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Abstract: Magnetoencephalography (MEG) plays a pivotal role in the diagnosis of brain disorders.
In this review, we have investigated potential MEG applications for analysing brain disorders. The
signal-to-noise ratio (SNRMEG = 2.2 db, SNREEG < 1 db) and spatial resolution (SRMEG = 2–3 mm,
SREEG = 7–10 mm) is higher for MEG than EEG, thus MEG potentially facilitates accurate monitoring
of cortical activity. We found that the direct electrophysiological MEG signals reflected the physi-
ological status of neurological disorders and play a vital role in disease diagnosis. Single-channel
connectivity, as well as brain network analysis, using MEG data acquired during resting state and a
given task has been used for the diagnosis of neurological disorders such as epilepsy, Alzheimer’s,
Parkinsonism, autism, and schizophrenia. The workflow of MEG and its potential applications in the
diagnosis of disease and therapeutic planning are also discussed. We forecast that computer-aided
algorithms will play a prominent role in the diagnosis and prediction of neurological diseases in the
future. The outcome of this narrative review will aid researchers to utilise MEG in diagnostics.

Keywords: magnetoencephalography (MEG); clinical application; brain network; brain connectivity;
neurological disorder; electrophysiology; diagnostic; therapeutic; computer-aided algorithms

1. Introduction

A systematic analysis for the Global Burden of Disease (GDB) study reveals that, as
of Y2016, neurological disorders were the major cause of Disability Adjusted Life Years
(DALYs) and are the second leading cause of deaths [1]. Neurological disorders are as-
sociated with structural and functional abnormalities and can be identified by several
diagnostic imaging tools. Generally, the decrease in brain volume as a result of cerebral
atrophy is one of the common characteristics associated with structural abnormalities of
brain for many neurological disorders. As an example, patients diagnosed with Parkinson’s
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disease show a slight decrease in substantia nigra in comparison with normal control sub-
jects [2]. However, the degeneration of neurons of substantia nigra is significantly higher in
patients with chronic Parkinson’s disease in comparison to the early stage of the disease.

Other main neurological disorders manifest in specific ways. Memory loss is the
vital symptom of Alzheimer’s disease, affects older adults, and is the common cause of
dementia. Epilepsy is characterized by random seizures and complex seizures involving
loss of consciousness. Schizophrenia is a mental disorder that affects the way a person
thinks, acts, expresses emotions, perceives reality, and relates to others, and the symptoms
appear early in men. Autism is a mental disorder that sways how a person perceives and
socializes with others, causing problems in social interaction and communication.

Multiple neuroimaging approaches, viz., magnetic resonance imaging (MRI), func-
tional magnetic resonance imaging (fMRI), positron emission tomography (PET), electroen-
cephalography (EEG), and magnetoencephalography (MEG) are used as diagnostics tool
in medical imaging. These neuroimaging tools are used to identify the structural and
functional changes in the brain, and can therefore assist in early diagnosis and disease
prognosis. MRI, which offers a high spatial resolution (on a scale of millimetres), is used
extensively as a clinical neuroimaging tool to identify both the structural and functional
changes associated with neurological disorders. The temporal resolution of MEG was
found to be better than fMRI and PET, since their resolution is on the order of seconds.
MEG picks the fields generated by intraneuronal currents and hence provides a direct index
of neuronal activity and synaptic current [3]. The neuroimaging tools of MEG and EEG
are generally coupled together since they both reflect the electrophysiological phenomena
occurring in the brain. They do not only provide direct structural information about the
brain but also create a direct environment for understanding functional aspects of the brain
with a high temporal resolution (on a scale of milliseconds).

The human brain is a complex organ that consists of about 86 billion neurons and over
(2.42 ± 0.29) × 1014 synapses that assist in communication between the neurons [4]. The
top layer of the brain, the cerebral cortex, is about 2–4 mm thick. Neuronal activity within
the cerebral cortex is associated with action potentials in axons, neurotransmitters synapses,
and postsynaptic currents in post-synaptic dendrites of the pyramidal cells. Post-synaptic
primary currents, elicited by neuronal activity, are the primary sources of MEG and EEG
signals [5]. Thus, associated electromagnetic fields are direct ways to monitor and evaluate
cortical processing in resting-state or challenge conditions [6].

Oscillatory brain activity, i.e., brain waves, are generated as a result of synchronized
neuronal activity which could potentially be a biomarker for various physiological functions
and behavioural states. The cortical rhythms can be categorized in several ways [7]. Brain
waves are classified into five major types based on their frequencies: Delta (0.5–4 Hz), Theta
(4 Hz), Alpha (8–12 Hz), Beta (12–35 Hz), and Gamma (>35 Hz) [8]. MEG is used to detect
the brain waves generated across different regions of the brain, and its amplitude can be
calculated by Power Spectral Density (PSD) analysis.

MEG is an ideal candidate for clinical applications in patients who cannot undergo
a stringent clinical procedure before and during imaging. The first MEG signal was
measured in 1968 at the University of Illinois by physicist David Cohen using the copper
induction coil as detector, which resulted in MEG signals [9] with inadequate signal to
noise ratio (SNR). Later, the Super Conducting Quantum Interference Device (SQUID),
developed by Zimmerman, was used, which increased the SNR of the MEG signals and
thereby paved the way to acquire the MEG signals without signal averaging [10,11]. In
commercial MEG equipment, several sensors were placed as an array, like a helmet model,
which enhanced the effective measurement and the spatial resolution of the MEG signals.
With the technological advancements over the last decades, e.g., whole head coverage,
sophisticated noise suppression algorithms, and zero boil-off helium systems, MEG has
been evolved as a multichannel whole-head MEG system and finds its application in clinical
imaging. Modern MEG systems are equipped, e.g., with 306 sensors (Figure 1). One of
the current designs includes sensors comprising magnetometers and gradiometers within
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one sensor element. Such a design facilitates improved signal-to-noise for nearby cortical
sources, suppression of ambient noise, and even suppression of nearby artifacts produced
by, e.g., vagus nerve stimulators, cardiac pacemakers, and deep-brain stimulators.

MEG has two clinical applications, i.e., localization of epileptic foci and pre-operative
evaluation for brain surgery candidates. MEG is also an important neuroimaging tool
for the therapeutic planning of several mental disorders and abnormality analysis such
as epilepsy [12–16], autism [17,18], schizophrenia [19], stroke [20], head trauma [21], and
monitoring of drug administration [22]. The autism patients, when subjected to eye-
gaze processing, have impaired activity in the gamma frequency band [23]. The authors
concluded that the participants with severe ASD have higher activity between left temporo-
parieto-occipital regions at 0–15 Hz frequency and higher activity between right temporo-
parieto-occipital regions at 30 to 45 Hz in the low gamma frequency [24]. The 16 children
with ASD are very sensitive to illegal speech sequences when undergoing 504.63 Hz
MEG recording. The participants are age- and gender-matched controls [25]. The ASD
patients have low social behaviour and communication due to a pattern of lower gamma
band coherence in angular and middle temporal cortical regions within the default mode
network [26]. The study with DTI connectivity of the hemisphere containing the epileptic
focus in WM fibres of mTLE patients was confined with a connectivity-based laterality
model affecting these brain regions [27]. The authors studied the importance of language
mapping with MEG and the need for localization and lateralization with the changes in
language networks and to identify the speech and social communication cortices in the
brain [28].
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Figure 1. MEGIN Elekta Neuromag TRIUX MEG system with 306 SQUID sensors with an integrated
128 channel EEG. A state-of-the-art system with high tolerance for magnetic interference, improved
subject comfort and zero Helium boil off. Reprinted from [29] (Copyright 2011 Elekta Oy).

2. Setting up the MEG Experiment

The general steps involved in setting up MEG experiments are discussed in this section.
The subject is placed in a dedicated HPI chair after checking for any metal implants, and
in total seven electrodes are placed on the subject’s face and neck (Figure 2). Two vertical
Electro-oculography (EOG) electrodes are placed: one above and one below the left eye and
two horizontally on the left and right temples, to record the eye blinks and saccades. These
signals will be used later to the eye movement artefacts. Two ECG electrodes are placed—
one on the right abdomen and one below the left clavicle. The ground electrode is to be
placed on the bone of the clavicle. All the electrodes are immobilized with microporous
tapes [5].
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Unlike other imaging modalities, viz., MRI, X-ray, and PET, MEG does not give any
direct structural details of the brain in the form of an image. Furthermore, acquisition in
MEG is performed with respect to the SQUID sensors instead of the subject. Therefore,
state-of-the-art MEG systems include a sub-system to determine the position of the head
with respect to the MEG sensors. To accurately find the source of the neural activity, the
size, orientation, and movement parameters of the head during the course of the acquisition
must be known. This is achieved by using dipole-like coils, called Head Position Indicator
(HPI) coils, and by the process of digitizing the input data. During subject preparation,
the four HPI coils are attached to the subject’s scalp in a predetermined position. After
attaching the electrodes to record the eye blinks and saccades, the process of digitizing is
initiated using a stylus to generate a 3D head model in Cartesian coordinates. During the
MEG signal acquisition, the HPI coils are activated to generate a magnetic field source,
which is localized by the MEG sensors.

Since the sensors are fixed permanently and the prior knowledge about their orienta-
tions and positions is known with respect to each other, the relative position of the head can
be calculated using the positions of the HPI coils that can be very accurately determined in
the 3D space. The HPI coil used for co-registration is depicted in Figure 3.
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Further, anatomical landmarks, viz., three bony fiducial points (Nasion, left, and
right pre-auricular points) and additional points are collected around the subject’s head.
Thus, the digitizing process will provide information about the subject’s head orientation,
position, and shape. The head position in MEG experiments is either measured at the
start/end or during the course of the experiment. Generally, a head motion of about 5 mm
is acceptable in MEG experiments. General guidelines to be followed before starting a MEG
acquisition are well documented in [32], and some of the key points are listed below.
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(a) An empty room measurement is recommended for about 2 min before and after the
actual experiment.

(b) Simultaneous ECG and EOG acquisition is advisable since it is used for artefact
rejections and corrections during pre-processing the data.

(c) For experiments involving muscle movements, a recording of muscle activity is advisable.
(d) Suitable subject choice is a must following the exclusion criteria.
(e) Position the participant as close as to the sensors.
(f) Once the subject is positioned in the MEG system, it is recommended to perform

2 min of resting state measurement to ensure proper functioning of all the accessories.
(g) 3D anatomical MRI is advisable if the protocol contains source localization process.

3. MEG Signal Processing and Source Localization

After the acquisition of MEG signals, the data is pre-processed. This step is important
as it removes any extraneous signals from the data originating from anywhere other than
the neuronal activity. These artefacts are sorted into following three categories:

(a) External magnetic field interference caused by sources like electric lines, traffic,
and elevators.

(b) System-related issues caused by defective sensors
(c) Physiological artefacts arising from the subject, viz., eye blinks, cardiac pulsing,

subject motion, based on their origin [32]. Some of the common artefacts in MEG
acquisition are shown in (Figure 4).
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Two strategies are followed in general to remove the artefacts. The first being visual
inspection and/or programmatic detection to identify and remove system related artefacts,
and the second is through systematic signal processing steps, which are generally employed
to remove external and physiological artefacts.
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3.1. Signal Space Separation [SSS]

The bio-magnetic signals generated in the brain when recorded suffers severe interfer-
ence from internal and external sources. To mitigate the interference from external sources,
e.g., from infrastructure or electrical lines, the MEG experiment is usually performed in a
Magnetically Shielded Room (MSR), which reduces the interference of several orders of
magnitude. However, a method is still needed to reduce the signals to a minimal level.
During the past four decades several methods were developed to address this problem.
Some of the methods are gradiometric coil configurations [34], Signal space projection
(SSP) [35], reference sensors [36] and Signal Space Separation (SSS) [37,38] methods. SSS is
a spatial method, which transforms the MEG signals acquired from multiple channels, over
300, into its uncorrelated basic components called subspaces, one component from source
outside the other from inside the MEG sensors. After the separation of the components
the signals are extracted from the acquired MEG data based on the geometry of the sensor
configuration. This method was developed based on Maxwell’s equations and assumes that
all the sensors are about 4 cm away from the magnetic field sources. One of the advantages
of this method is that it does not modulate or alter the original distribution of the MEG
signals across the sensors. SSS was found to be more proficient in improving the quality
of MEG data than classical methods with less user intervention. This method proves to
be robust and provides a shielding factor of about 150 and 50 for sources at 1 and 0.5 m,
respectively [37].

However, the SSS method does not remove the artefacts whose sources are near
the sensors, e.g., pacemakers/stimulators located in proximity of the sensors, since the
magnetic fields produced by these sources are spatially complex in nature and exceed the
sensor noise in amplitude. Another method, which is a temporal extension of the SSS
(tSSS), was proposed to remove such artefacts generated from the nearby sources. This
method assumes there is a difference in the temporal pattern between the brain signal and
the artefacts. To perform tSSS, a prior SSS operation must have been performed on the raw
data. The principle behind this is explained briefly as follows. When performing SSS on
the data, the spatial frequency included in the process had an incomplete description of
the artefact magnetic field, and it leaks into both the internal and external part of the SSS
reconstruction. This leakage forms the basis for tSSS as the temporal pattern in both the
subspaces (inside and outside the source) is similar and the brain signal is only the part of
the inside source and does not leak into external SSS basis. The temporal pattern relevant
to the artefact sources are eliminated by projecting them in the time domain extracted from
the internal signals reconstructed from SSS. The final data after SSS and tSSS are the same
if there are no sources of artefacts nearby the sensors [39].

3.2. Software Tools Used in MEG Data Processing

Since the MEG signal amplitudes are of the order of femtotesla (fT), it is sensitive to
several artifacts from different sources. The artifacts are usually removed through pre-
processing steps using sophisticated software. The source of artifacts in MEG signals is
power line interferences, signals from equipment, mechanical vibrations, and activities
outside the brain [40]. The Signal Space Separation- and temporal Signal Space Separation-
based algorithm by MEGIN Oy (Helsinki, Finland) are used for the pre-processing of MEG
signals, and epoch-based techniques identify and rejects epochs containing eye blinks,
muscular artifacts, and sensor jumps [41]. In [42], a detailed study on data acquisition and
analysis of EEG/MEG analysis was performed.

In addition to vendor specific data analysis packages, several open source tools are
available for MEG data analysis and visualization. Here we list a number of those pack-
ages (Table 1). NUTMEG is a software tool for the analysis of EEG/MEG signals and is
compatible with other MATLAB toolboxes [43]. The NIRS AnalyzIR Toolbox was developed
primarily to process the NIRS, it offers limited support for MEG datasets, and its application
may be extended for multimodal image processing [44]. The Field Trip is a MATLAB-based
free toolbox for analysis of EEG/MEG and other bio signals. There is no other GUI and
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user should have the prerequisite knowledge about MATLAB functions for handling that
dataset [45]. Brain Dynamics and Cognition Laboratory in Lyon developed ELAN toolbox
for the analysis of EEG/MEG and local field potentials. The fast execution time was
obtained by optimized algorithm and compiled C code. ELAN Annotation Format (EAF)
are supported MATLAB functions [46]. SPM is also a MATLAB-based toolbox and can be
integrated with fieldtrip toolbox for EEG/MEG analysis. The dynamic casual modelling
technique combines neural modelling with data analysis for dealing with wide variants of
responses [47]. EMEGs (ElectroMagnetoEncephalography software) is a MATLAB toolbox
for pre-processing, analysis of, and visualization of electromagnetic data and can be used
as a plug-in interface [48]. Brainstorm is an open-source software that emphasizes cortical
source estimation and the analysis is done with the integration of MR images [49]. ERP
WAVELAB was proposed for the multi-channel time-frequency analysis of EEG and MEG
signals [50]. In [51], the characteristics of various software toolboxes available for the
analysis of MEG and EEG datasets are presented.

Table 1. Open source and licensed toolbox and their features for the analysis of MEG/EEG databases.

Sl. No. Toolbox Features Availability

1 NUTMEG [43]

• Supports MEG, EEG and intracranial EEG,
• Easy integration with other toolboxes
• GUI based functions
• Supports call function for batch analysis
• Tomographic visualisation is avaliable
• parametric and non-parametric statistics can be computed
• Functional Connectivity Mapping is available

open-source
MATLAB-
based toolbox

2 NIRS Brain AnalyzIR
Toolbox [44]

• Limited support for (EEG), (MEG), and surface-based fMRI
(CIFTI) dense time-series data

• Contains modules like Pre-Processing, Data management filtering
and first and second order statistical analysis

• GUI based functions

open-source
MATLAB-
based analysis

3 Field Trip [45]

• Supports MEG, EEG, and Invasive Electrophysiological Data
• No GUI, hence, MATLAB command line scripting is possible
• Several types of time frequency analysis, connectivity analysis,

and nonparametric statistical permutation tests at the channel and
source level.

open-source
MATLAB-toolbox

4 ELAN [46]

• Supports MEG, EEG, and LFP Signals
• Analysis and Visualisation of data
• Supports Time Frequency analysis and Topographical Mapping.
• Capable of analysing Individual and group level statistics across

the subjects
• Compatible with all types of MATLAB toolboxes like SPM,

FieldTrip, Nutmeg, EEGLab and BrainStorm

Licenced version
C implementation

5 SPM8 [47]

• Supports MRI, fMRI, PET, MEG, EEG.
• Analysis and Visualisation of data
• Statistical Parametric Mapping of the analysed data
• Source Reconstruction
• Dynamic casual modelling for EEG and MEG

MATLAB-toolbox

6
Electro Magneto
Encephalography
Software [48]

• Supports EEG and MEG data analysis and Visualisation
• Data pre-processing in EMEGS for statistical control of artifacts.
• Capable of analysing Statistical and Exploratory brain signals
• Supports ANOVA for region of interest analysis
• GUI based functions
• Synthetic data analysis for education.

MATLAB
supported toolbox
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Table 1. Cont.

Sl. No. Toolbox Features Availability

7 Brainstorm [49]

• Dedicated for EEG and MEG
• Signal Source estimation with MRI integration
• GUI based functions
• Supports MRI, EEG and MEG file formats
• Visualisation of Topological sensor data and anatomical

structure volumes
• Registration and modelling of Multimodal data for analysis

Cross platform
software supports
MATLAB, Python
and Java scripts

8 ERP WAVELAB [50]

• Supports multichannel time frequency analysis of EEG and
MEG data

• GUI based functions
• Supports scalp plotting with EEGLAB
• With ANOVA performs various statistical analysis.

open-source
MATLAB-
based analysis

9 MNE python
toolbox [52].

• Analysing and Visualisation of MEG, EEG, sEEG, ECoG, and
NIRS data.

• Co-registration of MEG and MRI.
• Supports preprocessing, SSP, ICA, forward modeling, inverse

methods, and Beamforming (Equivalent Current Dipole, Linearly
Constrained Minimum-Variance)

• Supports time-frequency analysis, statistical analysis and
connectivity estimation.

• GUI supported by MNELAB for MNE toolbox.
• Fast and memory efficient processing of large data sets

Open-source python
package, Also
avilable in MATLAB
and C with
limited modules.

4. Clinical Application

The attempt to identify potential clinical applications of MEG has been ongoing [53]
since the early phases of the MEG. The first clinical applications were demonstrated for
epilepsy patients [54,55]. In its infancy, MEG with one sensor was recorded simultaneously,
with EEG serving as a trigger for averaging purposes. This attempt had exhibited the
potential of MEG in identifying the sources of epileptiform spikes and its spread to the
other hemisphere in about 20 ms. Several forms of epilepsy and multiple sources of
epileptic activity in patients were identified. Further the co-registration of the evoked
responses to 3D MRI resulted in preoperative planning [56]. Alzheimer’s disease is a
chronic disorder that profligates the brain cells in [57], 3D convolutional neural network
was proposed for the diagnosis Alzheimer’s from 2D MR data, and the architecture were
termed as Alzheimer’s network. Schizophrenia alters the composition of grey matter; there
are challenges in the detection of grey matter in brain from volumetric MR data. A deep
learning model was proposed in [58] for the identification of Schizophrenia from structural
MRI data. Vocal cord disorder and speech defacement are the early symptoms of Parkinson
disease, and various machine-learning techniques are employed in [59] for the detection of
Parkinson disease. In this section, the application of MEG in various neurodegenerative
diseases will be discussed.

4.1. Epilepsy

According to WHO, around 50 million people across the globe are affected by epilepsy—
a chronic non-communicable brain disease. The symptoms include recurrent seizures and
involve either the whole brain (generalized) or part of the brain (focal), accompanied by
loss of consciousness and control of bowel or bladder function in certain cases.

The functional neural network topology for epilepsy subjects is different from the
healthy subjects, especially in the theta band. In epilepsy, some regions of the brain generate
abnormal electrical signals, which in turn create magnetic signals and therefore can be
detected by MEG. Scott B. Wilson et al. performed a detailed study on the detection of a
spike in neuro signals [60]. The spatial accuracy of MEG is good since distortion is less in
MEG signals when compared with the EEG signals. The EEG and MEG epileptic spikes
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are identified in the time and frequency domain methods [61]. MEG finds its application
in the detection of interictal epileptiform discharges and localizing functional cortices, to
guide neurosurgical procedures [62]. The linear discriminant analysis (LDA) classifier was
used for the classification of MEG data obtained from 15 healthy subjects and 18 epilepsy
patients [63]. A two-stage algorithm comprising beamforming by virtual sensors and time-
frequency analysis by Stockwell transform was used to detect the high-frequency signals
that help in the presurgical planning [64]. The structural images from imaging modalities,
viz., MRI, PET, and SPECT data of the patients, are usually co-registered with MEG for
the epilepsy surgery evaluation [65]. The genetic algorithm with K- nearest neighbor was
used for the classification of epileptical MEG spikes [66]. In [67], coherence analysis for
epilepsy patients was performed on MEG data. The nonlinear signal analysis was found
to be effective in the analysis of Idiopathic Generalized Epilepsy (IGE) and from healthy
volunteers of 10 subjects [68]. MEG, being a non-invasive technique, is a potential tool for
epilepsy surgery evaluation and can determine the abnormalities observed in structural
and functional mapping [69]. MEG is an effective tool for children with intractable focal
epilepsy to determine the surgical candidacy and focal cortical resection to stop seizures [70].
Recently [71] an optically pumped MEG (OPM) has been used to study epilepsy. The OPM,
a cryogen-free MEG system, can be directly placed over the scalp and is invariant to head
motion. The performance of OPM was found to be similar to EEG in the detecting the
markers of epilepsy. The OPM, on the other hand, utilizes only 20–50 sensors placed
over the suspected region; therefore, this method does not provide whole head coverage.
(Figure 5)
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4.2. Alzheimer’s Disease (AD)

AD is one of the common neurodegenerative diseases that affects over 60–70% of
the 47.5 million people with dementia across the globe, according to Dementia fact sheet
WHO. The onset of the disease happens several years before it is clinically diagnosed. AD
is characterized by three stages. The first stage is a pre-clinical phase, which lasts for over a
decade. During this stage, an abnormal biomarker pattern is exhibited and low amyloid
β42 in cerebrospinal fluid (CSF) or increased tracer detection is shown in PET imaging.
Towards the end of the first stage, neurodegeneration or injury is found. The second phase
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exhibits Mild Cognitive Impairment (MCI) and the third state is Alzheimer’s dementia.
Therefore, there is need for the early intervention during the pre-dementia phases.

The identification of biomarkers for the neurodegenerative diseases will help in early
diagnosis or the onset of the disease. For AD, Amyloid-β deposition is a well-established
clinical biomarker, which starts several decades before the onset of the AD [73–75]. How-
ever, several research studies are being conducted in search of electrophysiological/
electromagnetic markers for AD, which could assist in evaluating the early diagnosis of the
pre-dementia phases. The report by [76] had identified a relation between the Amyloid-β
deposition and the changes in the regional brain wave patterns, using resting state MEG as
a technique. Briefly, the findings are: (a) there is an increase in alpha band activity in the
medial frontal area, which reflects the Amyloid-β deposition (b) there is an increase in delta
band power in the medial frontal area, showing that there is a regional decrease in glucose
metabolism and showing a symptom of disease progression within the AD phases, (c) a
global decrease in theta band activity only exhibits a general cognitive decline, not specific
to AD. Thus, these findings are promising in that MEG could be a potential tool to provide
electrophysiological biomarkers for the determination of predementia phases of AD.

In [77], the spectral property of MEG signals was utilized to distinguish between
control, MCI, and Alzheimer’s disease (AD) subjects. In this study, a mean frequency
approach was adapted before which the power spectral density of the MEG signals was
calculated by the Fourier Transform of the autocorrelation function. The mean frequency is
shown to decrease significantly in MCI patients and the values are intermediate between
controls and AD patients. Another approach based on the MEG background activity was
performed in [78]. In this study nonlinear techniques based on sample entropy (SampEn)
and Lempel Ziv (LZC) complexity were used for the analysis of AD and control subjects
using a 148-channel whole-head MEG system. The results suggest that for the AD subjects
the MEG background activity revealed an increase in regularity and decrease in complexity,
demonstrating that the neuronal dysfunction in AD can be identified by MEG background
activity. Another study based on a missing stimulus paradigm was conducted in [79]. In
this study, the subjects were exposed to short beep tones at certain intervals, and the tones
were omitted randomly in the 160-channel MEG system. One of the advantages of the
missing stimulus paradigm is the subjects need not pay attention to the stimuli. It was
found that the amplitude of the average waveform is lower for AD subjects when compared
with the control group. The study also concludes that the absence of the response to the
omitted tone event could be an index for the early diagnosis of AD.

The MEG provides a 3D mapping of the brain so that functional connectivity of regions
of the brain can be analyzed for the diagnosis of disorders [80]. The spectral coherence and
cross mutual information function (CMIF) properties of the MEG waveform were used
for the brain connectivity analysis in AD subjects [81]. The spectral entropy and statistical
complexity measures were used for the analysis of MCI and AD subjects. The MCI subjects
depict the intermediate pattern of abnormalities between control and AD subjects [82]. The
MEG delta mapping was used for the analysis of 35 AD patients, 23 MCI patients, and
24 healthy control patients [83]. The Bayesian factor analysis algorithm was used for the
analysis of MEG signals, using the Hadoop ecosystem [84]. The multilayer neural network
was used for the classification of AD subjects with classification accuracy (78.39%) and
sensitivity (91.11%) [85]. The MEG was found to be effective in the differential diagnosis of
AD and major depression-related cognitive decline in the elderly subjects [86]. (Figure 6)
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4.3. Schizophrenia

Schizophrenia is a severe mental disorder that has affected over 20 million people
worldwide. A person affected by schizophrenia often exhibits the following symptoms:
distortions in thinking, emotions, perception, language, behavior, sense of self, delusions,
and hallucinations. Several research studies have been conducted to identify the region of
the brain that is related to the symptoms of Schizophrenia, but the neural mechanism for the
disease is yet to be identified. MEG can act a potential tool in identifying the electrophysio-
logical marker for Schizophrenia. The disturbances in the oscillatory wave patterns can
provide some insight regarding the symptoms or onset of the disease. Resting state MEG
had been used to study schizophrenia and the findings suggests that the pathophysiology
of schizophrenia can be correlated to the neural abnormalities in synchronized oscillatory
activity [87]. This is complemented by EEG studies that the increase in delta, theta, and
beta waves and the decrease in alpha power patterns had been identified in Schizophrenic



Brain Sci. 2022, 12, 788 12 of 21

patients [88]. However, there is poor reproducibility because of the sample characteristics,
techniques adapted, and spatial distribution across the studies conducted [89,90]. Maor
Zeev-Wolf et. al. [91] had employed the resting-state MEG to study the wave patterns in
control and schizophrenic patients. Their findings suggest that high alpha power was nega-
tively correlated with positive symptoms and beta power was positively correlated with
the negative symptoms (Figure 7). The study concludes that different neural mechanisms
may underplay in positive and negative symptomatic patients.
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The MEG signal pattern was able to discriminate the schizophrenia patients from
healthy subjects; 248-channel MEG signal analysis was performed on six healthy and
six abnormal cases [92]. The gamma band activity can significantly differentiate healthy
and schizophrenic patients, and a MEG measurement was taken on 15 schizophrenia and
15 healthy subjects. The recording was made while performing a complex mental arithmetic
task and at rest. The gamma power was observed as high in healthy cases when subjected
to the mental arithmetic task, while in the case of schizophrenia patients, less gamma power
was observed regardless of the task. In [93], two techniques were used to analyze healthy
and schizophrenia cases, based on the estimation of a number of dipoles in the delta and
theta frequency and distribution, sources of slow wave activity. The beta and theta band
activity were low in schizophrenia subjects and a higher number of slow wave generators
was observed in certain areas of the brain. The dipole density plot was determined for
healthy and schizophrenia cases, and for the diseased subjects there was an increase in the
absolute dipole values in both the hemispheres [94]. The mismatch negativity is defined as
the brain response subjected to deviations within a sequence of repetitive auditory stimuli
and it was found to be absent in patients with schizophrenia. The fMRI and MEG data
were combined for the analysis of healthy and affected subjects [95]. The diminishing
alpha waves is a symptom of schizophrenia based on the analysis of 10 patients with
schizophrenia and 18 healthy subjects [96]. The neuronal dynamics plays a vital role in
the analysis of schizophrenia and neural synchrony was impaired in the schizophrenia
subjects [97].
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The MEG recordings of the gamma band activity of schizophrenia patients reveal
the overactivity in the right frontal and right frontotemporal regions under cognitive
demands (45 ± 71 Hz) (Figure 8. The gamma band activity was poor in frontotempo-
ral, posteriotemporal, and occipital sites for the 60 to 71 Hz irrespective of the task [92].
The schizophrenic patients exhibited more enhanced activity in the low frequency bands
(within the delta and theta frequency ranges) than the control subjects. Using the dipole
density plot (DDP) method, the dipole localization was determined, and the results were
superimposed on the MR images as isocontour lines [94]. The absolute dipole values
measured in both hemispheres in schizophrenic patients were found to be high. The MEG
and fMRI were coupled to study the altered neural responses to basic sound processing
at the level of planum temporale in a group of schizophrenic patients and to correlate
with the morphological changes in this region [94]. The MEG recording was done on
schizophrenic patients during an auditory oddball task to investigate alpha brain activity
related to selective attention to target stimuli and selective inhibition of irrelevant stimuli.
The MEG-coherence source imaging (CSI) technique was employed to study and compare
the brain oscillations (biomarkers) in normal subjects, and the schizophrenia patients were
found to have an increased region of coherence [98]. The EEG and MEG focus on five
measures: P50 auditory sensory gating, pre-pulse inhibition of the startle response (PPI),
mismatch negativity (MMN), auditory P300, and gamma band oscillations. The measure
indicates neuro defects such as inhibitory failure, aberrant salience detection, and impaired
neural synchrony, which support the presence of higher-order cognition [99]. The static
and dynamic connectivity measurements have been made by MEG-fMRI and the combined
features have been used for the classification of schizophrenia subjects [100]. A pico-Tesla
(pT) (1pT-10-12T)-TMS electronic device was developed to increase the (2–7 Hz) abnormal
frequencies of the recorded MEG for patients with migraine, depression, or schizophre-
nia towards frequencies of less or equal to its frequencies of the alpha frequency range
(8–13 Hz) [101]. The resting-state MEG can distinguish the different types of schizophrenia.
The significant dysfunction in resting state connectivity is correlated with cognitive dys-
function and may cause differences in behavior and clinical presentation between subtypes
of schizophrenia [102]. Although the alpha-band and baseline spectrum remain intact,
gamma-band power at sensor level in schizophrenia patients during stimulus processing
was found to be reduced. In schizophrenia subjects, high-frequency oscillations during
visual processing were identified [103].

4.4. Parkinson Disease (PD)

As of 2016, 6.1 million people were affected by Parkinson’s disease globally, and it
is the second most common neurodegenerative disease after AD. The neuropathological
marker of PD is the deposition of Lewy bodies, especially alpha synuclein. PD affects the
nigrostriatal dopaminergic neurons, causing them to be lost, resulting in dysfunctions of
motor activities. As the disease progresses, it spreads from brainstem to other cortical
regions in the later stages [104]. Therefore, PD is a whole brain disease, causing functional
disturbances both in cortical and subcortical brain regions. Clinically, PD is characterized
by its motor and non-motor symptoms. MEG is a potential tool for the diagnosis of the
symptoms exhibited by PD in a non-invasive fashion. Since MEG offers a high temporal
resolution, it can be employed to study the neural activity and the functional connectivity
of the whole brain in patients with PD [105].

MEG was able to detect the thalamocortical dysrhythmia that is responsible for neuro-
genic pain, tinnitus, Parkinson’s disease, or depression [106], under resting state conditions.
The subjects show low frequency theta due to resonant interaction between thalamus and
cortex, which happens as a result of the low-threshold calcium spike bursts by thalamic
cells due to hyperpolarization. In another study, MEG was acquired for PD patients and
the results exhibited abnormal rhythmic activity, as shown by low frequency and high am-
plitudes. External magnetic stimulation (EMS) was performed with 1–7.5 pT and frequency
in resonance with the alpha band (8–13 Hz) on the left-right temporal, frontal-occipital,
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and vertex for about 2 min. In PD patients a faster attenuation of the MEG activity was
absorbed. The study concludes that the neural dynamics is strongly influenced by EMS.
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Another study based on resting state MEG and power spectral density analysis was
conducted in [107], and the results showed that the theta, beta, and gamma bands were
characterized by slow resting-state potential in demented, non-demented PD, and healthy
elderly controls. The study finds that in the non-demented patients the theta power was
increased and beta power was decreased in comparison to the control subjects. However,
in demented PD subjects, an increase in delta and a decrease in alpha and beta power was
observed. Further, the study concluded that PD can be characterized by the slowing of
resting-state brain activity in delta and alpha bands.

Further, MEG plays a crucial role in the analysis of biological neural-network function-
ality in the case of neurodegenerative disorders that have exhibited abnormal oscillatory
and disturbed neural activity [108]. Also, MEG study reveals that the increased resting-state
cortico-cortical functional connectivity in the 8–10 Hz alpha range is a feature of PD [109].

The inferences from Figure 9 are as follows: red color area indicates the statistically
significant increase of relative power in the eyes open condition, blue color area indicates
the significant decrease of relative power in the eyes open condition. The color intensity
depicts the magnitude of change (light = 0–25%; middle = 25–50%; dark = >50%). A
decrease in power is observed in the control group and was absent in PD patients.
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Figure 9. Schematic representation of results of the comparison between the eyes open and the eyes
closed condition (PDD—-Parkinson’s disease-related dementia; PD–Parkinson’s disease without
dementia; C—healthy, elderly controls. Reprinted from [107]. (Copyright 2006 Elsevier) Image
reproduced with copyright permission.

4.5. Preoperative Evaluation

The above-mentioned applications of MEG are all largely for diagnostic and clas-
sification purposes. Additionally, the usage of MEG as a preoperative evaluation will
become increasingly prominent and necessary. A common scenario will be the need for
the sensorimotor mapping of the primary motor and sensory cortices (SM1) of brain tu-
mor patients. Accurate localization of any function of interest to cortex enables optimal
neurosurgical tumor resection and minimizes post-operative deficits. Currently, fMRI is
largely the preferred choice of functional mapping in such cases. However, there are several
reasons why MEG should be used instead, or in some cases, in conjunction with fMRI for
preoperative evaluation. The first is that MEG is a direct physiological measurement of
neural activity, which can tease apart brain–body interactions with more detail, as opposed
to the blood–oxygen level dependency (BOLD) signal. MEG can distinguish between the
two main types of brain–body interactions during motor movements: “cortex-kinematic”
interaction, also known as corticokinematic coupling (CKC) and “cortex-muscle” inter-
actions, also known as corticomuscular coupling (CMC). CKC is a signature of afferent
signals, whereas CMC is mainly by efferent signals [98]. In one recording, MEG can acquire
multiple neurophysiological processes such as evoked and induced magnetic responses,
cortico-cortical coupling, and peripheral-cortical signals, which serve as several functional
localizers [99]. This information will provide additional details to clinicians for a more
thorough pre-operative assessment. The second reason is that fMRI measurements of
atypical sensorimotor maps in brain-lesioned patients are more difficult to interpret than
those of healthy subjects [100,101]. In such scenarios, it is recommended that MEG should
be mandatory for precise source localization.

5. Inferences from the Narrative Study and Future Scope of MEG

The following are the inferences from the research studies on MEG. The MEG signals
of interest are extremely small, several orders of magnitude smaller than other signals in a
typical environment that can obscure the signal. Thus, specialized shielding is required to
eliminate the magnetic interference found in a typical urban clinical environment. Patients
need to remain relatively still during a MEG exam. [110]. Some of the MEG studies rely
on sensor space data and some on source space data, hence a generalized framework is
required in the analysis [111]. There is also a stimulus variation in most of the studies
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and a variation in output is observed prior to and after registration. MEG systems are
less common when compared with the EEG and MRI systems, and standardization is also
required in the quantitative analysis of MEG signals such as protocols, data collection,
and data analysis. Few MEG public databases are available for research purposes when
compared with the EEG and MRI databases. Table 2 shows the findings and Clinical
Considerations of the MEG.

Table 2. MEG findings and Clinical Considerations.

Neurodisorders MEG Findings and Clinical Considerations

Epilepsy

Accurate localization of spikes when compared with the EEG for both ictal and interictal subjects. It
can localize the complex primary intrasylvian epileptiform disturbances associated with
Landau–Kleffner syndrome, which aids the presurgical scenario [69]. MEG was found to be robust in
the localization of postsurgical epileptiform disturbances [112]

Alzheimer’s Disease (AD) Proficient in the early detection of dementia [113]. Increase in count of dipoles in the delta and theta
band [114]. Slow wave activity detection in the right temporal and parietal lobe of the brain [115].

Schizophrenia

Resting-state activity was acquired spontaneously with 5 min duration in the awake state, resting
state MEG are able to distinguish different subtypes of schizophrenia [116]. Auditory studies are also
done with various stimuli for the distinguishing subtypes of schizophrenia [117]. MEG along with
coherence source imaging (CSI) efficiently detects the brain oscillation that distinguishes between
normal and schizophrenia subjects [2].

Parkinson Disease (PD)

Changes in beta band were observed in MEG data, PD patients had a significant minimization in beta
ERD during the NoGo condition and in beta ERS during both Go and NoGo conditions compared
with the healthy subjects [118]. Beta gamma phase magnitude coupling was observed in the resting
state [119].

The usage of optically pumped magnetometers (OPMs) in the future will generate
proficient results, however, the movement of OPM relative to the scalp during acquisition
and recording will generate artifacts. The MEG system based on OPM can generate results
with higher spatial resolution than the brain since multichannel recording is possible with
potential measurement near the brain. In the future, the wearable MEG will make the
system simple, and squid sensors are not required. The OPM-based MEG will be beneficial
for acquiring the signals from children within a duration of 10 min, within the tolerance
limits. Though MEG was proficient in the detection of neuro disorders, a specific pipeline
for MEG data acquisition, processing, and analysis in a clinical setting is required, since it is
not possible to compare the results of MEG studies. The utilization of optical co-registration
in future will also improve the accuracy in the localization of potential.

6. Conclusions

This review provides a basic introduction to MEG and its clinical applications for
neurodegenerative and associated diseases such as epilepsy, Alzheimer’s, schizophrenia,
and Parkinson’s diseases. MEG was found to be an efficient tool for the diagnosis of brain
disorders and for treatment planning. Additionally, MEG is a suitable clinical method in
presurgical functional sensorimotor mapping and offers several advantages over fMRI.
Its relevance in pre-operative evaluation is rising and will likely play a more crucial role
in clinical settings in the near future. MEG is patient-friendly and new methods such as
OPM decrease the complexity in pre-processing steps and enable efficient analysis of the
signals. In some cases, early biomarkers in terms of power spectral density and background
activity are demonstrated in the pre-dementia phases in AD. Together with other imaging
modalities, viz., EEG and MRI, MEG acts as a potential tool for precise diagnosis and
source localization.



Brain Sci. 2022, 12, 788 17 of 21

Author Contributions: Conceptualization, V.V., P.P. and B.G.; writing—original draft preparation,
A.L.F., S.N.K. and A.K.H., writing and reviewing, S.G., W.K.J.S., H.P.B., V.V., F.A.S.G., V.J., P.P., B.G.;
content reviewing and editing P.P. and B.G. All authors have read and agreed to the published version
of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: S.W.K.J., V.V., P.P. and B.G. acknowledge the support from Lee Kong Chian
School of Medicine and Data Science and AI Research (DSAIR) Centre of NTU (Project Number ADH-
11/2017-DSAIR and the support from the Cognitive Neuroimaging Centre (CONIC) at Nanyang
Technological University, Singapore.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Feigin, V.L.; Nichols, E.; Alam, T.; Bannick, M.S.; Beghi, E.; Blake, N.; Culpepper, W.J.; Dorsey, E.R.; Elbaz, A.; Ellenbogen, R.G.;

et al. Global, regional, and national burden of neurological disorders, 1990–2016: A systematic analysis for the Global Burden of
Disease Study 2016. Lancet Neurol. 2019, 18, 459–480. [CrossRef]

2. Kotov, S. MRI Morphometry of the Brain and Neurological Diseases. InNew Insights into Morphometry Studies; Pares-Casanova, P.M.,
Ed.; IntechOpen: London, UK, 2017. [CrossRef]

3. Singh, S.P. Magnetoencephalography: Basic principles. Ann. Indian Acad. Neurol. 2014, 17, 107–112. [CrossRef] [PubMed]
4. Martins, N.R.B.; Angelica, A.; Chakravarthy, K.; Svidinenko, Y.; Boehm, F.J.; Opris, I.; Lebedev, M.A.; Swan, M.; Garan, S.A.;

Rosenfeld, J.V.; et al. Human brain/cloud interface. In Advances in Clinical Immunology 2021, Medical Microbiology, COVID-19, and
Big Data; Jenny Stanford Publishing: Dubai, United Arab Emirates, 2021; pp. 485–538.

5. Hari, R.; Aina, P. MEG-EEG Primer; Oxford University Press: New York, NY, USA, 2017.
6. Hämäläinen, M.; Hari, R.; Ilmoniemi, R.; Knuutila, J.; Lounasmaa, O.V. Magnetoencephalography—Theory, instrumentation, and

applications to noninvasive studies of the working human brain. Rev. Mod. Phys. 1993, 65, 413–497. [CrossRef]
7. Hari, R.; Riitta, S. Human cortical oscillations: A neuromagnetic view through the skull. Trends Neurosci. 1997, 20, 44–49.

[CrossRef]
8. Abhang, P.A.; Gawali, B.W.; Mehrotra, S.C. Technological Basics of EEG Recording and Operation of Apparatus. In Introduction to

EEG- and Speech-Based Emotion Recognition; Elsevier: Amsterdam, The Netherlands, 2016; pp. 19–50.
9. Cohen, D. Magnetoencephalography: Evidence of magnetic fields produced by alpha-rhythm currents. Science 1968, 161, 784–786.

[CrossRef]
10. Cohen, D. Magnetoencephalography: Detection of the brain’s electrical activity with a superconducting magnetometer. Science

1972, 175, 664–666. [CrossRef] [PubMed]
11. Zimmerman, J.E.; Thiene, P.; Harding, J.T. Design and operation of stable rf-biased superconducting point-contact quantum

devices, and a note on the properties of perfectly clean metal contacts. J. Appl. Phys. 1970, 41, 1572–1580. [CrossRef]
12. Pataraia, E.; Baumgartner, C.; Lindinger, G.; Deecke, L. Magnetoencephalography in presurgical epilepsy evaluation. Neurosurg.

Rev. 2002, 25, 141–159. [CrossRef]
13. Paetau, R. Magnetoencephalography in pediatric neuroimaging. Dev. Sci. 2002, 5, 361–370. [CrossRef]
14. Mäkelä, J.P.; Forss, N.; Jääskeläinen, J.; Kirveskari, E.; Korvenoja, A.; Paetau, R. Magnetoencephalography in Neurosurgery.

Neurosurgery 2006, 59, 493–511. [CrossRef]
15. McDonald, C.R. The use of neuroimaging to study behavior in patients with epilepsy. Epilepsy Behav. 2008, 12, 600–611. [CrossRef]
16. Schwartz, E.S.; Edgar, J.C.; Gaetz, W.C.; Roberts, T.P.L. Magnetoencephalography. Pediatr. Radiol. 2010, 40, 50–58. [CrossRef]

[PubMed]
17. Bailey, A.J.; Braeutigam, S.; Jousmäki, V.; Swithenby, S.J. Abnormal activation of face processing systems at early and intermediate

latency in individuals with autism spectrum disorder: A magnetoencephalographic study. Eur. J. Neurosci. 2005, 21, 2575–2585.
[CrossRef] [PubMed]

18. Kylliäinen, A.; Braeutigam, S.; Hietanen, J.K.; Swithenby, S.J.; Bailey, A.J. Face- and gaze-sensitive neural responses in children
with autism: A magnetoencephalographic study. Eur. J. Neurosci. 2006, 24, 2679–2690. [CrossRef] [PubMed]

19. Dima, D.; Frangou, S.; Burge, L.; Braeutingam, S.; James, A. Abnormal intrinsic and extrinsic connectivity within the magnetic
mismatch negativity brain network in schizophrenia: A preliminary study. Schizophr. Res. 2012, 135, 23–27. [CrossRef]

20. Laaksonen, K.; Helle, L.; Parkkonen, L.; Kirveskari, E.; Mäkelä, J.P.; Mustanoja, S.; Tatlisumak, T.; Kaste, M.; Forss, N. Alterations
in Spontaneous Brain Oscillations during Stroke Recovery. PLoS ONE 2013, 8, e61146. [CrossRef] [PubMed]

http://doi.org/10.1016/S1474-4422(18)30499-X
http://doi.org/10.5772/intechopen.69098
http://doi.org/10.4103/0972-2327.128676
http://www.ncbi.nlm.nih.gov/pubmed/24791076
http://doi.org/10.1103/RevModPhys.65.413
http://doi.org/10.1016/S0166-2236(96)10065-5
http://doi.org/10.1126/science.161.3843.784
http://doi.org/10.1126/science.175.4022.664
http://www.ncbi.nlm.nih.gov/pubmed/5009769
http://doi.org/10.1063/1.1659074
http://doi.org/10.1007/s10143-001-0197-2
http://doi.org/10.1111/1467-7687.00375
http://doi.org/10.1227/01.NEU.0000232762.63508.11
http://doi.org/10.1016/j.yebeh.2007.10.016
http://doi.org/10.1007/s00247-009-1451-y
http://www.ncbi.nlm.nih.gov/pubmed/19937237
http://doi.org/10.1111/j.1460-9568.2005.04061.x
http://www.ncbi.nlm.nih.gov/pubmed/15932615
http://doi.org/10.1111/j.1460-9568.2006.05132.x
http://www.ncbi.nlm.nih.gov/pubmed/17100856
http://doi.org/10.1016/j.schres.2011.12.024
http://doi.org/10.1371/journal.pone.0061146
http://www.ncbi.nlm.nih.gov/pubmed/23593414


Brain Sci. 2022, 12, 788 18 of 21

21. Lewine, J.D.; Davis, J.T.; Bigler, E.D.; Thoma, R.; Hill, D.; Funke, M.; Sloan, J.H.; Hall, S.L.; Orrison, W.W. Objective documentation
of traumatic brain injury subsequent to mild head trauma: Multimodal brain imaging with MEG, SPECT, and MRI. J. Head Trauma
Rehabil. 2007, 22, 141–155. [CrossRef] [PubMed]

22. Franzen, J.D.; Wilson, T.W. Amphetamines modulate prefrontal γ oscillations during attention processing. Neuroreport 2012, 23,
731–735. [CrossRef] [PubMed]

23. Richard, A.E.; Lajiness-O’Neill, R.R.; Bowyer, S.M. Impaired prefrontal gamma band synchrony in autism spectrum disorders
during gaze cueing. NeuroReport 2013, 24, 894–897. [CrossRef]

24. Lajiness-O’Neill, R.; E Richard, A.E.; Moran, J.E.; Olszewski, A.; Pawluk, L.; Jacobson, D.; Mansour, A.; Vogt, K.; Erdodi, L.A.;
Moore, A.M.; et al. Neural synchrony examined with magnetoencephalography (MEG) during eye gaze processing in autism
spectrum disorders: Preliminary findings. J. Neurodev. Disord. 2014, 6, 15. [CrossRef] [PubMed]

25. Brennan, J.R.; Wagley, N.; Kovelman, I.; Bowyer, S.M.; Richard, A.E.; Lajiness-O’Neill, R. MEG reveals atypical sensitivity to
linguistic sound sequences in Autism Spectrum Disorder. Neuroreport 2016, 27, 982. [CrossRef] [PubMed]

26. Lajiness-O’Neill, R.; Brennan, J.R.; Moran, J.E.; Richard, A.E.; Flores, A.M.; Swick, C.; Goodcase, R.; Andersen, T.; McFarlane, K.;
Rusiniak, K.; et al. Patterns of altered neural synchrony in the default mode network in autism spectrum disorder revealed with
magnetoencephalography (MEG): Relationship to clinical symptomatology. Autism Res. 2017, 11, 434–449. [CrossRef] [PubMed]

27. Nazem-Zadeh, M.R.; Bowyer, S.M.; Moran, J.E.; Davoodi-Bojd, E.; Zillgitt, A.; Bagher-Ebadian, H.; Mahmoudi, F.; Elisevich,
K.V.; Soltanian-Zadeh, H. Application of DTI connectivity in lateralization of mTLE. In Proceedings of the 2016 38th Annual
International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Orlando, FL, USA, 16–20 August 2016;
pp. 5525–5528.

28. Bowyer, S.M.; Zillgitt, A.; Greenwald, M.; Lajiness-O’Neill, R. Language mapping with magnetoencephalography: An update on
the current state of clinical research and practice with considerations for clinical practice guidelines. J. Clin. Neurophysiol. 2020, 37,
554–563. [CrossRef] [PubMed]

29. Neuromag, E.; Neuromag, E. Elekta Neuromag®. 2008. Available online: https://natmeg.se/onewebmedia/NM23083B-A%20
Elekta%20Neuromag%20TRIUX%20datasheet.pdf (accessed on 25 April 2022).

30. Pfeiffer, C. Preparation of the Participant. NatMEG 2017. Available online: https://natmeg.se/DriversLicense_material/prepare_
subject_dec17.pdf (accessed on 25 April 2022).

31. Pfeiffer, C.; Andersen, L.M.; Lundqvist, D.; Hamalainen, M.; Schneiderman, J.F.; Oostenveld, R. Localizing on-scalp MEG sensors
using an array of magnetic dipole coils. PLoS ONE 2018, 13, e0191111. [CrossRef] [PubMed]

32. Gross, J.; Baillet, S.; Barnes, G.; Henson, R.N.; Hillebrand, A.; Jensen, O.; Jerbi, K.; Litvak, V.; Maess, B.; Oostenveld, R.; et al. Good
practice for conducting and reporting MEG research. NeuroImage 2012, 65, 349–363. [CrossRef] [PubMed]

33. Niedermeyer, E.; da Silva, F.L. (Eds.) Electroencephalography: Basic Principles, Clinical Applications, and Related Fields, 5th ed.;
Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2005.

34. Zimmerman, J.E. SQUID instruments and shielding for low-level magnetic measurements. J. Appl. Phys. 1977, 48, 702–710.
[CrossRef]

35. Uusitalo, M.A.; Ilmoniemi, R.J. Signal-space projection method for separating MEG or EEG into components. Med. Biol. Eng.
Comput. 1997, 35, 135–140. [CrossRef] [PubMed]

36. Vrba, J. Multichannel SQUID Biomagnetic Systems Applications of Superconductivity Ed H Weinstock; Wolters Kluwer: Dordrecht, The
Netherlands, 2000.

37. Taulu, S.; Simola, J.; Kajola, M. Applications of the signal space separation method. IEEE Trans. Signal Process. 2005, 53, 3359–3372.
[CrossRef]

38. Taulu, S.; Simola, J. Spatiotemporal signal space separation method for rejecting nearby interference in MEG measurements. Phys.
Med. Biol. 2006, 51, 1759. [CrossRef]

39. Taulu, S.; Hari, R. Removal of magnetoencephalographic artifacts with temporal signal-space separation: Demonstration with
single-trial auditory-evoked responses. Hum. Brain Mapp. 2009, 30, 1524–1534. [CrossRef] [PubMed]

40. Tal, I.; Abeles, M. Cleaning MEG artifacts using external cues. J. Neurosci. Methods 2013, 217, 31–38. [CrossRef]
41. Gonzalez-Moreno, A.; Aurtenetxe, S.; Lopez-Garcia, M.E.; del Pozo, F.; Maestu, F.; Nevado, A. Signal-to-noise ratio of the MEG

signal after preprocessing. J. Neurosci. Methods 2014, 222, 56–61. [CrossRef] [PubMed]
42. Puce, A.; Hämäläinen, M.S. A review of issues related to data acquisition and analysis in EEG/MEG studies. Brain Sci. 2017, 7, 58.

[CrossRef] [PubMed]
43. Zumer, J.M.; Wong, D.D.E.; Guggisberg, A.G.; Nagarajan, S.S.; Dalal, S.S. NUTMEG: Open Source Software for MEG/EEG Source

Reconstruction. In Magnetoencephalography; Supek, S., Aine, C., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 255–262.
[CrossRef]

44. Santosa, H.; Zhai, X.; Fishburn, F.; Huppert, T. The NIRS brain AnalyzIR toolbox. Algorithms 2018, 11, 73. [CrossRef]
45. Oostenveld, R.; Fries, P.; Maris, E.; Schoffelen, J.-M. FieldTrip: Open source software for advanced analysis of MEG, EEG, and

invasive electrophysiological data. Comput. Intell. Neurosci. 2011, 2011, 156869. [CrossRef] [PubMed]
46. Aguera, P.-E.; Jerbi, K.; Caclin, A.; Bertrand, O. ELAN: A software package for analysis and visualization of MEG, EEG, and LFP

signals. Comput. Intell. Neurosci. 2011, 2011, 158970. [CrossRef] [PubMed]
47. Litvak, V.; Mattout, J.; Kiebel, S.; Phillips, C.; Henson, R.; Kilner, J.; Barnes, G.; Oostenveld, R.; Daunizeau, J.; Flandin, G.; et al.

EEG and MEG Data Analysis in SPM8. Comput. Intell. Neurosci. 2011, 2011, 852961. [CrossRef] [PubMed]

http://doi.org/10.1097/01.HTR.0000271115.29954.27
http://www.ncbi.nlm.nih.gov/pubmed/17510590
http://doi.org/10.1097/WNR.0b013e328356bb59
http://www.ncbi.nlm.nih.gov/pubmed/22776904
http://doi.org/10.1097/WNR.0000000000000015
http://doi.org/10.1186/1866-1955-6-15
http://www.ncbi.nlm.nih.gov/pubmed/24976870
http://doi.org/10.1097/WNR.0000000000000643
http://www.ncbi.nlm.nih.gov/pubmed/27468112
http://doi.org/10.1002/aur.1908
http://www.ncbi.nlm.nih.gov/pubmed/29251830
http://doi.org/10.1097/WNP.0000000000000489
http://www.ncbi.nlm.nih.gov/pubmed/33165228
https://natmeg.se/onewebmedia/NM23083B-A%20Elekta%20Neuromag%20TRIUX%20datasheet.pdf
https://natmeg.se/onewebmedia/NM23083B-A%20Elekta%20Neuromag%20TRIUX%20datasheet.pdf
https://natmeg.se/DriversLicense_material/prepare_subject_dec17.pdf
https://natmeg.se/DriversLicense_material/prepare_subject_dec17.pdf
http://doi.org/10.1371/journal.pone.0191111
http://www.ncbi.nlm.nih.gov/pubmed/29746486
http://doi.org/10.1016/j.neuroimage.2012.10.001
http://www.ncbi.nlm.nih.gov/pubmed/23046981
http://doi.org/10.1063/1.323659
http://doi.org/10.1007/BF02534144
http://www.ncbi.nlm.nih.gov/pubmed/9136207
http://doi.org/10.1109/TSP.2005.853302
http://doi.org/10.1088/0031-9155/51/7/008
http://doi.org/10.1002/hbm.20627
http://www.ncbi.nlm.nih.gov/pubmed/18661502
http://doi.org/10.1016/j.jneumeth.2013.04.002
http://doi.org/10.1016/j.jneumeth.2013.10.019
http://www.ncbi.nlm.nih.gov/pubmed/24200506
http://doi.org/10.3390/brainsci7060058
http://www.ncbi.nlm.nih.gov/pubmed/28561761
http://doi.org/10.1007/978-3-642-33045-2_11
http://doi.org/10.3390/a11050073
http://doi.org/10.1155/2011/156869
http://www.ncbi.nlm.nih.gov/pubmed/21253357
http://doi.org/10.1155/2011/158970
http://www.ncbi.nlm.nih.gov/pubmed/21687568
http://doi.org/10.1155/2011/852961
http://www.ncbi.nlm.nih.gov/pubmed/21437221


Brain Sci. 2022, 12, 788 19 of 21

48. Peyk, P.; de Cesarei, A.; Junghöfer, M. ElectroMagnetoEncephalography software: Overview and integration with other EEG/MEG
toolboxes. Comput. Intell. Neurosci. 2011, 2011, 861705. [CrossRef]

49. Tadel, F.; Baillet, S.; Mosher, J.C.; Pantazis, D.; Leahy, R.M. Brainstorm: A User-Friendly Application for MEG/EEG Analysis.
Comput. Intell. Neurosci. 2011, 2011, 879716. [CrossRef]

50. Mørup, M.; Hansen, L.K.; Arnfred, S.M. ERPWAVELAB: A toolbox for multi-channel analysis of time–frequency transformed
event related potentials. J. Neurosci. Methods 2007, 161, 361–368. [CrossRef] [PubMed]

51. Baillet, S.; Tadel, F.; Leahy, R.M.; Mosher, J.C.; Delorme, A.; Makeig, S.; Oostenveld, R.; Hämäläinen, M.; Dalal, S.S.; Zumer,
J.; et al. Academic software toolboxes for the analysis of MEG data. In Proceedings of the 17th International Confer-
ence on Biomagnetism Advances in Biomagnetism–Biomag 2010, Dubrovnik, Croatia, 28 March–1 April 2010; Springer:
Berlin/Heidelberg, Germany, 2010; pp. 101–104.

52. Gramfort, A.; Luessi, M.; Larson, E.; Engemann, D.A.; Strohmeier, D.; Brodbeck, C.; Goj, R.; Jas, M.; Brooks, T.; Parkkonen, L.;
et al. MEG and EEG data analysis with MNE-Python. Front. Neurosci. 2013, 7, 1–13. [CrossRef]

53. Hughes, J.R.; Cohen, J.; Mayman, C.I.; Scholl, M.L.; Hendrix, D.E. Relationship of the magnetoencephalogram to abnormal
activity in the electroencephalogram. J. Neurol. 1977, 217, 79–93. [CrossRef] [PubMed]

54. Barth, D.S.; Sutherling, W.; Beatty, J. Fast and slow magnetic phenomena in focal epileptic seizures. Science 1984, 226, 855–857.
[CrossRef] [PubMed]

55. Modena, I.; Ricci, G.; Barbanera, S.; Leoni, R.; Romani, G.L.; Carelli, P. Biomagnetic measurements of spontaneous brain activity
in epileptic patients. Electroencephalogr. Clin. Neurophysiol. 1982, 54, 622–628. [CrossRef]

56. Gallen, C.C.; Sobel, D.F.; Waltz, T.; Aung, M.; Copeland, B.; Schwartz, B.J.; Hirschkoff, E.C.; Bloom, F.E. Noninvasive presurgical
neuromagnetic mapping of somatosensory cortex. Neurosurgery 1993, 33, 260–268. [CrossRef]

57. Al-Khuzaie, F.E.K.; Bayat, O.; Duru, A.D. Diagnosis of Alzheimer disease using 2D MRI slices by convolutional neural network.
Appl. Bionics Biomech. 2021, 2021, 6690539. [CrossRef] [PubMed]

58. Oh, J.; Oh, B.-L.; Lee, K.-U.; Chae, J.H.; Yun, K. Identifying schizophrenia using structural MRI with a deep learning algorithm.
Front. Psychiatry 2020, 11, 16. [CrossRef] [PubMed]

59. Anudeep, P.; Mourya, P.; Anandhi, T. Parkinson’s Disease Detection Using Machine Learning Techniques. In Advances in
Electronics 2021, Communication and Computing; Springer: Singapore, 2021; pp. 483–493.

60. Wilson, S.; Harner, R.; Duffy, F.; Tharp, B.; Nuwer, M.; Sperling, M. Spike detection. I. Correlation and reliability of human experts.
Electroencephalogr. Clin. Neurophysiol. 1996, 98, 186–198. [CrossRef]

61. El-Samie, F.E.A.; Alotaiby, T.N.; Khalid, M.I.; Alshebeili, S.A.; Aldosari, S.A. A Review of EEG and MEG Epileptic Spike Detection
Algorithms. IEEE Access 2018, 6, 60673–60688. [CrossRef]

62. Anderson, C.T.; Carlson, C.E.; Li, Z.; Raghavan, M. Magnetoencephalography in the preoperative evaluation for epilepsy surgery.
Curr. Neurol. Neurosci. Rep. 2014, 14, 446. [CrossRef]

63. Khalid, M.I.; Aldosari, S.A.; Alshebeili, S.A.; Alotaiby, T.; Al-Hameed, M.H.; Jad, L. MEG data classification for healthy and
epileptic subjects using linear discriminant analysis. In Proceedings of the 2015 IEEE International Symposium on Signal
Processing and Information Technology (ISSPIT), Abu Dhabi, United Arab Emirates, 7–10 December 2015; pp. 360–363.

64. Migliorelli, C.; Alonso, J.F.; Romero, S.; Nowak, R.; Russi, A.; Mañanas, M.A. Automated detection of epileptic ripples in MEG
using beamformer-based virtual sensors. J. Neural Eng. 2017, 14, 046013. [CrossRef] [PubMed]

65. Knowlton, R.C. The role of FDG-PET, ictal SPECT, and MEG in the epilepsy surgery evaluation. Epilepsy Behav. 2006, 8, 91–101.
[CrossRef] [PubMed]

66. Alotaiby, T.N.; Alrshoud, S.R.; Alshebeili, S.A.; Alhumaid, M.H.; Alsabhan, W.M. Epileptic MEG Spike Detection Using Statistical
Features and Genetic Programming with KNN. J. Health Eng. 2017, 2017, 3035606. [CrossRef] [PubMed]

67. Ge, S.; Wu, T.; Tang, H.Y.; Xiao, X.; Iramina, K.; Wu, W. Coherence analysis for epilepsy patients: An MEG study. World Acad. Sci.
Eng. Technol. 2011, 80, 517–519.

68. Antoniou, P.E.; Adamopoulos, A.; Anninos, P.A.; Piperidou, H.; Kotini, A. Assessing Brain Pathophysiology through Non-Linear
Analysis of MEG in Idiopathic Generalized Epilepsy Cases. J. Behav. Brain Sci. 2012, 2, 445–453. [CrossRef]

69. Knowlton, R.C.; Shih, J. Magnetoencephalography in epilepsy. Epilepsia 2004, 45, 61–71. [CrossRef]
70. Ochi, A.; Otsubo, H. Magnetoencephalography-guided epilepsy surgery for children with intractable focal epilepsy: SickKids

experience. Int. J. Psychophysiol. 2008, 68, 104–110. [CrossRef]
71. Vivekananda, U.; Mellor, S.; Tierney, T.M.; Holmes, N.; Boto, E.; Leggett, J.; Roberts, G.; Hill, R.M.; Litvak, V.; Brookes, M.J.; et al.

Optically pumped magnetoencephalography in epilepsy. Ann. Clin. Transl. Neurol. 2020, 7, 397–401. [CrossRef]
72. Khan, S.; Lefèvre, J.; Baillet, S.; Michmizos, K.P.; Ganesan, S.; Kitzbichler, M.G.; Zetino, M.; Hämäläinen, M.S.; Papadelis, C.;

Kenet, T. Encoding cortical dynamics in sparse features. Front. Hum. Neurosci. 2014, 8, 338. [CrossRef]
73. Villemagne, V.L.; Burnham, S.; Bourgeat, P.; Brown, B.; Ellis, K.A.; Salvado, O.; Szoeke, C.; Macaulay, S.L.; Martins, R.; Maruff, P.;

et al. Amyloid β deposition, neurodegeneration, and cognitive decline in sporadic Alzheimer’s disease: A prospective cohort
study. Lancet Neurol. 2013, 12, 357–367. [CrossRef]

74. Morris, J.C. Early-stage and preclinical Alzheimer disease. Alzheimer Dis. Assoc. Disord. 2005, 19, 163–165. [PubMed]
75. Bateman, R.J.; Xiong, C.; Benzinger, T.L.S.; Fagan, A.M.; Goate, A.; Fox, N.C.; Marcus, D.S.; Cairns, N.J.; Xie, X.; Blazey, T.M.; et al.

Clinical and Biomarker Changes in Dominantly Inherited Alzheimer’s Disease. N. Engl. J. Med. 2012, 367, 795–804. [CrossRef]
[PubMed]

http://doi.org/10.1155/2011/861705
http://doi.org/10.1155/2011/879716
http://doi.org/10.1016/j.jneumeth.2006.11.008
http://www.ncbi.nlm.nih.gov/pubmed/17204335
http://doi.org/10.3389/fnins.2013.00267
http://doi.org/10.1007/BF00312921
http://www.ncbi.nlm.nih.gov/pubmed/75261
http://doi.org/10.1126/science.6436979
http://www.ncbi.nlm.nih.gov/pubmed/6436979
http://doi.org/10.1016/0013-4694(82)90116-X
http://doi.org/10.1097/00006123-199308000-00012
http://doi.org/10.1155/2021/6690539
http://www.ncbi.nlm.nih.gov/pubmed/33623535
http://doi.org/10.3389/fpsyt.2020.00016
http://www.ncbi.nlm.nih.gov/pubmed/32116837
http://doi.org/10.1016/0013-4694(95)00221-9
http://doi.org/10.1109/ACCESS.2018.2875487
http://doi.org/10.1007/s11910-014-0446-8
http://doi.org/10.1088/1741-2552/aa684c
http://www.ncbi.nlm.nih.gov/pubmed/28327467
http://doi.org/10.1016/j.yebeh.2005.10.015
http://www.ncbi.nlm.nih.gov/pubmed/16406729
http://doi.org/10.1155/2017/3035606
http://www.ncbi.nlm.nih.gov/pubmed/29118962
http://doi.org/10.4236/jbbs.2012.24052
http://doi.org/10.1111/j.0013-9580.2004.04012.x
http://doi.org/10.1016/j.ijpsycho.2007.12.008
http://doi.org/10.1002/acn3.50995
http://doi.org/10.3389/fnhum.2014.00338
http://doi.org/10.1016/S1474-4422(13)70044-9
http://www.ncbi.nlm.nih.gov/pubmed/16118535
http://doi.org/10.1056/NEJMoa1202753
http://www.ncbi.nlm.nih.gov/pubmed/22784036


Brain Sci. 2022, 12, 788 20 of 21

76. Nakamura, A.; Cuesta, P.; Fernández, A.; Arahata, Y.; Iwata, K.; Kuratsubo, I.; Bundo, M.; Hattori, H.; Sakurai, T.; Fukuda, K.;
et al. Electromagnetic signatures of the preclinical and prodromal stages of Alzheimer’s disease. Brain 2018, 141, 1470–1485.
[CrossRef] [PubMed]

77. Fernández, A.; Hornero, R.; Mayo-Iscar, A.; Poza, J.; Gil-Gregorio, P.; Ortiz, T. MEG spectral profile in Alzheimer’s disease and
mild cognitive impairment. Clin. Neurophysiol. 2006, 117, 306–314. [CrossRef] [PubMed]

78. Gómez, C.; Hornero, R.; Abásolo, D.; Fernández, A.; Escudero, J. Analysis of MEG background activity in Alzheimer’s disease
using nonlinear methods and ANFIS. Ann. Biomed. Eng. 2009, 37, 586–594. [CrossRef] [PubMed]

79. Hatsusaka, N.; Higuchi, M.; Kado, H. Possibility of MEG as an Early Diagnosis Tool for Alzheimer’s Disease: A Study of Event
Related Field in Missing Stimulus Paradigm. In Proceedings of the 13th International Conference on Biomedical Engineering,
Singapore, 3–6 December 2008; Springer: Berlin/Heidelberg, Germany, 2009; pp. 9–12.

80. Ashford, J.W.; Salehi, A.; Furst, A.; Bayley, P.; Frisoni, G.B.; Jack, C.R., Jr.; Sabri, O.; Adamson, M.M.; Coburn, K.L.; Olichney, J.;
et al. Imaging the Alzheimer brain. J. Alzheimer Dis. 2011, 26, 1–27. [CrossRef]

81. Alonso, J.F.; Poza, J.; Mañanas, M.; Romero, S.; Fernández, A.; Hornero, R. MEG Connectivity Analysis in Patients with
Alzheimer’s Disease Using Cross Mutual Information and Spectral Coherence. Ann. Biomed. Eng. 2010, 39, 524–536. [CrossRef]

82. Bruña, R.; Poza, J.; Gómez, C.; García, M.; Fernández, A.; Hornero, R. Analysis of spontaneous MEG activity in mild cognitive
impairment and Alzheimer’s disease using spectral entropies and statistical complexity measures. J. Neural Eng. 2012, 9, 036007.
[CrossRef]

83. Fernández, A.; Turrero, A.; Zuluaga, P.; Gil-Gregorio, P.; del Pozo, F.; Maestu, F.; Moratti, S. MEG Delta Mapping Along the
Healthy Aging-Alzheimer’s Disease Continuum: Diagnostic Implications. J. Alzheimer Dis. 2013, 35, 495–507. [CrossRef]

84. McClay, W.A.; Yadav, N.; Ozbek, Y.; Haas, A.; Attias, H.T.; Nagarajan, S.S. A Real-Time Magnetoencephalography Brain-Computer
Interface Using Interactive 3D Visualization and the Hadoop Ecosystem. Brain Sci. 2015, 5, 419–440. [CrossRef]

85. Guillon, J.; Attal, Y.; Colliot, O.; La Corte, V.; Dubois, B.; Schwartz, D.; Chavez, M.; Fallani, F.D.V. Loss of brain inter-frequency
hubs in Alzheimer’s disease. Sci. Rep. 2017, 7, 10879. [CrossRef] [PubMed]

86. Maestu, F.; Fernandez, A.; Simos, P.G.; Lopez-Ibor, M.I.; Campo, P.; Criado, J.; Rodriguez-Palancas, A.; Ferre, F.; Amo, C.; Ortiz,
T. Profiles of brain magnetic activity during a memory task in patients with Alzheimer’s disease and in non-demented elderly
subjects, with or without depression. J. Neurol. Neurosurg. Psychiatry 2004, 75, 1160–1162. [CrossRef] [PubMed]

87. Uhlhaas, P.J.; Singer, W. Abnormal neural oscillations and synchrony in schizophrenia. Nat. Rev. Neurosci. 2010, 11, 100–113.
[CrossRef] [PubMed]

88. Boutros, N.N.; Arfken, C.; Galderisi, S.; Warrick, J.; Pratt, G.; Iacono, W. The status of spectral EEG abnormality as a diagnostic
test for schizophrenia. Schizophr. Res. 2008, 99, 225–237. [CrossRef]

89. Hinkley, L.B.; Vinogradov, S.; Guggisberg, A.G.; Fisher, M.; Findlay, A.M.; Nagarajan, S.S. Clinical Symptoms and Alpha Band
Resting-State Functional Connectivity Imaging in Patients With Schizophrenia: Implications for Novel Approaches to Treatment.
Biol. Psychiatry 2011, 70, 1134–1142. [CrossRef]

90. Ikezawa, K.; Ishii, R.; Iwase, M.; Kurimoto, R.; Canuet, L.; Takahashi, H.; Nakahachi, T.; Azechi, M.; Ohi, K.; Fukumoto, M.; et al.
Decreased alpha event-related synchronization in the left posterior temporal cortex in schizophrenia: A magnetoencephalography-
beamformer study. Neurosci. Res. 2011, 71, 235–243. [CrossRef]

91. Zeev-Wolf, M.; Levy, J.; Jahshan, C.; Peled, A.; Levkovitz, Y.; Grinshpoon, A.; Goldstein, A. MEG resting-state oscillations and
their relationship to clinical symptoms in schizophrenia. NeuroImage Clin. 2018, 20, 753–761. [CrossRef]

92. Kissler, J.; Müller, M.M.; Fehr, T.; Rockstroh, B.; Elbert, T. MEG gamma band activity in schizophrenia patients and healthy
subjects in a mental arithmetic task and at rest. Clin. Neurophysiol. 2000, 111, 2079–2087. [CrossRef]

93. Fehr, T.; Kissler, J.; Moratti, S.; Wienbruch, C.; Rockstroh, B.; Elbert, T. Source distribution of neuromagnetic slow waves and
MEG-delta activity in schizophrenic patients. Biol. Psychiatry 2001, 50, 108–116. [CrossRef]

94. Sperling, W.; Martus, P.; Kober, H.; Bleich, S.; Kornhuber, J. Spontaneous, slow and fast magnetoencephalographic activity in
patients with schizophrenia. Schizophr. Res. 2002, 58, 189–199. [CrossRef]

95. Kircher, T.T.; Rapp, A.M.; Grodd, W.; Buchkremer, G.; Weiskopf, N.; Lutzenberger, W.; Ackermann, H.; Mathiak, K. Mismatch
Negativity Responses in Schizophrenia: A Combined fMRI and Whole-Head MEG Study. Am. J. Psychiatry 2004, 161, 294–304.
[CrossRef] [PubMed]

96. Koh, Y.; Shin, K.S.; Kim, J.S.; Choi, J.-S.; Kang, D.-H.; Jang, J.H.; Cho, K.-H.; O’Donnell, B.F.; Chung, C.K.; Kwon, J.S. An MEG
study of alpha modulation in patients with schizophrenia and in subjects at high risk of developing psychosis. Schizophr. Res.
2011, 126, 36–42. [CrossRef] [PubMed]

97. Fernández, A.; López-Ibor, M.-I.; Turrero, A.; Santos, J.-M.; Morón, M.-D.; Hornero, R.; Gómez, C.; Méndez, M.A.; Ortiz, T.;
López-Ibor, J.J. Lempel–Ziv complexity in schizophrenia: A MEG study. Clin. Neurophysiol. 2011, 122, 2227–2235. [CrossRef]
[PubMed]

98. Bowyer, S.M.; Gjini, K.; Zhu, X.; Kim, L.; Moran, J.E.; Rizvi, S.U.; Gumenyuk, V.; Tepley, N.; Boutros, N.N. Potential Biomarkers of
Schizophrenia from MEG Resting-State Functional Connectivity Networks: Preliminary Data. J. Behav. Brain Sci. 2015, 5, 52984.
[CrossRef]

99. Neustadter, E.; Mathiak, K.; Turetsky, B.I. EEG and MEG probes of schizophrenia pathophysiology. In The Neurobiology of
Schizophrenia; Academic Press: Cambridge, MA, USA, 2016; pp. 213–236.

http://doi.org/10.1093/brain/awy044
http://www.ncbi.nlm.nih.gov/pubmed/29522156
http://doi.org/10.1016/j.clinph.2005.10.017
http://www.ncbi.nlm.nih.gov/pubmed/16386951
http://doi.org/10.1007/s10439-008-9633-6
http://www.ncbi.nlm.nih.gov/pubmed/19130227
http://doi.org/10.3233/JAD-2011-0073
http://doi.org/10.1007/s10439-010-0155-7
http://doi.org/10.1088/1741-2560/9/3/036007
http://doi.org/10.3233/JAD-121912
http://doi.org/10.3390/brainsci5040419
http://doi.org/10.1038/s41598-017-07846-w
http://www.ncbi.nlm.nih.gov/pubmed/28883408
http://doi.org/10.1136/jnnp.2003.022376
http://www.ncbi.nlm.nih.gov/pubmed/15258220
http://doi.org/10.1038/nrn2774
http://www.ncbi.nlm.nih.gov/pubmed/20087360
http://doi.org/10.1016/j.schres.2007.11.020
http://doi.org/10.1016/j.biopsych.2011.06.029
http://doi.org/10.1016/j.neures.2011.07.1819
http://doi.org/10.1016/j.nicl.2018.09.007
http://doi.org/10.1016/S1388-2457(00)00425-9
http://doi.org/10.1016/S0006-3223(01)01122-2
http://doi.org/10.1016/S0920-9964(02)00238-4
http://doi.org/10.1176/appi.ajp.161.2.294
http://www.ncbi.nlm.nih.gov/pubmed/14754779
http://doi.org/10.1016/j.schres.2010.10.001
http://www.ncbi.nlm.nih.gov/pubmed/21036541
http://doi.org/10.1016/j.clinph.2011.04.011
http://www.ncbi.nlm.nih.gov/pubmed/21592856
http://doi.org/10.4236/jbbs.2015.51001


Brain Sci. 2022, 12, 788 21 of 21

100. Cetin, M.S.; Houck, J.M.; Rashid, B.; Agacoglu, O.; Stephen, J.M.; Sui, J.; Canive, J.; Mayer, A.; Aine, C.; Bustillo, J.R.; et al.
Multimodal Classification of Schizophrenia Patients with MEG and fMRI Data Using Static and Dynamic Connectivity Measures.
Front. Neurosci. 2016, 10, 466. [CrossRef]

101. Anninos, P.; Chatzimichael, A.; Adamopoulos, A.; Kotini, A.; Tsagas, N. A combined study of MEG and pico-Tesla TMS on
children with autism disorder. J. Integr. Neurosci. 2016, 15, 497–513. [CrossRef]

102. Manzano, J.M.; Munoz, J.J.; Santos, J.M.; Serra, A.; Alonso, T.O.; de Erausquin, G. MEG resting-state differences as a marker of
clinical subtype in schizophrenia. Neuropsychiatry 2017, 7. [CrossRef]

103. Grent-‘T-Jong, T.; Rivolta, D.; Sauer, A.; Grube, M.; Singer, W.; Wibral, M.; Uhlhaas, P.J. MEG-measured visually induced
gamma-band oscillations in chronic schizophrenia: Evidence for impaired generation of rhythmic activity in ventral stream
regions. Schizophr. Res. 2016, 176, 177–185. [CrossRef]

104. Braak, H.; del Tredici, K.; Rüb, U.; De Vos, R.A.; Steur, E.N.J.; Braak, E. Staging of brain pathology related to sporadic Parkinson’s
disease. Neurobiol. Aging 2003, 24, 197–211. [CrossRef]

105. Baillet, S. Magnetoencephalography for brain electrophysiology and imaging. Nat. Neurosci. 2017, 20, 327–339. [CrossRef]
106. Llinás, R.R.; Ribary, U.; Jeanmonod, D.; Kronberg, E.; Mitra, P.P. Thalamocortical dysrhythmia: A neurological and neuropsy-

chiatric syndrome characterized by magnetoencephalography. Proc. Natl. Acad. Sci. USA 1999, 96, 15222–15227. [CrossRef]
[PubMed]

107. Bosboom, J.; Stoffers, D.; Stam, C.; van Dijk, B.; Verbunt, J.; Berendse, H.; Wolters, E. Resting state oscillatory brain dynamics in
Parkinson’s disease: An MEG study. Clin. Neurophysiol. 2006, 117, 2521–2531. [CrossRef] [PubMed]

108. Stam, C.J. Use of magnetoencephalography (MEG) to study functional brain networks in neurodegenerative disorders. J. Neurol.
Sci. 2010, 289, 128–134. [CrossRef] [PubMed]

109. Stoffers, D.; Bosboom, J.; Deijen, J.; Wolters, E.; Stam, C.; Berendse, H. Increased cortico-cortical functional connectivity in
early-stage Parkinson’s disease: An MEG study. NeuroImage 2008, 41, 212–222. [CrossRef] [PubMed]

110. Song, T.; Cui, L.; Gaa, K.; Feffer, L.; Taulu, S.; Lee, R.R.; Huang, M. Signal Space Separation Algorithm and Its Application on
Suppressing Artifacts Caused by Vagus Nerve Stimulation for Magnetoencephalography Recordings. J. Clin. Neurophysiol. 2009,
26, 392–400. [CrossRef]

111. Schoffelen, J.; Gross, J. Source connectivity analysis with MEG and EEG. Hum. Brain Mapp. 2009, 30, 1857–1865. [CrossRef]
112. Kirchberger, K.; Hummel, C.; Stefan, H. Postoperative multichannel magnetoencephalography in patients with recurrent seizures

after epilepsy surgery. Acta Neurol. Scand. 1998, 98, 1–7. [CrossRef]
113. Stam, C.J.; Jones, B.F.; Manshanden, I.; van Walsum, A.M.V.C.; Montez, T.; Verbunt, J.P.A.; de Munck, J.C.; van Dijk, B.W.;

Berendse, H.W.; Scheltens, P. Magnetoencephalographic evaluation of resting-state functional connectivity in Alzheimer’s disease.
NeuroImage 2006, 32, 1335–1344. [CrossRef]

114. Osipova, D.; Rantanen, K.; Ahveninen, J.; Ylikoski, R.; Häppölä, O.; Strandberg, T.; Pekkonen, E. Source estimation of spontaneous
MEG oscillations in mild cognitive impairment. Neurosci. Lett. 2006, 405, 57–61. [CrossRef]

115. Fernández, A.; Maestú, F.; Amo, C.; Gil, P.; Fehr, T.; Wienbruch, C.; Rockstroh, B.; Elbert, T.; Ortiz, T. Focal temporoparietal slow
activity in Alzheimer’s disease revealed by magnetoencephalography. Biol. Psychiatry 2002, 52, 764–770. [CrossRef]

116. Edgar, J.C.; Guha, A.; Miller, G.A. Magnetoencephalography for Schizophrenia. Neuroimaging Clin. 2020, 30, 205–216. [CrossRef]
[PubMed]

117. Hinkley, L.B.; Owen, J.P.; Fisher, M.; Findlay, A.M.; Vinogradov, S.; Nagarajan, S.S. Cognitive impairments in schizophrenia as
assessed through activation and connectivity measures of magnetoencephalography (MEG) data. Front. Hum. Neurosci. 2010,
3, 73. [CrossRef] [PubMed]

118. Wu, H.-M.; Hsiao, F.-J.; Chen, R.-S.; Shan, D.E.; Hsu, W.Y.; Chiang, M.C.; Lin, Y.Y. Attenuated NoGo-related beta desynchronisation
and synchronisation in Parkinson’s disease revealed by magnetoencephalographic recording. Sci. Rep. 2019, 9, 7235. [CrossRef]
[PubMed]

119. Tanaka, M.; Yanagisawa, T.; Fukuma, R.; Tani, N.; Oshino, S.; Mihara, M.; Hattori, N.; Kajiyama, Y.; Hashimoto, R.; Ikeda, M.;
et al. Magnetoencephalography detects phase-amplitude coupling in Parkinson’s disease. Sci. Rep. 2022, 12, 1835. [CrossRef]
[PubMed]

http://doi.org/10.3389/fnins.2016.00466
http://doi.org/10.1142/S0219635216500278
http://doi.org/10.4172/Neuropsychiatry.1000194
http://doi.org/10.1016/j.schres.2016.06.003
http://doi.org/10.1016/S0197-4580(02)00065-9
http://doi.org/10.1038/nn.4504
http://doi.org/10.1073/pnas.96.26.15222
http://www.ncbi.nlm.nih.gov/pubmed/10611366
http://doi.org/10.1016/j.clinph.2006.06.720
http://www.ncbi.nlm.nih.gov/pubmed/16997626
http://doi.org/10.1016/j.jns.2009.08.028
http://www.ncbi.nlm.nih.gov/pubmed/19729174
http://doi.org/10.1016/j.neuroimage.2008.02.027
http://www.ncbi.nlm.nih.gov/pubmed/18395468
http://doi.org/10.1097/WNP.0b013e3181c29896
http://doi.org/10.1002/hbm.20745
http://doi.org/10.1111/j.1600-0404.1998.tb07370.x
http://doi.org/10.1016/j.neuroimage.2006.05.033
http://doi.org/10.1016/j.neulet.2006.06.045
http://doi.org/10.1016/S0006-3223(02)01366-5
http://doi.org/10.1016/j.nic.2020.01.002
http://www.ncbi.nlm.nih.gov/pubmed/32336407
http://doi.org/10.3389/neuro.09.073.2009
http://www.ncbi.nlm.nih.gov/pubmed/21160543
http://doi.org/10.1038/s41598-019-43762-x
http://www.ncbi.nlm.nih.gov/pubmed/31076640
http://doi.org/10.1038/s41598-022-05901-9
http://www.ncbi.nlm.nih.gov/pubmed/35115607

	Introduction 
	Setting up the MEG Experiment 
	MEG Signal Processing and Source Localization 
	Signal Space Separation [SSS] 
	Software Tools Used in MEG Data Processing 

	Clinical Application 
	Epilepsy 
	Alzheimer’s Disease (AD) 
	Schizophrenia 
	Parkinson Disease (PD) 
	Preoperative Evaluation 

	Inferences from the Narrative Study and Future Scope of MEG 
	Conclusions 
	References

