Functional Relationship between Inhibitory Control, Cognitive Flexibility, Psychomotor Speed and Obesity
Abstract
:1. Introduction
2. Methods
2.1. Participants
2.2. Materials and Procedure
2.3. Statistical Analyses
3. Results
3.1. Descriptive Statistics
3.2. Gender Differences in Each BMI Subgroup
3.3. Correlation Analysis
3.4. Analysis of Variance for Executive Scores
3.5. Multivariate Analysis of Covariance
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- WHO. Obesity: Preventing and Managing the Global Epidemic. Report of a WHO Consultation. World Health Organ. Tech. Rep. Ser. 2000, 894, 1–253. [Google Scholar]
- Collins, J.; Meng, C.; Eng, A. Psychological Impact of Severe Obesity. Curr. Obes. Rep. 2016, 5, 435–440. [Google Scholar] [CrossRef] [PubMed]
- Abdelaal, M.; le Roux, C.W.; Docherty, N.G. Morbidity and Mortality Associated with Obesity. Ann. Transl. Med. 2017, 5, 161. [Google Scholar] [CrossRef]
- Blüher, M. Obesity: Global Epidemiology and Pathogenesis. Nat. Rev. Endocrinol. 2019, 15, 288–298. [Google Scholar] [CrossRef] [PubMed]
- Hruby, A.; Hu, F.B. The Epidemiology of Obesity: A Big Picture. PharmacoEconomics 2015, 33, 673–689. [Google Scholar] [CrossRef] [PubMed]
- Polito, R.; Scarinci, A.; Ambrosi, A.; Tartaglia, N.; Tafuri, D.; Monda, M.; Messina, A.; Cimmino, F.; Catapano, A.; Sessa, F.; et al. The Beneficial Effects of Physical Activity and Weight Loss on Human Colorectal Carcinoma Cell Lines. In Proceedings of the Journal of Human Sport and Exercise—2020—Winter Conferences of Sports Science, Alicante, Spain, 24 April 2020; Universidad de Alicante: Alicante, Spain, 2020. [Google Scholar]
- Fitzpatrick, S.; Gilbert, S.; Serpell, L. Systematic Review: Are Overweight and Obese Individuals Impaired on Behavioural Tasks of Executive Functioning? Neuropsychol. Rev. 2013, 23, 138–156. [Google Scholar] [CrossRef] [PubMed]
- Donofry, S.D.; Stillman, C.M.; Erickson, K.I. A Review of the Relationship between Eating Behavior, Obesity and Functional Brain Network Organization. Soc. Cogn. Affect. Neurosci. 2020, 15, 1157–1181. [Google Scholar] [CrossRef] [PubMed]
- Gustafson, D.; Rothenberg, E.; Blennow, K.; Steen, B.; Skoog, I. An 18-Year Follow-up of Overweight and Risk of Alzheimer Disease. Arch. Intern. Med. 2003, 163, 1524. [Google Scholar] [CrossRef]
- Rosengren, A. Body Mass Index, Other Cardiovascular Risk Factors, and Hospitalization for Dementia. Arch. Intern. Med. 2005, 165, 321. [Google Scholar] [CrossRef] [PubMed]
- Panza, F.; D’Introno, A.; Colacicco, A.M.; Capurso, C.; Pichichero, G.; Capurso, S.A.; Capurso, A.; Solfrizzi, V. Lipid Metabolism in Cognitive Decline and Dementia. Brain Res. Rev. 2006, 51, 275–292. [Google Scholar] [CrossRef] [PubMed]
- Whitmer, R.A.; Gunderson, E.P.; Barrett-Connor, E.; Quesenberry, C.P.; Yaffe, K. Obesity in Middle Age and Future Risk of Dementia: A 27 Year Longitudinal Population Based Study. BMJ 2005, 330, 1360. [Google Scholar] [CrossRef]
- Beydoun, M.A.; Beydoun, H.A.; Wang, Y. Obesity and Central Obesity as Risk Factors for Incident Dementia and Its Subtypes: A Systematic Review and Meta-Analysis. Obes. Rev. 2008, 9, 204–218. [Google Scholar] [CrossRef]
- Whitmer, R.A.; Gustafson, D.R.; Barrett-Connor, E.; Haan, M.N.; Gunderson, E.P.; Yaffe, K. Central Obesity and Increased Risk of Dementia More than Three Decades Later. Neurology 2008, 71, 1057–1064. [Google Scholar] [CrossRef] [PubMed]
- Miller, A.A.; Spencer, S.J. Obesity and Neuroinflammation: A Pathway to Cognitive Impairment. Brain Behav. Immun. 2014, 42, 10–21. [Google Scholar] [CrossRef]
- Bischof, G.N.; Park, D.C. Obesity and Aging: Consequences for Cognition, Brain Structure, and Brain Function. Psychosom. Med. 2015, 77, 697–709. [Google Scholar] [CrossRef] [PubMed]
- Dye, L.; Boyle, N.B.; Champ, C.; Lawton, C. The Relationship between Obesity and Cognitive Health and Decline. Proc. Nutr. Soc. 2017, 76, 443–454. [Google Scholar] [CrossRef] [PubMed]
- Leigh, S.-J.; Morris, M.J. Diet, Inflammation and the Gut Microbiome: Mechanisms for Obesity-Associated Cognitive Impairment. Biochim. Biophys. Acta (BBA)-Mol. Basis Dis. 2020, 1866, 165767. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.; Zhang, H.; Wu, N.; Liu, Y.; Han, P.; Wang, F.; Wang, J.; Xie, F.; Niu, S.; Hu, H.; et al. Relationship between Obesity-Related Anthropometric Indicators and Cognitive Function in Chinese Suburb-Dwelling Older Adults. PLoS ONE 2021, 16, e0258922. [Google Scholar] [CrossRef] [PubMed]
- Appelhans, B.M.; French, S.A.; Pagoto, S.L.; Sherwood, N.E. Managing Temptation in Obesity Treatment: A Neurobehavioral Model of Intervention Strategies. Appetite 2016, 96, 268–279. [Google Scholar] [CrossRef] [PubMed]
- Higgs, S.; Williamson, A.C.; Attwood, A.S. Recall of Recent Lunch and Its Effect on Subsequent Snack Intake. Physiol. Behav. 2008, 94, 454–462. [Google Scholar] [CrossRef] [PubMed]
- Dahl, A.K.; Löppönen, M.; Isoaho, R.; Berg, S.; Kivelä, S.-L. Overweight and Obesity in Old Age Are Not Associated with Greater Dementia Risk: (See Editorial Comments by Dr. David S. Knodman, pp 2349–2350). J. Am. Geriatr. Soc. 2008, 56, 2261–2266. [Google Scholar] [CrossRef]
- Cserjési, R.; Luminet, O.; Poncelet, A.-S.; Lénárd, L. Altered Executive Function in Obesity. Exploration of the Role of Affective States on Cognitive Abilities. Appetite 2009, 52, 535–539. [Google Scholar] [CrossRef]
- Gunstad, J.; Lhotsky, A.; Wendell, C.R.; Ferrucci, L.; Zonderman, A.B. Longitudinal Examination of Obesity and Cognitive Function: Results from the Baltimore Longitudinal Study of Aging. Neuroepidemiology 2010, 34, 222–229. [Google Scholar] [CrossRef]
- Gluck, M.E.; Viswanath, P.; Stinson, E.J. Obesity, Appetite, and the Prefrontal Cortex. Curr. Obes. Rep. 2017, 6, 380–388. [Google Scholar] [CrossRef] [PubMed]
- Dubois, B.; Slachevsky, A.; Litvan, I.; Pillon, B. The FAB: A Frontal Assessment Battery at Bedside. Neurology 2000, 55, 1621–1626. [Google Scholar] [CrossRef]
- Ardila, A. On the Evolutionary Origins of Executive Functions. Brain Cogn. 2008, 68, 92–99. [Google Scholar] [CrossRef] [PubMed]
- Burgess, P.W.; Simons, J.S. Theories of Frontal Lobe Executive Function: Clinical Applications. In The Effectiveness of Rehabilitation for Cognitive Deficits; Halligan, P.W., Wade, D.T., Eds.; Oxford University Press: New York, NY, USA, 2005; pp. 211–231. ISBN 978-0-19-852654-4. [Google Scholar]
- Gilbert, S.J.; Burgess, P.W. Executive Function. Curr. Biol. 2008, 18, R110–R114. [Google Scholar] [CrossRef] [PubMed]
- Diamond, A. Executive Functions. Annu. Rev. Psychol. 2013, 64, 135–168. [Google Scholar] [CrossRef] [PubMed]
- Chieffi, S.; Messina, A.; Villano, I.; Valenzano, A.A.; Nigro, E.; La Marra, M.; Cibelli, G.; Monda, V.; Salerno, M.; Tafuri, D.; et al. The Use of Velocity Information in Movement Reproduction. Front. Psychol. 2017, 8, 983. [Google Scholar] [CrossRef] [PubMed]
- Chieffi, S.; Castaldi, C.; Di Maio, G.; La Marra, M.; Messina, A.; Monda, V.; Villano, I. Attentional Bias in the Radial and Vertical Dimensions of Space. Comptes Rendus Biol. 2019, 342, 97–100. [Google Scholar] [CrossRef]
- Toto, G.A.; Limone, P. Research on a massive open online course (MOOC): A Rapid Evidence Assessment of online courses in physical education and sport. J. Phys. Educ. Sport 2019, 19, 2328–2333. [Google Scholar] [CrossRef]
- Ribeiro, O.; Carmo, I.D.; Paiva, T.; Figueira, M.L. Neuropsychological Profile, Cognitive Reserve and Emotional Distress in a Portuguese Sample of Severely Obese Patients. Acta Med. Port. 2020, 33, 38. [Google Scholar] [CrossRef] [PubMed]
- Dassen, F.C.M.; Houben, K.; Allom, V.; Jansen, A. Self-Regulation and Obesity: The Role of Executive Function and Delay Discounting in the Prediction of Weight Loss. J. Behav. Med. 2018, 41, 806–818. [Google Scholar] [CrossRef] [PubMed]
- Lyke, J.A.; Spinella, M. Associations among Aspects of Impulsivity and Eating Factors in a Nonclinical Sample. Int. J. Eat. Disord. 2004, 36, 229–233. [Google Scholar] [CrossRef]
- Steward, T.; Mestre-Bach, G.; Vintró-Alcaraz, C.; Lozano-Madrid, M.; Agüera, Z.; Fernández-Formoso, J.A.; Granero, R.; Jiménez-Murcia, S.; Vilarrasa, N.; García-Ruiz-de-Gordejuela, A.; et al. Food Addiction and Impaired Executive Functions in Women with Obesity. Eur. Eat. Disord. Rev. 2018, 26, 574–584. [Google Scholar] [CrossRef] [PubMed]
- Powell, D.J.H.; McMinn, D.; Allan, J.L. Does Real Time Variability in Inhibitory Control Drive Snacking Behavior? An Intensive Longitudinal Study. Health Psychol. 2017, 36, 356–364. [Google Scholar] [CrossRef] [PubMed]
- Riggs, N.; Chou, C.-P.; Spruijt-Metz, D.; Pentz, M.A. Executive Cognitive Function as a Correlate and Predictor of Child Food Intake and Physical Activity. Child Neuropsychol. 2010, 16, 279–292. [Google Scholar] [CrossRef]
- Sims, R.C.; Bennett, N.-K.; Mwendwa, D.T.; Ali, M.K.; Levy, S.-A.T.; Callender, C.O.; Campbell, A.L. Executive Function and Negative Eating Behaviors in Severely Obese African Americans. Ethn. Dis. 2014, 24, 328–334. [Google Scholar] [PubMed]
- Beth Spitznagel, M.; Galioto, R.; Limbach, K.; John, G.; Leslie, H. Cognitive Function Is Linked to Adherence to Bariatric Postoperative Guidelines. Surg. Obes. Relat. Dis. 2013, 9, 580–585. [Google Scholar] [CrossRef]
- Witbracht, M.G.; Laugero, K.D.; Van Loan, M.D.; Adams, S.H.; Keim, N.L. Performance on the Iowa Gambling Task Is Related to Magnitude of Weight Loss and Salivary Cortisol in a Diet-Induced Weight Loss Intervention in Overweight Women. Physiol. Behav. 2012, 106, 291–297. [Google Scholar] [CrossRef]
- O’Brien, P.D.; Hinder, L.M.; Callaghan, B.C.; Feldman, E.L. Neurological Consequences of Obesity. Lancet Neurol. 2017, 16, 465–477. [Google Scholar] [CrossRef]
- Ho, A.J.; Raji, C.A.; Becker, J.T.; Lopez, O.L.; Kuller, L.H.; Hua, X.; Lee, S.; Hibar, D.; Dinov, I.D.; Stein, J.L.; et al. Obesity Is Linked with Lower Brain Volume in 700 AD and MCI Patients. Neurobiol. Aging 2010, 31, 1326–1339. [Google Scholar] [CrossRef] [PubMed]
- Gustafson, D.; Lissner, L.; Bengtsson, C.; Bjorkelund, C.; Skoog, I. A 24-Year Follow-up of Body Mass Index and Cerebral Atrophy. Neurology 2004, 63, 1876–1881. [Google Scholar] [CrossRef] [PubMed]
- Banack, H.R.; Stokes, A. The ‘Obesity Paradox’ May Not Be a Paradox at All. Int. J. Obes. 2017, 41, 1162–1163. [Google Scholar] [CrossRef]
- Monda, V.; La Marra, M.; Perrella, R.; Caviglia, G.; Iavarone, A.; Chieffi, S.; Messina, G.; Carotenuto, M.; Monda, M.; Messina, A. Obesity and Brain Illness: From Cognitive and Psychological Evidences to Obesity Paradox. Diabetes Metab. Syndr. Obes. Targets Ther. 2017, 10, 473–479. [Google Scholar] [CrossRef]
- Boeka, A.; Lokken, K. Neuropsychological Performance of a Clinical Sample of Extremely Obese Individuals. Arch. Clin. Neuropsychol. 2008, 23, 467–474. [Google Scholar] [CrossRef]
- Hartanto, A.; Yong, J.; Toh, W. Bidirectional Associations between Obesity and Cognitive Function in Midlife Adults: A Longitudinal Study. Nutrients 2019, 11, 2343. [Google Scholar] [CrossRef]
- La Marra, M.; Villano, I.; Ilardi, C.R.; Carosella, M.; Staiano, M.; Iavarone, A.; Chieffi, S.; Messina, G.; Polito, R.; Porro, C.; et al. Executive Functions in Overweight and Obese Treatment-Seeking Patients: Cross-Sectional Data and Longitudinal Perspectives. Brain Sci. 2022, 12, 777. [Google Scholar] [CrossRef]
- Vainik, U.; Dagher, A.; Dubé, L.; Fellows, L.K. Neurobehavioural Correlates of Body Mass Index and Eating Behaviours in Adults: A Systematic Review. Neurosci. Biobehav. Rev. 2013, 37, 279–299. [Google Scholar] [CrossRef]
- Emery, R.L.; Levine, M.D. Questionnaire and Behavioral Task Measures of Impulsivity Are Differentially Associated with Body Mass Index: A Comprehensive Meta-Analysis. Psychol. Bull. 2017, 143, 868–902. [Google Scholar] [CrossRef]
- Gettens, K.M.; Gorin, A.A. Executive Function in Weight Loss and Weight Loss Maintenance: A Conceptual Review and Novel Neuropsychological Model of Weight Control. J. Behav. Med. 2017, 40, 687–701. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Shields, G.S.; Guo, C.; Liu, Y. Executive Function Performance in Obesity and Overweight Individuals: A Meta-Analysis and Review. Neurosci. Biobehav. Rev. 2018, 84, 225–244. [Google Scholar] [CrossRef] [PubMed]
- Volkow, N.D.; Wang, G.-J.; Fowler, J.S.; Telang, F. Overlapping Neuronal Circuits in Addiction and Obesity: Evidence of Systems Pathology. Phil. Trans. R. Soc. B 2008, 363, 3191–3200. [Google Scholar] [CrossRef]
- Monica, D.; Paulo, M.; Appolinário, J.C.; de Freitas, S.R.; Coutinho, G.; Santos, C.; Coutinho, W. Assessment of Executive Functions in Obese Individuals with Binge Eating Disorder. Rev. Bras. Psiquiatr. 2010, 32, 381–388. [Google Scholar] [CrossRef] [PubMed]
- Favieri, F.; Forte, G.; Casagrande, M. The Executive Functions in Overweight and Obesity: A Systematic Review of Neuropsychological Cross-Sectional and Longitudinal Studies. Front. Psychol. 2019, 10, 2126. [Google Scholar] [CrossRef] [PubMed]
- Lezak, M.D. Neuropsychological Assessment, 5th ed.; Oxford University Press: Oxford, UK; New York, NY, USA, 2012; ISBN 978-0-19-539552-5. [Google Scholar]
- Strauss, E.; Sherman, E.M.S.; Spreen, O.; Spreen, O. A Compendium of Neuropsychological Tests: Administration, Norms, and Commentary, 3rd ed.; Oxford University Press: Oxford, UK; New York, NY, USA,, 2006; ISBN 978-0-19-515957-8. [Google Scholar]
- Bauer, C.C.C.; Moreno, B.; González-Santos, L.; Concha, L.; Barquera, S.; Barrios, F.A. Child Overweight and Obesity Are Associated with Reduced Executive Cognitive Performance and Brain Alterations: A Magnetic Resonance Imaging Study in Mexican Children: Child BMI, Brain Structure and Function. Pediatric Obes. 2015, 10, 196–204. [Google Scholar] [CrossRef]
- Gonzales, M.M.; Tarumi, T.; Miles, S.C.; Tanaka, H.; Shah, F.; Haley, A.P. Insulin Sensitivity as a Mediator of the Relationship Between BMI and Working Memory-Related Brain Activation. Obesity 2010, 18, 2131–2137. [Google Scholar] [CrossRef]
- Cournot, M.; Marquie, J.C.; Ansiau, D.; Martinaud, C.; Fonds, H.; Ferrieres, J.; Ruidavets, J.B. Relation between Body Mass Index and Cognitive Function in Healthy Middle-Aged Men and Women. Neurology 2006, 67, 1208–1214. [Google Scholar] [CrossRef]
- Ariza, M.; Garolera, M.; Jurado, M.A.; Garcia-Garcia, I.; Hernan, I.; Sánchez-Garre, C.; Vernet-Vernet, M.; Sender-Palacios, M.J.; Marques-Iturria, I.; Pueyo, R.; et al. Dopamine Genes (DRD2/ANKK1-TaqA1 and DRD4-7R) and Executive Function: Their Interaction with Obesity. PLoS ONE 2012, 7, e41482. [Google Scholar] [CrossRef]
- Skinner, J.S.; Abel, W.M.; McCoy, K.; Wilkins, C.H. Exploring the “Obesity Paradox” as a Correlate of Cognitive and Physical Function in Community-Dwelling Black and White Older Adults. Ethn. Dis. 2017, 27, 387. [Google Scholar] [CrossRef]
- Galioto, R.; Spitznagel, M.B.; Strain, G.; Devlin, M.; Cohen, R.; Paul, R.; Crosby, R.D.; Mitchell, J.E.; Gunstad, J. Cognitive Function in Morbidly Obese Individuals with and without Binge Eating Disorder. Compr. Psychiatry 2012, 53, 490–495. [Google Scholar] [CrossRef] [PubMed]
- Sargénius, H.L.; Lydersen, S.; Hestad, K. Neuropsychological Function in Individuals with Morbid Obesity: A Cross-Sectional Study. BMC Obes. 2017, 4, 6. [Google Scholar] [CrossRef] [PubMed]
- Yoshitake, T.; Kiyohara, Y.; Kato, I.; Ohmura, T.; Iwamoto, H.; Nakayama, K.; Ohmori, S.; Nomiyama, K.; Kawano, H.; Ueda, K.; et al. Incidence and Risk Factors of Vascular Dementia and Alzheimer’s Disease in a Defined Elderly Japanese Population: The Hisayama Study. Neurology 1995, 45, 1161–1168. [Google Scholar] [CrossRef]
- Segura, B.; Jurado, M.Á.; Freixenet, N.; Albuin, C.; Muniesa, J.; Junqué, C. Mental Slowness and Executive Dysfunctions in Patients with Metabolic Syndrome. Neurosci. Lett. 2009, 462, 49–53. [Google Scholar] [CrossRef] [PubMed]
- Ilardi, C.R.; Chieffi, S.; Scuotto, C.; Gamboz, N.; Galeone, F.; Sannino, M.; Garofalo, E.; La Marra, M.; Ronga, B.; Iavarone, A. The Frontal Assessment Battery 20 Years Later: Normative Data for a Shortened Version (FAB15). Neurol. Sci. 2022, 43, 1709–1719. [Google Scholar] [CrossRef]
- Golden, C.J. Stroop Color and Word Test: A Manual for Clinical and Experimental Uses; Stoelting Company: Wood Dale, IL, USA, 1978. [Google Scholar]
- Kane, M.J.; Engle, R.W. Working-Memory Capacity and the Control of Attention: The Contributions of Goal Neglect, Response Competition, and Task Set to Stroop Interference. J. Exp. Psychol. Gen. 2003, 132, 47–70. [Google Scholar] [CrossRef]
- Scarpina, F.; Tagini, S. The Stroop Color and Word Test. Front. Psychol. 2017, 8, 557. [Google Scholar] [CrossRef]
- Patterson, J. F-A-S Test. In Encyclopedia of Clinical Neuropsychology; Kreutzer, J.S., DeLuca, J., Caplan, B., Eds.; Springer: New York, NY, USA, 2011; pp. 1024–1026. ISBN 978-0-387-79947-6. [Google Scholar]
- Spreen, O.; Risser, A.H. Assessment of Aphasia; Oxford University Press: Oxford, UK; New York, NY, USA, 2003; ISBN 978-0-19-514075-0. [Google Scholar]
- Boake, C. From the Binet–Simon to the Wechsler–Bellevue: Tracing the History of Intelligence Testing. J. Clin. Exp. Neuropsychol. 2002, 24, 383–405. [Google Scholar] [CrossRef]
- Jaeger, J. Digit Symbol Substitution Test: The Case for Sensitivity Over Specificity in Neuropsychological Testing. J. Clin. Psychopharmacol. 2018, 38, 513–519. [Google Scholar] [CrossRef]
- Conwell, Y.; Forbes, N.T.; Cox, C.; Caine, E.D. Validation of a Measure of Physical Illness Burden at Autopsy: The Cumulative Illness Rating Scale. J. Am. Geriatr. Soc. 1993, 41, 38–41. [Google Scholar] [CrossRef]
- Newman, D.A. Missing Data: Five Practical Guidelines. Organ. Res. Methods 2014, 17, 372–411. [Google Scholar] [CrossRef]
- Sidi, Y.; Harel, O. The Treatment of Incomplete Data: Reporting, Analysis, Reproducibility, and Replicability. Soc. Sci. Med. 2018, 209, 169–173. [Google Scholar] [CrossRef]
- Ilardi, C.R.; Garofalo, E.; Chieffi, S.; Gamboz, N.; La Marra, M.; Iavarone, A. Daily exposure to digital displays may affect the clock-drawing test: From psychometrics to serendipity. Neurol. Sci. 2020, 41, 3683–3690. [Google Scholar] [CrossRef] [PubMed]
- Limone, P.; Toto, G.A. The psychological constructs and dimensions applied to sports performance: A change of theoretical paradigms. J. Phys. Educ. Sport 2018, 5, 2034–2038. [Google Scholar] [CrossRef]
- Chambers, C.D.; Garavan, H.; Bellgrove, M.A. Insights into the Neural Basis of Response Inhibition from Cognitive and Clinical Neuroscience. Neurosci. Biobehav. Rev. 2009, 33, 631–646. [Google Scholar] [CrossRef] [PubMed]
- Foldi, C.J.; Morris, M.J.; Oldfield, B.J. Executive Function in Obesity and Anorexia Nervosa: Opposite Ends of a Spectrum of Disordered Feeding Behaviour? Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2021, 111, 110395. [Google Scholar] [CrossRef] [PubMed]
- Hurtado-Pomares, M.; Terol-Cantero, M.C.; Sánchez-Pérez, A.; Leiva-Santana, C.; Peral-Gómez, P.; Valera-Gran, D.; Navarrete-Muñoz, E.M. Measuring Executive Dysfunction in Parkinson’s Disease: Reliability and Validity of the Spanish Version of Frontal Assessment Battery (FAB-E). PLoS ONE 2018, 13, e0207698. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Aranda, C.; Waterloo, K.; Johnsen, S.H.; Eldevik, P.; Sparr, S.; Wikran, G.C.; Herder, M.; Vangberg, T.R. Neuroanatomical Correlates of Verbal Fluency in Early Alzheimer’s Disease and Normal Aging. Brain Lang. 2016, 155–156, 24–35. [Google Scholar] [CrossRef] [PubMed]
- Villano, I.; Ilardi, C.R.; Arena, S.; Scuotto, C.; Gleijeses, M.G.; Messina, G.; Messina, A.; Monda, V.; Monda, M.; Iavarone, A.; et al. Obese Subjects without Eating Disorders Experience Binge Episodes Also Independently of Emotional Eating and Personality Traits among University Students of Southern Italy. Brain Sci. 2021, 11, 1145. [Google Scholar] [CrossRef] [PubMed]
- Chieffi, S.; Iavarone, A.; La Marra, M.; Messina, G.; Villano, I.; Ranucci, S.; Messina, A.; Piombino, L.; Dalia, C.; Monda, M. Memory for proprioceptive targets in bulimia nervosa. J. Psychiatry 2015, 18, 2. [Google Scholar] [CrossRef]
- Monda, V.; Valenzano, A.; Moscatelli, F.; Salerno, M.; Sessa, F.; Triggiani, A.I.; Viggiano, A.; Capranica, L.; Marsala, G.; De Luca, V.; et al. Primary Motor Cortex Excitability in Karate Athletes: A Transcranial Magnetic Stimulation Study. Front. Physiol. 2017, 8, 695. [Google Scholar] [CrossRef] [PubMed]
- La Marra, M.; Caviglia, G.; Perrella, R. Using Smartphones When Eating Increases Caloric Intake in Young People: An Overview of the Literature. Front. Psychol. 2020, 11, 587886. [Google Scholar] [CrossRef]
- Messina, A.; Monda, V.; Avola, R.; Moscatelli, F.; Valenzano, A.; Villano, I.; Ruberto, M.; Monda, E.; La Marra, M.; Messina, G.; et al. Role of the orexin system on arousal, attention, feeding behaviour and sleep disorders. Acta Med. Mediterr. 2017, 33, 645–649. [Google Scholar] [CrossRef]
- Fergenbaum, J.H.; Bruce, S.; Lou, W.; Hanley, A.J.G.; Greenwood, C.; Young, T.K. Obesity and Lowered Cognitive Performance in a Canadian First Nations Population. Obesity 2009, 17, 1957–1963. [Google Scholar] [CrossRef] [PubMed]
- Manasse, S.M.; Juarascio, A.S.; Forman, E.M.; Berner, L.A.; Butryn, M.L.; Ruocco, A.C. Executive Functioning in Overweight Individuals with and without Loss-of-Control Eating: Executive Function and Loss-of-Control Eating. Eur. Eat. Disord. Rev. 2014, 22, 373–377. [Google Scholar] [CrossRef]
- Manasse, S.M.; Espel, H.M.; Forman, E.M.; Ruocco, A.C.; Juarascio, A.S.; Butryn, M.L.; Zhang, F.; Lowe, M.R. The Independent and Interacting Effects of Hedonic Hunger and Executive Function on Binge Eating. Appetite 2015, 89, 16–21. [Google Scholar] [CrossRef] [PubMed]
- Debette, S.; Seshadri, S.; Beiser, A.; Au, R.; Himali, J.J.; Palumbo, C.; Wolf, P.A.; DeCarli, C. Midlife Vascular Risk Factor Exposure Accelerates Structural Brain Aging and Cognitive Decline. Neurology 2011, 77, 461–468. [Google Scholar] [CrossRef] [PubMed]
- Raji, C.A.; Ho, A.J.; Parikshak, N.N.; Becker, J.T.; Lopez, O.L.; Kuller, L.H.; Hua, X.; Leow, A.D.; Toga, A.W.; Thompson, P.M. Brain Structure and Obesity. Hum. Brain Mapp. 2009, 31, 353–364. [Google Scholar] [CrossRef] [PubMed]
- Jagust, W.; Harvey, D.; Mungas, D.; Haan, M. Central Obesity and the Aging Brain. Arch Neurol. 2005, 62, 1545–1548. [Google Scholar] [CrossRef] [PubMed]
- Ward, M.A.; Carlsson, C.M.; Trivedi, M.A.; Sager, M.A.; Johnson, S.C. The Effect of Body Mass Index on Global Brain Volume in Middle-Aged Adults: A Cross Sectional Study. BMC Neurol. 2005, 5, 23. [Google Scholar] [CrossRef] [PubMed]
- Gorospe, E.C.; Dave, J.K. The Risk of Dementia with Increased Body Mass Index. Age Ageing 2006, 36, 23–29. [Google Scholar] [CrossRef]
- Pannacciulli, N.; Del Parigi, A.; Chen, K.; Le, D.S.N.T.; Reiman, E.M.; Tataranni, P.A. Brain Abnormalities in Human Obesity: A Voxel-Based Morphometric Study. NeuroImage 2006, 31, 1419–1425. [Google Scholar] [CrossRef] [PubMed]
- Taki, Y.; Kinomura, S.; Sato, K.; Inoue, K.; Goto, R.; Okada, K.; Uchida, S.; Kawashima, R.; Fukuda, H. Relationship Between Body Mass Index and Gray Matter Volume in 1428 Healthy Individuals. Obesity 2008, 16, 119–124. [Google Scholar] [CrossRef] [PubMed]
- Salas-Venegas, V.; Flores-Torres, R.P.; Rodríguez-Cortés, Y.M.; Rodríguez-Retana, D.; Ramírez-Carreto, R.J.; Concepción-Carrillo, L.E.; Pérez-Flores, L.J.; Alarcón-Aguilar, A.; López-Díazguerrero, N.E.; Gómez-González, B.; et al. The Obese Brain: Mechanisms of Systemic and Local Inflammation, and Interventions to Reverse the Cognitive Deficit. Front. Integr. Neurosci. 2022, 16, 798995. [Google Scholar] [CrossRef] [PubMed]
- Murray, P.J. Macrophage Polarization. Annu. Rev. Physiol. 2017, 79, 541–566. [Google Scholar] [CrossRef] [PubMed]
- Guillemot-Legris, O.; Muccioli, G.G. Obesity-Induced Neuroinflammation: Beyond the Hypothalamus. Trends Neurosci. 2017, 40, 237–253. [Google Scholar] [CrossRef] [PubMed]
- Ouchi, N.; Parker, J.L.; Lugus, J.J.; Walsh, K. Adipokines in Inflammation and Metabolic Disease. Nat. Rev. Immunol. 2011, 11, 85–97. [Google Scholar] [CrossRef]
- Messina, A.; Monda, M.; Valenzano, A.; Messina, G.; Villano, I.; Moscatelli, F.; Cibelli, G.; Marsala, G.; Polito, R.; Ruberto, M.; et al. Functional Changes Induced by Orexin A and Adiponectin on the Sympathetic/Parasympathetic Balance. Front. Physiol. 2018, 9, 259. [Google Scholar] [CrossRef] [PubMed]
- Villano, I.; La Marra, M.; Di Maio, G.; Monda, V.; Chieffi, S.; Guatteo, E.; Messina, G.; Moscatelli, F.; Monda, M.; Messina, A. Physiological Role of Orexinergic System for Health. Int. J. Environ. Res. Public Health 2022, 19, 8353. [Google Scholar] [CrossRef]
- Chieffi, S.; Villano, I.; Messina, A.; Monda, V.; La Marra, M.; Messina, G.; Monda, M. Involvement of orexin in sleep disorders and neurodegenerative diseases. Curr. Top. Pept. 2015, 16, 49–54. [Google Scholar]
- Polito, R.; Francavilla, V.C.; Ambrosi, A.; Tartaglia, N.; Tafuri, D.; Monda, M.; Messina, A.; Sessa, F.; Di Maio, G.; Ametta, A.; et al. The Orexin-A Serum Levels Are Strongly Modulated by Physical Activity Intervention in Diabetes Mellitus Patients. In Proceedings of the Journal of Human Sport and Exercise—2020—Winter Conferences of Sports Science, Alicante, Spain, 24 April 2020; Universidad de Alicante: Alicante, Spain, 2020. [Google Scholar]
- Di Maio, G.; Alessio, N.; Demirsoy, I.H.; Peluso, G.; Perrotta, S.; Monda, M.; Di Bernardo, G. Evaluation of Browning Agents on the White Adipogenesis of Bone Marrow Mesenchymal Stromal Cells: A Contribution to Fighting Obesity. Cells 2021, 10, 403. [Google Scholar] [CrossRef] [PubMed]
- Tucsek, Z.; Toth, P.; Tarantini, S.; Sosnowska, D.; Gautam, T.; Warrington, J.P.; Giles, C.B.; Wren, J.D.; Koller, A.; Ballabh, P.; et al. Aging Exacerbates Obesity-Induced Cerebromicrovascular Rarefaction, Neurovascular Uncoupling, and Cognitive Decline in Mice. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2014, 69, 1339–1352. [Google Scholar] [CrossRef] [PubMed]
- Castanon, N.; Luheshi, G.; Layé, S. Role of Neuroinflammation in the Emotional and Cognitive Alterations Displayed by Animal Models of Obesity. Front. Neurosci. 2015, 9, 229. [Google Scholar] [CrossRef] [PubMed]
- Di Maio, G.; Monda, V.; Messina, A.; Polito, R.; Monda, M.; Asmundo, A.; Di Nunno, N.; Villano, N.; Francavilla, V.C. Nanocarriers As A Possible Neuropeptides Delivery Systems in the Brain. Acta Med. Mediterr. 2020, 4, 2287–2292. [Google Scholar] [CrossRef]
- Odegaard, J.I.; Chawla, A. Pleiotropic Actions of Insulin Resistance and Inflammation in Metabolic Homeostasis. Science 2013, 339, 172–177. [Google Scholar] [CrossRef] [PubMed]
- Bruun, J.M.; Pedersen, S.B.; Kristensen, K.; Richelsen, B. Effects of Pro-Inflammatory Cytokines and Chemokines on Leptin Production in Human Adipose Tissue in Vitro. Mol. Cell. Endocrinol. 2002, 190, 91–99. [Google Scholar] [CrossRef]
- Trayhurn, P.; Wood, I.S. Adipokines: Inflammation and the Pleiotropic Role of White Adipose Tissue. Br. J. Nutr. 2004, 92, 347–355. [Google Scholar] [CrossRef]
- Pradhan, A.D. C-Reactive Protein, Interleukin 6, and Risk of Developing Type 2 Diabetes Mellitus. JAMA 2001, 286, 327. [Google Scholar] [CrossRef]
- Lee, Y.-H.; Martin, J.M.; Maple, R.L.; Tharp, W.G.; Pratley, R.E. Plasma Amyloid-β Peptide Levels Correlate with Adipocyte Amyloid Precursor Protein Gene Expression in Obese Individuals. Neuroendocrinology 2009, 90, 383–390. [Google Scholar] [CrossRef]
- Jahangiri, A.; Wilson, P.G.; Hou, T.; Brown, A.; King, V.L.; Tannock, L.R. Serum Amyloid A Is Found on ApoB-Containing Lipoproteins in Obese Humans with Diabetes: SAA Lipoprotein Distribution. Obesity 2013, 21, 993–996. [Google Scholar] [CrossRef] [PubMed]
- Serrano-Pozo, A.; Frosch, M.P.; Masliah, E.; Hyman, B.T. Neuropathological Alterations in Alzheimer Disease. Cold Spring Harb. Perspect. Med. 2011, 1, a006189. [Google Scholar] [CrossRef]
- Mrak, R.E. Alzheimer-Type Neuropathological Changes in Morbidly Obese Elderly Individuals. Clin. Neuropathol. 2009, 28, 40–45. [Google Scholar] [CrossRef]
- Moroz, N.; Tong, M.; Longato, L.; Xu, H.; de la Monte, S.M. Limited Alzheimer-Type Neurodegeneration in Experimental Obesity and Type 2 Diabetes Mellitus. J. Alzheimer’s Dis. 2008, 15, 29–44. [Google Scholar] [CrossRef] [PubMed]
- Anstey, K.J.; Cherbuin, N.; Budge, M.; Young, J. Body Mass Index in Midlife and Late-Life as a Risk Factor for Dementia: A Meta-Analysis of Prospective Studies: BMI and Risk of Dementia. Obes. Rev. 2011, 12, e426–e437. [Google Scholar] [CrossRef] [PubMed]
- Luchsinger, J.A.; Patel, B.; Tang, M.-X.; Schupf, N.; Mayeux, R. Measures of Adiposity and Dementia Risk in Elderly Persons. Arch. Neurol. 2007, 64, 392. [Google Scholar] [CrossRef]
- Nguyen, J.C.D.; Killcross, A.S.; Jenkins, T.A. Obesity and Cognitive Decline: Role of Inflammation and Vascular Changes. Front. Neurosci. 2014, 8, 375. [Google Scholar] [CrossRef] [PubMed]
- Skoog, I.; Wallin, A.; Fredman, P.; Hesse, C.; Aevarsson, O.; Karlsson, I.; Gottfries, C.G.; Blennow, K. A Population Study on Blood-Brain Barrier Function in 85-Year-Olds: Relation to Alzheimer’s Disease and Vascular Dementia. Neurology 1998, 50, 966–971. [Google Scholar] [CrossRef] [PubMed]
- Stevens, J.; McClain, J.E.; Truesdale, K.P. Selection of Measures in Epidemiologic Studies of the Consequences of Obesity. Int. J. Obes. 2008, 32, S60–S66. [Google Scholar] [CrossRef] [PubMed]
- Janssen, I.; Katzmarzyk, P.T.; Ross, R. Waist Circumference and Not Body Mass Index Explains Obesity-Related Health Risk. Am. J. Clin. Nutr. 2004, 79, 379–384. [Google Scholar] [CrossRef] [PubMed]
- Price, G.M.; Uauy, R.; Breeze, E.; Bulpitt, C.J.; Fletcher, A.E. Weight, Shape, and Mortality Risk in Older Persons: Elevated Waist-Hip Ratio, Not High Body Mass Index, Is Associated with a Greater Risk of Death. Am. J. Clin. Nutr. 2006, 84, 449–460. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Heymsfield, S.B.; Toyoshima, H.; Wang, Z.; Pietrobelli, A.; Heshka, S. Race-Ethnicity–Specific Waist Circumference Cutoffs for Identifying Cardiovascular Disease Risk Factors. Am. J. Clin. Nutr. 2005, 81, 409–415. [Google Scholar] [CrossRef] [PubMed]
- Ilardi, C.R.; Iavarone, A.; La Marra, M.; Iachini, T.; Chieffi, S. Hand Movements in Mild Cognitive Impairment: Clinical Implications and Insights for Future Research. J. Integr. Neurosci. 2022, 21, 67. [Google Scholar] [CrossRef] [PubMed]
- Chieffi, S.; Messina, G.; La Marra, M.; Iavarone, A.; Viggiano, A.; De Luca, V.; Monda, M. Distractor interference in visual motor tasks. Hor. Neurosci. Res. 2014, 13, 151–160. [Google Scholar]
Characteristics | Normal-Weight (n = 96) | Overweight (n = 52) | Obese (n = 76) | Morbidly Obese (n = 80) | p-Value |
---|---|---|---|---|---|
BMI, mean (SD) | 23.74 (1.55) | 27.25 (1.10) | 34.17 (2.20) | 46.18 (5.11) | |
Sex (f/m) | 52/44 | 20/32 | 36/40 | 60/20 | |
Age in years, mean (SD) | 30.00 (6.76) | 34.38 (10.57) | 38.00 (11.82) | 36.20 (13.85) | <0.001 |
Education in years, mean (SD) | 12.58 (1.39) | 13.00 (0.86) | 10.58 (2.98) | 9.65 (3.67) | <0.001 |
CIRS-morbidity, mean (SD) | 0.23 (0.43) | 1.11 (0.32) | 2.04 (0.71) | 3.43 (0.62) | <0.001 |
CIRS-severity, mean (SD) | 0.05 (0.10) | 0.26 (0.07) | 1.38 (0.13) | 1.67 (0.43) | <0.001 |
FAB15, mean (SD) | 13.00 (1.76) | 13.50 (1.38) | 11.41 (2.68) | 9.50 (0.59) | <0.001 |
FAS, mean (SD) | 45.35 (6.93) | 44.75 (9.78) | 34.80 (13.23) | 32.20 (4.56) | <0.001 |
DSST, mean (SD) | 59.04 (12.03) | 61.15 (1.42) | 45.55 (20.57) | 43.50 (13.82) | <0.001 |
Stroop-T, mean (SD) | 13.43 (8.17) | 12.17 (6.75) | 18.04 (8.05) | 19.77 (12.61) | <0.001 |
Stroop-E, mean (SD) | 0.52 (1.12) | 0.65 (1.07) | 0.78 (1.08) | 0.69 (0.94) | 0.47 |
BMI | Age | Education | CIRS-Morbidity | CIRS-Severity | FAB15 | FAS | DSST | Stroop-E | Stroop-T | |
---|---|---|---|---|---|---|---|---|---|---|
BMI | – | |||||||||
Age | 0.136 * | – | ||||||||
Education | −0.468 *** | −0.085 | – | |||||||
CIRS-morbidity | 0.892 *** | 0.231 *** | −0.451 *** | – | ||||||
CIRS-severity | 0.888 *** | 0.251 *** | −0.492 *** | 0.944 *** | – | |||||
FAB15 | −0.173 * | −0.106 | 0.531 *** | −0.128 | −0.165 * | – | ||||
FAS | −0.273 *** | −0.030 | 0.449 *** | −0.202 * | −0.235 ** | 0.563 *** | – | |||
DSST | −0.293 *** | −0.532 *** | 0.456 *** | −0.269 *** | −0.280 *** | 0.490 *** | 0.378 *** | – | ||
Stroop-E | 0.188 ** | 0.411 *** | −0.304 *** | 0.260 *** | 0.220 ** | −0.520 *** | −0.258 *** | −0.432 *** | – | |
Stroop-T | 0.180 ** | 0.575 *** | −0.362 *** | 0.304 *** | 0.299 *** | −0.267 *** | −0.268 *** | −0.659 *** | 0.456 *** | – |
Sum of Square | F | p-Value | |
---|---|---|---|
BMI × FAB15 | 167.51 | 20.58 | <0.001 |
Sex | 7.62 | 4.07 | <0.05 |
Age | 2.87 | 1.53 | 0.06 |
Education | 72.58 | 38.76 | <0.001 |
CIRS-morbidity | 8.63 | 4.61 | <0.05 |
CIRS-severity | 7.54 | 4.02 | <0.05 |
BMI × FAS | 2881.93 | 11.51 | <0.001 |
Sex | 2.68 | 0.05 | 0.77 |
Age | 36.16 | 0.71 | 0.95 |
Education | 72.58 | 21.04 | <0.001 |
CIRS-morbidity | 25.83 | 0.51 | 0.48 |
CIRS-severity | 48.97 | 0.96 | 0.33 |
BMI × DSST | 3558.23 | 6.18 | <0.01 |
Sex | 9.94 | 0.12 | 0.73 |
Age | 4554.88 | 55.73 | <0.001 |
Education | 3123.28 | 38.21 | <0.001 |
CIRS-morbidity | 81.52 | 1.00 | 0.32 |
CIRS-severity | 115.70 | 1.42 | 0.24 |
BMI × Stroop-T | 820.61 | 5.66 | <0.01 |
Sex | 164.17 | 5.92 | <0.05 |
Age | 1599.91 | 57.72 | <0.001 |
Education | 24.07 | 0.87 | 0.35 |
CIRS-morbidity | 2.95 | 0.11 | 0.74 |
CIRS-severity | 133.59 | 4.82 | <0.05 |
BMI × Stroop-E | 2.77 | 0.86 | 0.46 |
Sex | 1.57 | 4.12 | <0.05 |
Age | 22.10 | 58.15 | <0.001 |
Education | 8.82 | 23.20 | <0.001 |
CIRS-morbidity | 1.74 | 4.57 | <0.05 |
CIRS-severity | 4.13 | 10.88 | <0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
La Marra, M.; Ilardi, C.R.; Villano, I.; Carosella, M.; Staiano, M.; Iavarone, A.; Chieffi, S.; Messina, G.; Polito, R.; Scarinci, A.; et al. Functional Relationship between Inhibitory Control, Cognitive Flexibility, Psychomotor Speed and Obesity. Brain Sci. 2022, 12, 1080. https://doi.org/10.3390/brainsci12081080
La Marra M, Ilardi CR, Villano I, Carosella M, Staiano M, Iavarone A, Chieffi S, Messina G, Polito R, Scarinci A, et al. Functional Relationship between Inhibitory Control, Cognitive Flexibility, Psychomotor Speed and Obesity. Brain Sciences. 2022; 12(8):1080. https://doi.org/10.3390/brainsci12081080
Chicago/Turabian StyleLa Marra, Marco, Ciro Rosario Ilardi, Ines Villano, Mario Carosella, Maria Staiano, Alessandro Iavarone, Sergio Chieffi, Giovanni Messina, Rita Polito, Alessia Scarinci, and et al. 2022. "Functional Relationship between Inhibitory Control, Cognitive Flexibility, Psychomotor Speed and Obesity" Brain Sciences 12, no. 8: 1080. https://doi.org/10.3390/brainsci12081080
APA StyleLa Marra, M., Ilardi, C. R., Villano, I., Carosella, M., Staiano, M., Iavarone, A., Chieffi, S., Messina, G., Polito, R., Scarinci, A., Monda, V., Di Maio, G., & Messina, A. (2022). Functional Relationship between Inhibitory Control, Cognitive Flexibility, Psychomotor Speed and Obesity. Brain Sciences, 12(8), 1080. https://doi.org/10.3390/brainsci12081080