Short-Term Intake of Chlorogenic Acids Improves Psychomotor Speed and Motor Speed in Adults: A Randomized Crossover Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Materials
2.3. Experimental Design
2.4. Cognitive Function Assessment
2.5. Statistical Analysis
3. Results
3.1. Participants and Baseline Characteristics
3.2. Participants and Baseline Characteristics
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Harada, C.N.; Natelson Love, M.C.; Triebel, K.L. Normal cognitive aging. Clin. Geriatr Med. 2013, 29, 737–752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saracli, O.; Akca, A.S.; Atasoy, N.; Onder, O.; Senormanci, O.; Kaygisiz, I.; Atik, L. The relationship between quality of life and cognitive functions, anxiety and depression among hospitalized elderly patients. Clin. Psychopharmacol. Neurosci. 2015, 13, 194–200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Population Prospects 2019 Highlights. Available online: https://population.un.org/wpp/Publications/Files/WPP2019_Highlights.pdf (accessed on 4 May 2020).
- Rakesh, G.; Szabo, S.T.; Alexopoulos, G.S.; Zannas, A.S. Strategies for dementia prevention: Latest evidence and implications. Ther. Adv. Chronic Dis. 2017, 8, 121–136. [Google Scholar] [CrossRef] [PubMed]
- Caruso, G.; Torrisi, S.A.; Mogavero, M.P.; Currenti, W.; Castellano, S.; Godos, J.; Ferri, R.; Galvano, F.; Leggio, G.M.; Grosso, G.; et al. Polyphenols and neuroprotection: Therapeutic implications for cognitive decline. Pharmacol. Ther. 2021, 108013. [Google Scholar] [CrossRef]
- Farah, A.; Donangelo, C.M. Phenolic compounds in coffee. Braz. J. Plant. Physiol. 2006, 18, 23–36. [Google Scholar] [CrossRef]
- Lecoultre, V.; Carrel, G.; Egli, L.; Binnert, C.; Boss, A.; MacMillan, E.L.; Kreis, R.; Boesch, C.; Darimont, C.; Tappy, L. Coffee consumption attenuates short-term fructose-induced liver insulin resistance in healthy men. Am. J. Clin. Nutr. 2014, 99, 268–275. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, T.; Arai, Y.; Mitsui, Y.; Kusaura, T.; Okawa, W.; Kajihara, Y.; Saito, I. The blood pressure-lowering effect and safety of chlorogenic acid from green coffee bean extract in essential hypertension. Clin. Exp. Hypertens. 2006, 28, 439–449. [Google Scholar] [CrossRef]
- Ochiai, R.; Tomonobu, K.; Ikushima, I. Effect of chlorogenic acids on fatigue and sleep in healthy males: A randomized, double-blind, placebo-controlled, crossover study. Food Sci. Nutr. 2018, 6, 2530–2536. [Google Scholar] [CrossRef]
- Kim, J.; Lee, S.; Shim, J.; Kim, H.W.; Kim, J.; Jang, Y.J.; Yang, H.; Park, J.; Choi, S.H.; Yoon, J.H.; et al. Caffeinated coffee, decaffeinated coffee, and the phenolic phytochemical chlorogenic acid up-regulate NQO1 expression and prevent H(2)O(2)-induced apoptosis in primary cortical neurons. Neurochem. Int. 2012, 60, 466–474. [Google Scholar] [CrossRef]
- Ito, H.; Sun, X.L.; Watanabe, M.; Okamoto, M.; Hatano, T. Chlorogenic acid and its metabolite m-coumaric acid evoke neurite outgrowth in hippocampal neuronal cells. Biosci. Biotechnol. Biochem. 2008, 72, 885–888. [Google Scholar] [CrossRef] [Green Version]
- Ishida, K.; Yamamoto, M.; Misawa, K.; Nishimura, H.; Misawa, K.; Ota, N.; Shimotoyodome, A. Coffee polyphenols prevent cognitive dysfunction and suppress amyloid beta plaques in APP/PS2 transgenic mouse. Neurosci. Res. 2020, 154, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Kato, M.; Ochiai, R.; Kozuma, K.; Sato, H.; Katsuragi, Y. Effect chlorogenic acid intake on cognitive function in the elderlyof: A pilot study. Evid. Based Complement. Alternat. Med. 2018, 2018, 8608497. [Google Scholar] [CrossRef] [Green Version]
- Saitou, K.; Ochiai, R.; Kozuma, K.; Sato, H.; Koikeda, T.; Osaki, N.; Katsuragi, Y. Effect of Chlorogenic Acids on Cognitive Function: A Randomized, Double-Blind, Placebo-Controlled Trial. Nutrients 2018, 10, 1337. [Google Scholar] [CrossRef] [Green Version]
- Ochiai, R.; Saitou, K.; Suzukamo, C.; Osaki, N.; Asada, T. Effect of chlorogenic acids on cognitive function in mild cognitive impairment: A randomized controlled crossover trial. J. Alzheimers Dis. 2019, 72, 1209–1216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Camfield, D.A.; Silber, B.Y.; Scholey, A.B.; Nolidin, K.; Goh, A.; Stough, C. A randomised placebo-controlled trial to differentiate the acute cognitive and mood effects of chlorogenic acid from decaffeinated coffee. PLoS ONE 2013, 8, e82897. [Google Scholar] [CrossRef]
- Ochiai, R.; Chikama, A.; Kataoka, K.; Tokimitsu, I.; Maekawa, Y.; Ohishi, M.; Rakugi, H.; Mikami, H. Effects of hydroxyhydroquinone-reduced coffee on vasoreactivity and blood pressure. Hypertens. Res. 2009, 32, 969–974. [Google Scholar] [CrossRef]
- Revuelta-Iniesta, R.; Al-Dujaili, E.A. Consumption of green coffee reduces blood pressure and body composition by influencing 11beta-HSD1 enzyme activity in healthy individuals: A pilot crossover study using green and black coffee. Biomed. Res. Int. 2014, 2014, 482704. [Google Scholar] [CrossRef] [Green Version]
- Julious, S.A. Sample size of 12 per group rule of thumb for a pilot study. Pharm. Stat. 2005, 4, 287–291. [Google Scholar] [CrossRef]
- Ochiai, R.; Sugiura, Y.; Shioya, Y.; Otsuka, K.; Katsuragi, Y.; Hashiguchi, T. Coffee polyphenols improve peripheral endothelial function after glucose loading in healthy male adults. Nutr. Res. 2014, 34, 155–159. [Google Scholar] [CrossRef] [PubMed]
- Martin, E.D.; Buno, W. Caffeine-mediated presynaptic long-term potentiation in hippocampal CA1 pyramidal neurons. J. Neurophysiol. 2003, 89, 3029–3038. [Google Scholar] [CrossRef] [Green Version]
- Gualtieri, C.T.; Johnson, L.G. Reliability and validity of a computerized neurocognitive test battery, CNS Vital Signs. Arch. Clin. Neuropsychol. 2006, 21, 623–643. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- CNS Vital Signs Brief Interpretation Guide. Available online: https://www.cnsvs.com/WhitePapers/CNSVS-BriefInterpretationGuide.pdf (accessed on 4 May 2020).
- Era, P.; Sainio, P.; Koskinen, S.; Ohlgren, J.; Härkänen, T.; Aromaa, A. Psychomotor speed in a random sample of 7979 subjects aged 30 years and over. Aging Clin. Exp. Res. 2011, 23, 135–144. [Google Scholar] [CrossRef] [PubMed]
- Amieva, H.; Meillon, C.; Proust-Lima, C.; Dartigues, J.F. Is low psychomotor speed a marker of brain vulnerability in late life? Digit symbol substitution test in the prediction of Alzheimer, Parkinson, stroke, disability, and depression. Dement. Geriatr. Cognit. Disord. 2019, 47, 297–305. [Google Scholar] [CrossRef] [PubMed]
- Strauss, E.; Sherman, E.M.S.; Spreen, O. A Compendium of Neuropsychological Tests: Administration, Norms, and Commentary, 3rd ed.; Oxford University Press: Oxford, UK, 2006; pp. 1043–1052. [Google Scholar]
- Halstead, W.C. Brain and Intelligence; A Quantitative Study of the Frontal Lobes; University of Chicago Press: Chicago, IL, USA, 1947. [Google Scholar]
- Prigatano, G.P.; Johnson, S.C.; Gale, S.D. Neuroimaging correlates of the halstead finger tapping test several years post-traumatic brain injury. Brain Inj. 2004, 18, 661–669. [Google Scholar] [CrossRef] [PubMed]
- Roalf, D.R.; Rupert, P.; Mechanic-Hamilton, D.; Brennan, L.; Duda, J.E.; Weintraub, D.; Trojanowski, J.Q.; Wolk, D.; Moberg, P.J. Quantitative assessment of finger tapping characteristics in mild cognitive impairment, Alzheimer’s disease, and Parkinson’ disease. J. Neurol. 2018, 265, 1365–1375. [Google Scholar] [CrossRef] [PubMed]
- Makizako, H.; Shimada, H.; Doi, T.; Park, H.; Yoshida, D.; Uemura, K.; Tsutsumimoto, K.; Liu-Ambrose, T.; Suzuki, T. Poor balance and lower gray matter volume predict falls in older adults with mild cognitive impairment. BMC Neurol. 2013, 13, 102. [Google Scholar] [CrossRef] [Green Version]
- Banerjee, N.; Slugh, M.; Kaur, S.; Sun-Suslow, N.; McInerney, K.F.; Sun, X.; Levin, B.E. Neuropsychological correlates of subjective fatigue in non-demented older adults and the moderating effect of physical activity. Aging Neuropsychol. Cognit. 2020, 27, 254–269. [Google Scholar] [CrossRef]
Cognitive Domains | Tests for Score Calculations |
---|---|
Neurocognitive Index (NCI) | All of the tests |
Composite Memory | VBM + VIM |
Verbal Memory | VBM |
Visual Memory | VIM |
Psychomotor Speed | FTT + SDC |
Reaction Time | ST |
Complex Attention | ST + SAT + CPT |
Cognitive Flexibility | ST + SAT |
Processing Speed | SDC |
Executive Function | SAT |
Simple Attention | CPT |
Motor Speed | FTT |
Characteristics | Mean ± SD |
---|---|
Number of subjects (male) | 26 (12) |
Age (y) | 55.8 ± 2.8 |
Height (cm) | 165.1 ± 8.6 |
Body weight (kg) | 59.1 ± 12.3 |
Body fat (%) | 24.0 ± 8.2 |
BMI (kg/m2) | 21.6 ± 3.8 |
SBP (mmHg) | 108.7 ± 14.5 |
DBP (mmHg) | 67.9 ± 10.0 |
Group | Baseline | 2W | p-Value | ||
---|---|---|---|---|---|
Verbal Memory Test (VBM) | Correct Hits (Immediate) | CGA | 90.0 ± 3.1 | 93.9 ± 2.5 | p = 0.981 |
Placebo | 93.8 ± 2.0 | ||||
Correct Passes (Immediate) | CGA | 103.4 ± 2.4 | 102.3 ± 2.8 | p = 0.281 | |
Placebo | 105.0 ± 1.8 | ||||
Correct Hits (Deley) | CGA | 95.6 ± 3.6 | 97.2 ± 2.9 | p = 0.815 | |
Placebo | 96.9 ± 2.5 | ||||
Correct Passes (Deley) | CGA | 98.2 ± 3.3 | 97.0 ± 3.3 | p = 0.080 | |
Placebo | 103.0 ± 1.9 | ||||
Visual Memory Test (VIM) | Correct Hits (Immediate) | CGA | 84.5 ± 3.1 | 85.0 ± 3.0 | p = 0.757 |
Placebo | 83.7 ± 3.4 | ||||
Correct Passes (Immediate) | CGA | 99.0 ± 3.4 | 103.9 ± 2.7 | p = 0.835 | |
Placebo | 103.6 ± 3.1 | ||||
Correct Hits (Deley) | CGA | 89.8 ± 3.1 | 91.2 ± 3.0 | p = 0.601 | |
Placebo | 93.0 ± 2.5 | ||||
Correct Passes (Deley) | CGA | 98.2 ± 3.3 | 101.1 ± 2.5 | p = 0.435 | |
Placebo | 102.9 ± 3.1 | ||||
Finger Tapping Test (FTT) | Right Taps Average | CGA | 103.2 ± 1.7 | 104.8 ± 1.9 | p = 0.017 |
Placebo | 101.0 ± 2.3 | ||||
Left Taps Average | CGA | 98.0 ± 1.9 | 99.7 ± 1.8 # | p = 0.049 | |
Placebo | 97.4 ± 1.8 | ||||
Symbol Digit Coding (SDC) | Correct Responses | CGA | 109.1 ± 1.8 | 112.7 ± 2.6 # | p = 0.339 |
Placebo | 111.4 ± 2.3 | ||||
Errors | CGA | 95.1 ± 3.1 | 93.2 ± 7.2 | p = 0.935 | |
Placebo | 96.3 ± 3.5 | ||||
Stroop Test (ST) | Simple Reaction Time | CGA | 97.3 ± 2.0 | 98.4 ± 1.8 | p = 0.661 |
Placebo | 97.7 ± 2.5 | ||||
Complex Reaction Time | CGA | 97.4 ± 2.7 | 94.4 ± 2.8 # | p = 0.052 | |
Placebo | 96.6 ± 2.5 | ||||
Stroop Reaction Time | CGA | 101.2 ± 2.5 | 102.0 ± 2.5 | p = 0.293 | |
Placebo | 100.7 ± 2.3 | ||||
Stroop Commission Errors | CGA | 89.0 ± 3.4 | 92.9 ± 4.4 | p = 0.924 | |
Placebo | 91.8 ± 2.8 | ||||
Shifting Attention Test (SAT) | Correct Responses | CGA | 98.3 ± 2.4 | 101.5 ± 1.7 | p = 0.721 |
Placebo | 101.8 ± 2.0 | ||||
Errors | CGA | 105.6 ± 1.8 | 106.1 ± 1.6 | p = 0.197 | |
Placebo | 108.0 ± 1.5 | ||||
Correct Reaction Time | CGA | 105.4 ± 2.9 | 109.9 ± 2.4 # | p = 0.440 | |
Placebo | 108.8 ± 2.4 | ||||
Continuous Performance Test (CPT) | Correct Responses | CGA | 99.9 ± 2.2 | 99.9 ± 2.2 | p = 0.206 |
Placebo | 93.6 ± 4.1 | ||||
Commission Errors | CGA | 97.4 ± 3.7 | 96.6 ± 2.2 | p = 0.305 | |
Placebo | 99.0 ± 2.2 | ||||
Choice Reaction Time Correct | CGA | 100.1 ± 2.2 | 98.9 ± 2.1 | p = 0.562 | |
Placebo | 97.7 ± 2.1 |
Group | Baseline | 2W | p-Value | |
---|---|---|---|---|
Neurocognitive Index (NCI) | CGA | 98.8 ± 1.0 | 101.0 ± 1.0 | p = 0.961 |
Placebo | 101.0 ± 1.3 | |||
Composite Memory | CGA | 87.2 ± 2.9 | 91.6 ± 2.9 | p = 0.297 |
Placebo | 93.5 ± 2.9 # | |||
Verbal Memory | CGA | 92.8 ± 3.3 | 95.0 ± 2.9 | p = 0.580 |
Placebo | 96.7 ± 2.3 | |||
Visual Memory | CGA | 87.6 ± 2.6 | 92.2 ± 2.2 | p = 0.592 |
Placebo | 93.3 ± 3.0 | |||
Psychomotor Speed | CGA | 105.3 ± 1.2 | 108.4 ± 1.5 # | p = 0.024 |
Placebo | 105.2 ± 1.7 | |||
Reaction Time | CGA | 99.5 ± 2.8 | 98.5 ± 2.8 | p = 0.796 |
Placebo | 98.9 ± 2.4 | |||
Complex Attention | CGA | 102.1 ± 2.3 | 103.4 ± 2.3 | p = 0.345 |
Placebo | 104.7 ± 2.1 | |||
Cognitive Flexibility | CGA | 99.8 ± 2.1 | 102.6 ± 1.5 | p = 0.381 |
Placebo | 103.6 ± 1.9 | |||
Processing Speed | CGA | 109.1 ± 2.0 | 112.6 ± 3.4 # | p = 0.475 |
Placebo | 111.7 ± 2.6 | |||
Executive Function | CGA | 101.2 ± 2.1 | 103.5 ± 1.5 | p = 0.360 |
Placebo | 104.6 ± 1.8 | |||
Simple Attention | CGA | 98.2 ± 3.2 | 97.6 ± 1.9 | p = 0.802 |
Placebo | 97.1 ± 2.6 | |||
Motor Speed | CGA | 101.0 ± 1.7 | 102.5 ± 1.8 | p = 0.013 |
Placebo | 99.3 ± 2.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suzukamo, C.; Ochiai, R.; Mitsui, Y.; Osaki, N.; Ono, T. Short-Term Intake of Chlorogenic Acids Improves Psychomotor Speed and Motor Speed in Adults: A Randomized Crossover Trial. Brain Sci. 2022, 12, 370. https://doi.org/10.3390/brainsci12030370
Suzukamo C, Ochiai R, Mitsui Y, Osaki N, Ono T. Short-Term Intake of Chlorogenic Acids Improves Psychomotor Speed and Motor Speed in Adults: A Randomized Crossover Trial. Brain Sciences. 2022; 12(3):370. https://doi.org/10.3390/brainsci12030370
Chicago/Turabian StyleSuzukamo, Chika, Ryuji Ochiai, Yuki Mitsui, Noriko Osaki, and Takahiro Ono. 2022. "Short-Term Intake of Chlorogenic Acids Improves Psychomotor Speed and Motor Speed in Adults: A Randomized Crossover Trial" Brain Sciences 12, no. 3: 370. https://doi.org/10.3390/brainsci12030370
APA StyleSuzukamo, C., Ochiai, R., Mitsui, Y., Osaki, N., & Ono, T. (2022). Short-Term Intake of Chlorogenic Acids Improves Psychomotor Speed and Motor Speed in Adults: A Randomized Crossover Trial. Brain Sciences, 12(3), 370. https://doi.org/10.3390/brainsci12030370