elevated force exertion levels. In
accord with previous findings [37,163,164], the increment in local efficiency suggests that
brain regions communicate and cooperate to a larger degree as the physical force exertion
level increases. Finally, the results of this study suggest that both alpha and beta networks
exhibit dense connections between nodes within modules but sparse connections between
nodes in different modules, thus indicating that the brain is more segregated at high levels
of exertion.

Modularity is a good estimator of network robustness [165] and has been used to
predict changes in working memory capacity [166]. The results of the present study
suggest that high-force tasks provoke alpha coherence networks with a more modular
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network configuration, contrary to previously reported results regarding cognitive effort
effects [161].

5.3.2. Local Measures

Densely connected nodes strongly affect the functional integration and segregation of
brain organization, causing a loss of network flexibility when damaged. Three centrality
measures were calculated for 84 ROIs, including the betweenness and degree centrality
and nodal efficiency, to investigate the effects of force exertion levels on nodal properties.
The nodes with the highest betweenness centrality are known as highly central nodes or
hubs. Such a node might play a controlling role in the passage of information through
the network. The key node with the highest betweenness centrality for the extremely
hard exertion level in the alpha network was located in the superior frontal gyrus in the
right frontal lobe, corresponding to BA 10. These findings suggest that this brain region is
critical for efficient information processing within the brain network for tasks that require
force exertions. In contrast, for all other exertion levels, the key node with the highest
betweenness centrality was located in the left superior frontal, corresponding to BA 11. For
the beta network, the key node with the highest betweenness centrality for all exertion
levels was located in the left lingual gyrus of the occipital lobe (BA 17). Therefore, we
suggest that these brain regions are critical for efficient information processing within the
brain network for physical force exertion tasks.

In terms of the number of edges incident upon a node, a high degree of centrality was
found to be associated with the extremely light exertion level in the brain network. For all
exertion levels, the superior frontal gyrus in the orbitofrontal region (BA 11) was found to
be the most important node in the alpha network, and the precentral gyrus region of the
frontal lobe (BA 44) was the most important node in the beta network.

The nodal efficiency results suggest that the superior frontal gyrus acts as a hub for
the alpha network at all exertion levels, whereas both the precentral and parahippocampal
gyri act as hub nodes for the beta network at all exertion levels.

Finally, we provided a comparative table that summarizes and compares the proposed
method’s main virtues versus the state-of-the-art report in Table 11. The main virtues in-
clude the novelty of studying the perception of force exertion using graph theory measures
obtained from brain data, using different global and local measures to understand the
topological properties of the functional brain network, focusing on female subjects only,
and considering the EEG data from the source level.

Table 11. Comparison of the proposed method’s main virtues vs. the state-of-the-art report. Bw:
Betweenness centrality, PL: Characteristic path length, CC: Clustering coefficient, D: Degree, Eg:
Global efficiency, Eloc: Local efficiency, Enodal: Efficiency of nodal, N/A: Not applicable, and SW:
Small-world organization.

Reference Task Global Measures Local
Measures

Number of
Participants ROI Frequency Bands

Our study Isometric arm
exertion

Eg, El, CC, PL,
SW Bw, D, Enodal 12 females 84 sources

based Alpha and beta

Fallani et al. [167] Foot dorsal
flexion Eg, Eloc N/A 5 16 sources

based Alpha

Jin et al. [168] Finger-tapping Eg Enodal 12 males
3 females Scalp based Alpha and beta

Kar et al. [169] Physical activity CC, PL D 12 males Scalp based Alpha and theta
Sengupta et al. [170] Physical exercise CC, PL N/A 12 males Scalp based N/A

Storti et al. [171] Arm movement CC Dc 7 males
3 females Scalp based Alpha and beta

Storti et al. [153] Reach and grasp Weighted CC,
weighted PL N/A 10 Scalp based Alpha, beta, delta,

and theta
Huang et al. [163] Play task Eg, Eloc D 19 males Scalp based Beta and theta

Porter et al. [17] Cycling CC N/A 8 males
5 females Scalp based Theta
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6. Limitations and Future Implications

The results of the present study demonstrate that graph theoretical measures can be
used to quantify changes in brain network topological properties induced by various force
exertions. However, many challenges must still be addressed to achieve further progress.
Although the existing literature suggests that the sample size of 12 participants is not too
small compared to other studies [18,143,172–178], a larger sample size would be valuable
for increasing the power of the study. More subjects should be recruited to validate the
proposed analysis method further. We believe the current findings in this first study that
applied a graph theoretical approach to model functional brain connectivity might provide
evidence and new insights into neuroergonomics applications. We used a nonparametric
comparison to reduce the effect of the possible non-normality in some variables caused
by the limited sample size. We also addressed the potential limitations of EEG-based
neuroergonomics studies focusing only on male participants [64]. Future studies will
include male participants only to compare the results obtained from females since sex
is an important biological variable in brain research. The majority of previous works
binarized the brain network to remove weak, noisy, and insignificant connections in the
network; others reported that weighted graphs may contain more information and might
ensure greater sensitivity in response to distractor effects compared with unweighted
graphs [122,179]. In particular, the choice of thresholding value is crucial because this
value significantly affects the network topology properties; no threshold values are free
from bias, suggesting the need for future investigation [180,181]. The superior temporal
resolution of EEG helps to capture dynamic changes in brain activity underlying critical
aspects of cognition and behavior. Consequently, implementing a dynamic functional
connectivity method is promising for future neuroergonomics studies [182]. Future research
may consider a new method to reduce the special variance resulting from the EEG’s
poor spatial resolution. One novel approach is based on the spectral correlation with a
Movement Related Independent Component to sort the estimated sources by Blind Source
Separation [83]. Future research is needed to study the perception of static and dynamic
force exertions in other body regions, such as the legs and torso.

Future studies should also consider the neuromuscular coupling analysis to reflect the
interaction between the cerebral motor cortex and affected muscles [172].

7. Conclusions

The present study has demonstrated that a graph theory approach incorporating
coherence helps characterize the frequency-specific neurophysiological bases of perceived
exertion. Our finding based on coherence estimation demonstrated a stronger coupling
in the frontoparietal alpha network at the highest exertion level compared with all other
exertion levels reflecting a high level of attention modulation and perceptual regulation.
Additionally, the beta network demonstrated a strong coupling in the right superior frontal
gyrus and parahippocampal gyrus for the highest exertion level compared with all other
levels. Our findings, based on graph theoretical measures, show that “extremely hard”
force exertions provoked alpha networks with a greater clustering coefficient, more mod-
ularity, higher local efficiency, and higher global efficiency, suggesting that brain regions
communicate and cooperate to a larger degree as the physical force exertion level increases.
However, we found a lower global efficiency for the beta network, which might indicate a
reduction in cognitive impairment [183]. The orbitofrontal region of the superior frontal
gyrus of the brain was found to be the most critical node in the alpha network based on
the calculations of betweenness and degree centrality. The applied global and local graph
theoretical measures characterized functional segregation and integration for the brain
network. The application of network modulation allowed us to study the functional brain
network properties of different brain regions during arm exertion tasks, with the aim of
increasing our current understanding of brain function during physical task performance.
The results of this study appear to provide additional evidence confirming the notion
that the human brain reorganizes and recruits more resources to efficiently respond to
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increasing physical task demands in terms of exerted forces in addition to maintaining a
required level of task attention [154,164,184].

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/brainsci12111575/s1, Supplementary Material A: Montreal Neu-
rophysiological Institute (MNI) coordinates of the 84 regions of interest (ROI) used to analyze the
electroencephalograph signal of each exertion level.
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