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Jeremi Ochab 5 , Anna Bereś 6 and Grażyna Ślusarczyk 7
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Abstract: An important problem in many fields dealing with noisy time series, such as psychophys-
iological single trial data during learning or monitoring treatment effects over time, is detecting a
change in the model underlying a time series. Here, we present a new method for detecting a single
changepoint in a linear time series regression model, termed residuals permutation-based method
(RESPERM). The optimal changepoint in RESPERM maximizes Cohen’s effect size with the parame-
ters estimated by the permutation of residuals in a linear model. RESPERM was compared with the
SEGMENTED method, a well-established and recommended method for detecting changepoints,
using extensive simulated data sets, varying the amount and distribution characteristics of noise
and the location of the change point. In time series with medium to large amounts of noise, the
variance of the detected changepoint was consistently smaller for RESPERM than SEGMENTED.
Finally, both methods were applied to a sample dataset of single trial amplitudes of the N250 ERP
component during face learning. In conclusion, RESPERM appears to be well suited for changepoint
detection especially in noisy data, making it the method of choice in neuroscience, medicine and
many other fields.

Keywords: noisy time series; event-related potentials; changepoint detection; segmented method;
permutation method

1. Introduction

Changepoint analysis is important in many fields, including medical research and
cognitive neuroscience, but also finance, economics, quality control, and genomics. In
general, changepoint detection refers to the problem of finding changes in the underly-
ing model of a signal or time series [1]. Hence, the changepoint detection problem can
be formulated in different models and there are numerous approaches to examine these
models, for example maximum-likelihood estimation, Bayesian estimation, piecewise re-
gression, quasi-likelihood and non-parametric regression, and grid-searching. Changepoint
detection can be applied in real-time or offline, after all samples have been received. The
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changepoint regression problem was first described by Chow [2]; a detailed review of
subsequent studies on estimating the location of changepoints, as well as the classification
and evaluation of different methods, can be found in [1,3].

Here, we aimed to locate changepoints in a linear regression model. Changepoint
regressions, where the relationship between the response and the explanatory variables
(i.e., the regressors) is piecewise linear have been termed, for example, “segmented” [4],
“broken-line” [5], or “structural change” regression. Piecewise linear changepoint re-
gression models come in continuous or discontinuous form, where regression lines with
different slopes are connected at the changepoints or may jump to a different level at the
changepoint(s), respectively.

The main contribution of the present paper is a new single-changepoint detection
method based on a specific optimization criterion, Cohen’s effect size, estimated by the
permutation of residuals, termed residuals permutation-based method (RESPERM). Using
simulated data, we demonstrate lower mean square error (MSE) and less bias using RES-
PERM than the well-established and frequently recommended SEGMENTED method [6],
especially for noisy data such as EEG signals. We apply both methods to time series of
single trial ERP amplitudes during face learning (e.g., [7,8]).

In the following sections, we present the general model for changepoint regression
and shortly describe SEGMENTED. In Section 1.3, we explain the relevance of changepoint
detection to singe trial ERP information from EEG data. Sections 2.1 and 2.2 describe the
proposed RESPERM method and the Monte Carlo simulation setup for its verification
and comparison with SEGMENTED, respectively. In Section 2.3, we shortly describe a
sample EEG experiment for face learning [8]. Section 3 presents the results of the simulation
study and the application of both methods to the sample EEG data, followed by a general
discussion and conclusions in Section 4.

1.1. The Changepoint Regression Model

We consider models where changepoints are defined in terms of one regressor, denoted
x. Model (1) considers a regressor x involving a changepoint; however, other regressors
can also be included in the model. The general model of changepoint regression with J
changepoints (J + 1 regimes) can be written as:

yi =



β01 + β11xi + εi1 , xi < chp1
β02 + β12xi + εi2 , chp1 < xi ≤ chp2

...
β0j + β1jxi + εij , chpj−1 < xi ≤ chpj

...
β0(J+1) + β1(J+1)xi + εi(J+1) , chpJ < xi

(1)

where i = 1, . . . , n are observations, n is the total sample size, chpj, j = 1, . . . , J are the
changepoint parameters for the regressor x, which satisfy chp1 < chp2 < · · · < chpJ .

εij are independent, identically distributed random variables (e.g., error or noise),
with means of zero and variances σ2

j , j = 1, . . . , J. The changepoint locations chpj are the
unknown parameters to be estimated, whereas the number of changepoints in the observed
sample is assumed to be known. Model (1) also assumes that regressor x can be ordered (i.e.,
partitioned by the changepoint chpj) and a sufficient number of observations is contained
in each regime for reliable estimation and inference. It is up to the user to determine what
is “sufficient”, but a rule of thumb may be to ensure at least 10 observations in each regime.

The model above applies to both continuous piecewise and discontinuous change-
points. To enforce connected regression lines, the regression parameters in model (1) must
be constrained:

β0j + β1jchpj = β0(j+1) + β1(j+1)chpj+1 (2)
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Many methods aim to detect the location of unknown changepoints and estimate the
regression model (1). A frequently recommended and approved method for changepoint
regression is the segmented regression method by Muggeo [6,9] (termed here SEGMENTED),
which will use as a benchmark for the proposed new RESPERM method.

1.2. SEGMENTED Method

SEGMENTED [9] allows to detect multiple unknown changepoints but is restricted
to continuous regression lines. We briefly describe this method for the single changepoint
model (J = 1) with location in chp. The model (1) with constraints (2) for the segmented
regression can be estimated iteratively via the following linear function of predictors:

β0 + β11xi1 + (β12 − β11)(xi1 − chp0)I(xi1 > chp0)− γI(xi1 > chp0) (3)

where I(A) is an indicator function for an event A, chp0 is an initial estimate for the
changepoint and γ is a re-parametrization of chp0 that appears as a linear and continu-
ously valued parameter, facilitating the estimation procedure. Muggeo [6] recommended
maximum likelihood (ML) under Gaussian errors with constant variance across regimes
(homoscedasticity). The model enables for simultaneous ML inference on all model pa-
rameters, including the changepoint location. According to Google Scholar, SEGMENTED
was cited in over 1500 articles in a wide variety of scientific domains, from developmental
psychology [10] to epidemiology [11].

1.3. Application to ERPs

EEG reflects the mass-action of mostly post-synaptic potentials in different brain states
and processes. Specific activities related to defined events can be derive from event-related
potentials (ERP) by time locking the EEG to stimuli or responses. ERPs contain a number of
components (most simply peaks or troughs) that are sensitive to certain mental operations,
for example, the perceptual and mnemonic processing of faces [12] or decision making [13].
Due to the low signal to noise ratio of ERPs relative to the background EEG [14], usually,
the event-locked signal is averaged across many repetitions. Averaging efficiently reduces
the randomly fluctuating background EEG towards increasing smaller values relative to
the signal ERP [15]. However, averaging can be misleading because it might not reflect the
actual brain dynamics (e.g., [16]) and when dynamic changes over a few trials are of interest,
it may be close to useless. There are other methods for decreasing the noise in single trial
EEG signal like low-pass filters, wavelet analysis, artifacts reduction, or re-referencing.
However, these methods are not able to remove the EEG noise completely and, in the
worst case, may remove relevant information from the signal. Application of such methods
prior to RESPERM or SEGMENTED might further improve the precision of change point
detection and might be explored in further research. Hence, there are many attempts
to extract single trial ERP information (e.g., [17]) from the EEG. The method suggested
here can be applied to trace the time course of single trial ERPs over a relatively short
time course. Here, we demonstrate this with data recorded in a face memory experiment
where the N250 component of the ERP was tracked over repeated presentations of a target
face that had to be recognized among other faces [8]. As shown by Tanaka et al. [7] and
replicated by [8], on average, over a group of participants and when the time series is
roughly split into two consecutive bins of a session, the N250 amplitude increased with
target face familiarity. Therefore, it was of interest to apply RESPERM to determine a
changepoint in the time series of single trials, demarcating the transition point between
memory trace acquisition and asymptotic trace maintenance.

2. Materials and Methods

RESPERM as well as the dataset generation procedures were implemented in R lan-
guage. The RESPERM algorithm uses the R sample function, which is based on a random
number generation mechanism. The source code of RESPERM is publicly available on
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Github (https://github.com/gkonczak/chp.perm, accessed on 16 March 2022) and in
Algorithm A1 in Appendix A.

For SEGMENTED we used the original procedure from the R package of Muggeo [9].
This procedure implements the bootstrap restarting algorithm to escape the local optima of
the objective function when the segmented relationship is flat.

2.1. The Residuals Permutation-Based Method (RESPERM)

The proposed RESPERM method considers a discrete set (i.e., a grid) of possible
changepoint locations. For each candidate changepoint, a set of parameters of a fitted
changepoint regression model is determined. The finally selected changepoint optimizes
the proposed criterion, that is, Cohen’s effect size [18], estimated using the permutation
method. Moreover, our method allows for different variances in each regime.

Formally, let us consider n observations denoted by (xi, yi) for i = 1, 2, . . . , n, divided
into two subsets:

S1 = {(xi, yi) : i = 1, 2, . . . , k} and S2 = {(xi, yi) : i = k + 1, k + 2, . . . , n} (4)

separated by a candidate changepoint chpk with k being from a set K = {s, s + 1, . . . , n − s}
where s is the parameter for the RESPERM method. In our simulation study, s = 10,
which follows from the minimal number of observations required to ensure the stability of
linear regressions.

We will consider two simple linear regression models with changepoint chpk:

y =

{
β01 + β11x + ε1 , x ≤ chpk
β02 + β12x + ε2 , x > chpk

(5)

where y is the dependent variable, x is the regressor, β01, β02, β11 and β12 are parameters
of linear models and ε1, ε2 are error terms (noise). Based on the two subsets above, two
regression lines with estimates of slopes β̂11 and β̂12 and intercepts β̂01 and β̂02 are fitted.

RESPERM aims to detect a change in the slope in linear regression models at the
candidate changepoint chpk, using Cohen’s effect size d [18]:

d = (mA −mB) / σ (6)

where mA and mB are population means under consideration expressed in raw (original)
measurement units and σ is the standard deviation of either population of measurements.

In our case, in place of mA, mB and σ we use β̂11, β̂12 and the following estimate of
the standard deviation σ:

σβ =

√
(k− 1)S2

β11 + (n− k− 1)S2
β12

n− 2
(7)

where Sβ11 and Sβ12 are the standard deviations of the β11 and β12 coefficients, respectively.
Thus, to capture the effect size of slope change at the candidate changepoint chpk, we use
the adjusted Cohen’s d [18]:

dk =
(

β̂12 − β̂11
)

/ σβ (8)

To estimate the unknown standard deviations Sβ11 and Sβ12 of the β11 and β12 coeffi-
cients, standard methods may not be reliable and a resampling method may offer improve-
ment ([2,19,20]). We used the following permutation method (with Nperm = 1000 permutations):
for each generated permutation of regression residuals, the coefficients β̂11, β̂12 and β̂01, β̂02
are estimated; then, based on the whole set of estimates obtained, the standard deviations
Sβ11 and Sβ12 of the β11 and β12 coefficients are assessed.

https://github.com/gkonczak/chp.perm
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We find the smallest observation number k* which maximizes the adjusted Cohen’s dk:

k∗ = min
k∈K

{
k : d(k) = max

k∈K
d(k)

}
(9)

The solution is the detected changepoint chp = xk∗ .

2.2. Monte Carlo Verification Setup

To examine the performance of RESPERM and to compare it with SEGMENTED, we
performed a Monte Carlo simulation. A series of n = 100 observations with one changepoint
were generated according to the following model:

y =

{
2 + p× ε j , x ≤ 50

2 + (x− 50) + p× q× ε j , x > 50
(10)

where the covariate x = 1, 2, . . . , 100, ε j is the error term, coefficient k describes the level
of noise (p = 3 major, p = 5 dominant) and coefficient q = 1 or q = 2/3 for the cases of
equal or unequal variances in the two regimes. In all models considered, the variances in
the two regimes (before and after the changepoint) were either equal (q = 1) or unequal
(q = 2/3), that is, smaller after the changepoint than before. We considered four types of
error distributions:

(1) ε1 = 1
3 εN ( εN ∼ N(0, 1)),

(2) ε2 = εU − 0.5 ( εU ∼ U(0, 1)),
(3) ε3 = εB22 − 0.5 ( εB22 ∼ B(2, 2)),
(4) ε4 = εB26 − 0.25 (εB26 ∼ B(2, 6)).

The error term εN has standard normal distribution, εU has uniform distribution in the
[0, 1] interval, εB22 has beta distribution with shape parameters s1 = 2, s2 = 2 (symmetric)
and εB26 has beta distribution with shape parameters s1 = 2, s2 = 6 (asymmetric). The
expected values E(.) of the error distributions above are equal to zero and the variances
D2(.) changes from 1/48 up to 1/9. The sample random series of observations for equal
and unequal variance for major level of noise are shown in Figure 1.
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Figure 1. Typical generated time series with a single changepoint at chp = 50 for major noise level
with normal error distributions, equal (left) and unequal (right) variances.

In order to compare RESPERM with SEGMENTED, the following simulated datasets
were created. The initial changepoint was established as chp = 50. For each combination of
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noise level, equal/unequal variances and four error distribution types mentioned above
we generated N = 100 datasets according to formula (9) with proper values of coefficients p
and q describing a given model and type of errors. First, the changepoint was estimated
for each dataset using RESPERM. For each point k = 10, 11, . . . , 90 (assuming param-
eter s = 10), the variances of parameters of the linear models were estimated based on
Nperm = 1000 permutations of residuals. The changepoint was estimated as a parameter k*,
which maximizes Cohen’s d as in Formula (7).

We then estimated the changepoint for each dataset using SEGMENTED. The initial
changepoint required in SEGMENTED (i.e., the parameter of the method) was chosen as
the median of the regressor x.

To test the performance of both methods depending on the location of the changepoint
chp, we also performed the procedures above described for different changepoints: chp = 4,
8, 12, 20, 30, 40, 50. In this sensitivity analysis we used only models with different variance
(i.e., reduced in the 2-nd part of the time series), mainly because this case corresponds to
the characteristics of EEG data. Moreover, for the changepoints implemented, only cases
with normally distributed errors were considered. Two levels of noise were taken into
account: major and dominant noise.

To quantitatively compare the performance of SEGMENTED and RESPERM for
changepoint detection, we used the following measures. The first is the root-mean-square
error (RMSE) given by

RMSE =
√

MSE (11)

where MSE is the mean square error estimated as:

MSE ≈ 1
N

N

∑
i=1

(chpi − chp)2 (12)

chp is a real (usually unknown), changepoint and chpi is a changepoint estimated by
RESPERM or SEGMENTED.

The second measure is the relative bias (RB) of the estimated method as:

RB ≈ (
1
N ∑N

i=1 chpi − chp)/chp (13)

We also used the standard deviation (SD):

SD =
√

VAR (14)

where the variance VAR is estimated as:

VAR ≈ 1
N ∑N

i=1 (chpi − chp)
2
, chp =

1
N ∑N

i=1 chpi (15)

2.3. Single-Trial ERP Data

Details of the experimental setup, data acquisition and preprocessing procedures for
the single-trial ERP data and conventional ERPs from 16 participants have been reported
by [8].

In short, the task was to identify a designated face among a set of 12 different faces by
means of a button press. The target face was presented in 72 trials, randomly interspersed
in 792 nontarget trials with a mean interval of 12 trials between the target face presentations.
Each trial took 2 s. Trials without correct answers were discarded from analysis but
considered in the timeline.

EEG was recorded from 64 electrodes and segmented into epochs of 1 s with a 100-ms
prestimulus baseline. The EEG signals were digitally low-pass filtered at 40 Hz, down-
sampled to 250 Hz, re-calculated to common average reference and cleaned from ocular
artifacts. Here, we consider only single trial amplitudes of the N250 component in response
to target faces, extracted from the spatially averaged EEG within a region of interest across
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6 right hemisphere electrodes (TP10, P8, P10, PO8, PO10, O2) from 230 to 320 ms after face
onset. This region and interval of interest were based on the original study [7]. Epochs
with activity ranges > 100 µV within any channel were discarded from analysis.

3. Results
3.1. Monte Carlo Simulations

Tables 1 and 2 present the RMSE and RB (with corresponding SD), respectively, of
changepoint estimations with chp = 50, obtained by RESPERM and SEGMENTED for two
levels of noise, four error distribution types and equal and unequal variances. RMSE of
changepoints in time series with minor noise was smaller by up to 50% for RESPERM than
SEGMENTED in all cases with equal variances and in 3 of four cases with unequal noise;
only for the beta asymmetric distribution of noise RMSE was smaller for SEGMENTED. For
time series with major noise and all error types, RMSEs of changepoint location estimates
were smaller (unequal variances) or even noticeably smaller (equal variances) for RESPERM.
In all cases of dominant noise, RMSEs of changepoint estimation were noticeably smaller
for RESPERM. Thus, RESPERM is consistently more precise than SEGMENTED for major
and dominant levels of noise.

Table 1. RMSE for change point estimations with chp = 50 for two levels of noise, four error distribu-
tion types and equal and unequal variances.

Error
Distribution

Noise
Level

Equal Variances Unequal Variances

SEGMENTED RESPERM SEGMENTED RESPERM

Normal
Major 12.96 7.88 9.16 6.88

Dominant 20.48 17.38 18.51 14.94

Uniform
Major 11.09 7.71 9.04 5.89

Dominant 19.55 15.35 16.42 14.16

Beta (2,2)
Major 8.12 4.63 6.12 3.30

Dominant 15.43 10.39 12.51 8.79

Beta (2,6)
Major 4.10 2.75 3.52 2.06

Dominant 8.10 4.17 6.59 3.62

Table 2. Relative bias (RB, in %) and SD for change point estimations with chp = 50 for two levels of
noise, four error distribution types and equal/unequal variances.

Errors
Distribution

Noise
Level

Equal Variances Unequal Variances

SEGMENTED RESPERM SEGMENTED RESPERM

RB/SD RB/SD RB/SD RB/SD

Normal
Major 0.12/12.96 −1.26/7.86 −1.60/9.13 −2.08/6.80

Dominant 1.02/20.47 0.64/17.38 −3.84/18.41 −5.78/14.66

Uniform
Major −0.66/11.08 −0.20/7.71 −3.16/8.90 −3.84/5.57

Dominant −1.08/19.54 −1.72/15.32 −5.28/16.21 −9.68/13.30

Beta (2,2)
Major 1.66/8.07 0.32/4.63 −1.32/6.09 −2.20/3.11

Dominant −3.02/15.36 −1.88/10.35 −3.30/12.40 −4.42/8.51

Beta (2,6)
Major 0.68/4.09 0.42/2.74 −1.58/3.43 −1.44/1.93

Dominant 1.80/8.05 −0.54/4.16 −2.56/6.46 −1.80/3.51

As shown in Table 2, relative bias was very small and, compared to the large SDs,
especially for SEGMENTED, negligible. Taking into account the much larger RMSEs for
SEGMENTED as compared to RESPERM, especially for major and dominant noise, we
conclude that RESPERM shows greater accuracy (precision) than SEGMENTED.

The box-whisker plots in Figure 2 visualize the distributions of the changepoint
estimates obtained from the simulations, showing the medians and inter-quartile ranges
(IQR; box width). Whiskers represent data falling outside the IQR; outliers are depicted as
points outside of the whiskers.
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simulated data with chp = 50 for two levels of noise with equal and unequal variances.

In most cases, the changepoint estimate distributions are slightly asymmetric. There
are almost no differences between the medians (centers) obtained with the two meth-
ods. Only in a few cases there are small differences: for major noise, beta-symmetrically
distributed errors for both equal and unequal variances, for normally distributed errors
for unequal variances, for dominant noise, uniformly distributed errors and for unequal
variances and beta-symmetrically distributed errors with equal variances. Since there are
no significant differences in the location of medians, on average, the two methods provide
very similar median changepoint.

In contrast to the medians, the IQRs in cases of major and dominant noise are noticeable
smaller for RESPERM than for SEGMENTED for all error distribution types and both equal
and unequal variances. The variation in changepoint estimates outside the IQR is also
much smaller for RESPERM than for SEGMENTED at all levels of noise and for both equal
and unequal variances; the only exception is for asymmetric beta-distributed errors and
unequal variances. For major and dominant levels of noise, this difference is substantial.
Hence, the results from SEGMENTED show a wider spread than those for RESPERM,
indicating higher accuracy of RESPERM.

To check the similarity of the estimation results of both methods, Pearson correlation
coefficients for changepoint estimates from SEGMENTED and RESPERM were calculated.
Table 3 presents Pearson correlation coefficients for simulations with chp = 50 for the two
levels of noise, four error distribution types and equal and unequal variances.
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Table 3. Pearson correlation coefficients for changepoint estimates from SEGMENTED and RESPERM
(with chp = 50).

Error Distribution Type
Major Noise Dominant Noise

eV ueV eV ueV

Normal 0.59 0.75 0.83 0.46
Uniform 0.82 0.61 0.66 0.42
Beta (2,2) 0.81 0.79 0.80 0.69
Beta (2,6) 0.84 0.67 0.77 0.87

Note: eV—equal variances, ueV—unequal variances.

As shown in Table 3, the estimated changepoints obtained with the two methods
are always positively correlated, ranging from moderate (r = 0.42) to strong (r = 0.87).
This supports the general similarity of the results but with non-negligible differences in
some cases.

The results of the sensitivity analysis (i.e., the dependence of RMSE on the location
of changepoint) are shown in Figure 3. In the case of greater variance of random errors
(minor and dominant), RESPERM yields consistently smaller RMSE than SEGMENTED for
all simulated changepoints. Overall, higher levels of random errors lead to a larger RMSE
in the changepoint assessment but less so for RESPERM than SEGMENTED.
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Moreover, it should be noted that in many cases (especially for chp = 4, 8 and 12)
SEGMENTED did not yield change points, forcing us to rerun the analysis multiple times.

3.2. Application to Single Trial ERP Data from a Face Memory Task

Figure 4 shows the timeseries of the N250 component amplitudes elicited by correctly
recognized target faces for 4 selected participants from [8]. Each point in Figure 4 is an
amplitude measure for a single experimental target trial of a single participant measured
in the average over 6 electrodes of interest (TP10, P8, P10, PO8, PO10, O2) and during a
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230–320 ms post-stimulus time window. These N250-related electrodes and time window
are shown in Figure 5 together with an ERP waveform averaged over all target trials for
Participant 11. Grand-averaged ERP waveforms are available in [8]. We assume that face
learning or familiarization proceeds in two phases, that is, initial acquisition, represented by
a steep increase of N250 across trials, followed by consolidation or retention where N250 is
relatively large and more stable. Hence, we aimed to find a changepoint between two linear
regression lines during participants’ face learning using RESPERM and SEGMENTED,
respectively. The latency of this changepoint may be an indicator of the transition point,
demarcating the speed of the development of a mental representation of the target face.

The inherent characteristic of both RESPERM and SEGMENTED is the random factor
described in the Methods section above. Hence, in order to apply the methods to the
analysis of noisy EEG data, we ran each method 100 times and selected the optimal solution
in terms of the method-specific optimization function—maximum Cohen’s d for RESPERM
or minimum residual sum of squares (RSS) for SEGMENTED. The detailed results are
given in Table 4. The observation numbers from RESPERM corresponds to trial numbers
in our EEG experiment. In RESPERM, the detected changepoint kres is the observation
number and chpres is the trial number corresponding to kres. The detected changepoint
kseg is the closest observation number corresponding to the solution chpseg (rounded to the
nearest integer) found by SEGMENTED. SEGMENTED was unable to find a solution for
Participant 4.
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Figure 5. ERP waveform (±95% CI) averaged over all Joe trials and over all electrodes of interest for
Participant 11 with dashed vertical lines indicating the N250 component time window. The electrodes
of interest (red circles) and the distribution of scalp potentials in N250 time window are presented in
the top left corner.

Table 4. RESPERM- and SEGMENTED-detected changepoints of the N250 amplitudes across trials
for 16 participants, sorted by RESPERM latencies (chpres).

RESPERM SEGMENTED

Participant Number d kres chpres kseg chpseg

3 3.556 14 122 13 110
6 6.250 12 139 10 114
2 4.636 16 179 15 165
15 3.791 17 188 12 136
17 4.512 17 208 14 172
9 5.340 21 235 20 226
20 2.088 24 282 29 334
14 1.358 10 284 27 486
18 3.631 29 319 29 319
5 4.520 28 335 26 305
13 3.120 30 365 48 572
19 4.563 45 370 22 177
7 5.781 35 389 34 378
11 5.089 48 569 52 613
12 4.029 50 578 57 657
4 2.058 57 673 - -

d: the adjusted Cohen’s effect size d for RESPERM. kres and kseg: observation numbers corresponding to change-
points (see explanation in text). chpres and chpseg: trial number for RESPERM and direct solution by SEGMENTED
rounded to the nearest integer.

The mean absolute difference of changepoints between both methods was 64 trials
(SD = 71), counting also the nontarget trials, with the largest difference for Participant
13 (207 trials) and no difference for Participant 18. There is a strong Pearson correlation
(r = 0.86) between the changepoints found by both methods: chpres and chpseg. Hence,
results from RESPERM and SEGMENTED are in a good agreement, conforming with the
simulations presented in Section 3.1.

4. Discussion and Conclusions

We considered the problem of changepoint detection in linear regression models
based on noisy data and devised a new method (RESPERM), based on permutation-based
residuals and systematically compared its results with those of the often-recommended
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SEGMENTED method. RESPERM maximizes Cohen’s effect size d with the parameters
estimated by the permutation of residuals in the linear model. RESPERM was compared
with SEGMENTED in a number of simulations and in an application to single trial ERP
component amplitudes from a face learning experiment. In the simulation study, four
variants of noise were considered from normal and beta distributions together with equal
and unequal variances and different distributions of random errors were taken into account.

In case of minor noise, that is, for relatively clean data, in most cases SEGMENTED
yielded smaller standard errors than RESPERM. However, for noisier data, that is, in cases
of major and dominant greater variance of random errors, RESPERM was consistently
superior and characterized by a smaller standard error of the changepoint estimates than
SEGMENTED for all changepoints, that is, independent of their position in a time series.
Therefore, RESPERM appears more precise than SEGMENTED for noisier data.

Noisy data are typical for many applied situations, for example in ERP analyses with
single trials or small averages. It is difficult with any method to find changepoints in highly
noisy data, especially if they are located at the initial or terminal positions of the time series.
The greater precision of RESPERM at such early points justifies recommending it for such
difficult situations.

Our application of RESPERM to single-trial ERPs was based on previous group evi-
dence that the averaged N250 amplitude increases from the initial portion of repeated faces
presentations to the later portion [7,8]. Hence, we assumed that face learning in individual
participants may be conceived to often consist of two, approximately linear trends with an
initial dynamic acquisition phase reflected in an increase of N250 followed by consolidation
or retention, where the N250 amplitude is large and stable. These assumptions are likely
only approximations to more curvy-linear trajectories. Nevertheless, this approximation
constitutes a progress over the standard approach of averaging ERPs over blocks of learning.
The present approach allowed us to identify change points that differ between individuals.
In perspective, the application to single trial ERP, based on relatively simple amplitude
measures in a region of interest, could be combined with more sophisticated approaches
such as multivariate pattern analysis (e.g., [21]).

The similar outcomes of the RESPERM and SEGMENTED methods demonstrate
the stability of the basic approach and shows that changepoint detection is suitable to
investigate the dynamics of face learning at a single-participant level. On a more general
level, changepoint detection is used to investigate many phenomena where a dynamic
change over time is of interest. Especially when such dynamics are fast or when data are
noisy, RESPERM appears to be a good choice and applicable to data from many fields of
research, including medical research.
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Appendix A

Algorithm A1: The code of RESPERM implemented in R.

res.perm <- function(x,y,N_perm=100)
{
n = length(x)
first_k = 10
last_k = n − 10
Cohen_d = rep(NA,n)

simple.fit = lm(y~x)
res = simple.fit$residuals
yf = simple.fit$fitted

if (N_perm < 100) stop(“Too few permutations”)
if (n < 50) stop(“Too few observations”)

### Finding the greatest value of the vector Cohen_d
for (k in first_k:last_k)
{
simple1.fit = lm(y[1:k]~x[1:k])
simple2.fit = lm(y[(k+1):n]~x[(k+1):n])
b1 = simple1.fit$coefficients[2]
b2 = simple2.fit$coefficients[2]
b1s = c(); b2s = c()

for (i in 1:N_perm)
{

ys = yf + sample(res)
b1s[i] = lm(ys[1:k]~x[1:k])$coefficients[2]
b2s[i] = lm(ys[(k + 1):n]~x[(k + 1):n])$coefficients[2]

}
Cohen_d[k] = (b2 − b1)/sqrt(((k − 1)*var(b1s)+(n − k − 1)*var(b2s))/(n − 2))
}
d = max(Cohen_d[first_k:last_k], na.rm =T)
k_star = order(Cohen_d[first_k:last_k],decreasing = T)[1] + first_k−1
return(list(“k_star” = k_star, “chp” = x[k_star], “d” = d))
}
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