The Impact of Single-Level ACDF on Neural Foramen and Disc Height of Surgical and Adjacent Cervical Segments: A Case-Series Radiological Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Sample and Patient Selection
2.2. Surgical Approach
2.3. Radiological Parameters and Analysis
2.4. Clinical Evaluation
2.5. Statistical Analysis
3. Results
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Carette, S.; Fehlings, M.G. Cervical radiculopathy. N. Engl. J. Med. 2005, 353, 392–399. [Google Scholar] [CrossRef] [PubMed]
- Iyer, S.; Kim, H.J. Cervical radiculopathy. Curr. Rev. Musculoskelet Med. 2016, 9, 272–280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grundy, P.L.; Germon, T.J.; Gill, S.S. Transpedicular approaches to cervical uncovertebral osteophytes causing radiculopathy. J. Neurosurg. Spine 2000, 93, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Giammalva, G.R.; Maugeri, R.; Graziano, F.; Gulì, C.; Giugno, A.; Basile, L.; Iacopino, D.G. White cord syndrome after non-contiguous double-level anterior cervical decompression and fusion (ACDF): A “no reflow phenomenon”? Interdiscip. Neurosurg. 2017, 7, 47–49. [Google Scholar] [CrossRef]
- Gerardi, R.M.; Giammalva, G.R.; Basile, L.; Gulì, C.; Pino, M.A.; Messina, D.; Umana, G.E.; Graziano, F.; di Bonaventura, R.; Sturiale, C.L.; et al. White Cord Syndrome After Cervical or Thoracic Spinal Cord Decompression. Hemodynamic Complication or Mechanical Damage? An Underestimated Nosographic Entity. World Neurosurg. 2022, 164, 243–250. [Google Scholar] [CrossRef]
- Hirai, S.; Kato, S.; Nakajima, K.; Doi, T.; Matsubayashi, Y.; Taniguchi, Y.; Inanami, H.; Hayashi, N.; Tanaka, S.; Oshima, Y. Anatomical study of cervical intervertebral foramen in patients with cervical spondylotic radiculopathy. J. Orthop. Sci. 2020, 26, 86–91. [Google Scholar] [CrossRef]
- Smith, G.W.; Robinson, R.A. The Treatment of Certain Cervical-Spine Disorders by Anterior Removal of the Intervertebral Disc and Interbody Fusion. J. Bone Jt. Surg. 1958, 40, 607–624. [Google Scholar] [CrossRef]
- Caspar, W.; Barbier, D.; Klara, P. Anterior Cervical Fusion and Caspar Plate Stabilization for Cervical Trauma. Neurosurgery 1989, 25, 491–502. [Google Scholar] [CrossRef]
- Wang, L.-F.; Dong, Z.; Miao, D.-C.; Shen, Y.; Wang, F. Risk factor analysis of axial symptoms after single-segment anterior cervical discectomy and fusion: A retrospective study of 113 patients. J. Int. Med. Res. 2019, 47, 6100–6108. [Google Scholar] [CrossRef] [Green Version]
- Wen, Z.; Lu, T.; Wang, Y.; Liang, H.; Gao, Z.; He, X. Anterior Cervical Corpectomy and Fusion and Anterior Cervical Discectomy and Fusion Using Titanium Mesh Cages for Treatment of Degenerative Cervical Pathologies: A Literature Review. J. Pharmacol. Exp. Ther. 2018, 24, 6398–6404. [Google Scholar] [CrossRef]
- Matz, P.G.; Holly, L.T.; Groff, M.W.; Vresilovic, E.J.; Anderson, P.A.; Heary, R.F.; Kaiser, M.G.; Mummaneni, P.V.; Ryken, T.C.; Choudhri, T.F.; et al. Indications for anterior cervical decompression for the treatment of cervical degenerative radiculopathy. J. Neurosurg. Spine 2009, 11, 174–182. [Google Scholar] [CrossRef] [Green Version]
- Cho, D.Y.; Liau, W.R.; Lee, W.Y.; Liu, J.T.; Chiu, C.L.; Sheu, P.C. Preliminary Experience Using a Polyetheretherketone (PEEK) Cage in the Treatment of Cervical Disc Disease. Neurosurgery 2002, 51, 1343–1350. [Google Scholar] [CrossRef]
- Albert, T.J.; Smith, M.D.; Bressler, E.; Johnson, L.J. An in vivo analysis of the dimensional changes of the neuroforamen after anterior cervical diskectomy and fusion: A radiologic investigation. J. Spinal Disord. 1997, 10, 229–233. [Google Scholar] [CrossRef]
- Nguyen, J.; Chu, B.; Kuo, C.C.; Leasure, J.M.; Ames, C.; Kondrashov, D. Changes in foraminal area with anterior decompression versus keyhole foraminotomy in the cervical spine: A biomechanical investigation. J. Neurosurg. Spine 2017, 27, 620–626. [Google Scholar] [CrossRef] [Green Version]
- Bayley, J.C.; Yoo, J.U.; Kruger, D.M.; Schlegel, J. The Role of Distraction in Improving the Space Available for the Cord in Cervical Spondylosis. Spine 1995, 20, 771–775. [Google Scholar] [CrossRef]
- Marniemi, J.; Parkki, M.G. Radiochemical assay of glutathione S-epoxide transferase and its enhancement by phenobarbital in rat liver in vivo. Biochem. Pharmacol. 1975, 24, 1569–1572. [Google Scholar] [CrossRef]
- LeVasseur, C.M.; Pitcairn, S.; Shaw, J.; Donaldson, W.F.; Lee, J.Y.; Anderst, W.J. The effects of age, pathology, and fusion on cervical neural foramen area. J. Orthop. Res. 2020, 39, 671–679. [Google Scholar] [CrossRef]
- Mullins, J.; Pojskić, M.; Boop, F.A.; Arnautović, K.I. Retrospective single-surgeon study of 1123 consecutive cases of anterior cervical discectomy and fusion: A comparison of clinical outcome parameters, complication rates, and costs between outpatient and inpatient surgery groups, with a literature review. J. Neurosurg. Spine 2018, 28, 630–641. [Google Scholar] [CrossRef] [Green Version]
- Sun, B.; Xu, C.; Qi, M.; Shen, X.; Zhang, K.; Yuan, W.; Liu, Y. Predictive Effect of Intervertebral Foramen Width on Pain Relief After ACDF for the Treatment of Cervical Radiculopathy. Glob. Spine J. 2021, 13, 2192568221993444. [Google Scholar] [CrossRef]
- Panjabi, M.M.; Maak, T.G.; Ivancic, P.C.; Ito, S. Dynamic Intervertebral Foramen Narrowing During Simulated Rear Impact. Spine 2006, 31, E128–E134. [Google Scholar] [CrossRef]
- Xu, R.; Robke, J.; Ebraheim, N.A.; Yeasting, R.A. Evaluation of Cervical Posterior Lateral Mass Screw Placement by Oblique Radiographs. Spine 1996, 21, 696–701. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhao, H.; Liu, J.-M.; Tan, L.-W.; Liu, P.; Zhao, J.-H. Resection or degeneration of uncovertebral joints altered the segmental kinematics and load-sharing pattern of subaxial cervical spine: A biomechanical investigation using a C2–T1 finite element model. J. Biomech. 2016, 49, 2854–2862. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.; Ma, M.; Huang, L.; Ye, J.; Tang, Y.; Wang, P.; Yin, D.; Chen, K.; Li, W.; Shen, H. Influences of different lower cervical bone graft heights on the size of the intervertebral foramen: Multiple planar dynamic measurements with laser scanning. Lasers Med. Sci. 2018, 33, 627–635. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Yang, X.; Gao, X.; Shao, L.; Li, F.; Sun, Y.; Liu, X.; Yao, S.; Sun, Y. The effects of cages implantation on surgical and adjacent segmental intervertebral foramina. J. Orthop. Surg. Res. 2021, 16, 280. [Google Scholar] [CrossRef]
- Xiong, W.; Zhou, J.; Sun, C.; Chen, Z.; Guo, X.; Huo, X.; Liu, S.; Li, J.; Xue, Y. 0.5- to 1-Fold Intervertebral Distraction Is a Protective Factor for Adjacent Segment Degeneration in Single-level Anterior Cervical Discectomy and Fusion. Spine 2020, 45, 96–102. [Google Scholar] [CrossRef]
- Abudouaini, H.; Huang, C.; Liu, H.; Hong, Y.; Wang, B.; Ding, C.; Meng, Y.; Wu, T. Change in the postoperative intervertebral space height and its impact on clinical and radiological outcomes after ACDF surgery using a zero-profile device: A single-Centre retrospective study of 138 cases. BMC Musculoskelet Disord. 2021, 22, 543. [Google Scholar] [CrossRef]
- Suk, K.S.; Lee, S.H.; Park, S.Y.; Kim, H.S.; Moon, S.H.; Lee, H.M. Clinical Outcome and Changes of Foraminal Dimension in Patients With Foraminal Stenosis After ACDF. J. Spinal Disord. Tech. 2015, 28, E449–E453. [Google Scholar] [CrossRef] [PubMed]
- Sekerci, Z.; Uğur, A.; Ergün, R.; Sanli, M. Early changes in the cervical foraminal area after anterior interbody fusion with polyetheretherketone (PEEK) cage containing synthetic bone particulate: A prospective study of 20 cases. Neurol. Res. 2006, 28, 568–571. [Google Scholar] [CrossRef] [PubMed]
- Bartels, R.H.; Donk, R.; van Azn, R.D. Height of cervical foramina after anterior discectomy and implantation of a carbon fiber cage. J. Neurosurg. 2001, 95 (Suppl. 1), 40–42. [Google Scholar] [CrossRef] [PubMed]
Surgical Level | % |
---|---|
C3-C4 | 10.7 |
C4-C5 | 35.7 |
C5-C6 | 17.8 |
C6-C7 | 35.7 |
PRE | POST | |||||
---|---|---|---|---|---|---|
Mean (SD) | Median (IQR) | Mean (SD) | Median (IQR) | Mean of Differences | p-Value | |
Above_antero | 4.50 (1.22) | 4.40 (3.60–5.35) | 4.75 (0.99) | 4.60 (4.00–5.55) | 0.248 | 0.243 |
Above_centrum | 5.37 (1.10) | 5.36 (4.60–6.10) | 5.36 (1.05) | 5.25 (4.83–5.95) | −0.004 | 0.948 |
Above_postero | 3.74 (0.96) | 3.70 (3.20–4.43) | 3.99 (0.97) | 4.15 (3.25–4.64) | 0.250 | 0.328 |
Surgical_antero | 4.14 (1.81) | 4.15 (2.48–4.90) | 8.04 (2.01) | 7.95 (7.00–9.30) | 3.893 | <0.001 |
Surgical_centrum | 4.54 (1.32) | 4.25 (3.48–5.32) | 7.30 (1.27) | 7.20 (6.30–7.93) | 2.763 | <0.001 |
Surgical-postero | 3.53 (1.06) | 3.50 (2.95–4.50) | 6.79 (1.87) | 6.65 (5.93–8.15) | 3.261 | <0.001 |
Below_antero | 4.53 (1.73) | 4.40 (3.38–5.90) | 4.65 (1.61) | 4.59 (3.38–5.60) | 0.120 | 0.551 |
Below_centrum | 5.02 (1.38) | 5.35 (3.92–6.03) | 5.23 (1.36) | 5.25 (4.27–6.43) | 0.212 | 0.142 |
Below_postero | 3.38 (1.01) | 3.60 (2.65–4.00) | 3.52 (1.04) | 3.60 (2.72–4.23) | 0.143 | 0.315 |
PRE | POST | |||||
---|---|---|---|---|---|---|
Mean (SD) | Median (IQR) | Mean (SD) | Median (IQR) | Mean of Differences | p-Value | |
A-P right_above | 5.62 (1.47) | 5.65 (4.90–6.38) | 5.73 (1.39) | 5.35 (4.90–6.6) | 0.108 | 0.532 |
A-P left_above | 5.43 (1.51) | 5.60 (4.60–6.46) | 5.84 (1.42) | 5.95 (4.76–6.76) | 0.406 | 0.020 |
C-C right_above | 9.33 (1.66) | 9.30 (7.97–10.67) | 9.75 (1.44) | 9.60 (8.95–10.62) | 0.425 | 0.059 |
C-C left_above | 9.59 (1.29) | 9.25 (8.70–10.65) | 9.75 (1.51) | 9.85 (8.52–10.55) | 0.160 | 0.484 |
A-P right_surgical | 5.29 (1.48) | 5.30 (4.07–6.35) | 5.15 (1.35) | 5.05 (4.30–5.67) | −0.145 | 0.401 |
A-P left_surgical | 5.15 (1.31) | 5.20 (4.32–5.85) | 5.23 (1.18) | 5.32 (4.55–6.32) | 0.073 | 0.659 |
C-C right_surgical | 8.86 (1.45) | 8.62 (8.10–9.10) | 9.36 (1.77) | 9.45 (8.10–10.38) | 0.506 | 0.033 |
C-C left_surgical | 8.62 (0.96) | 8.45 (7.88–9.25) | 9.43 (1.53) | 9.15 (8.28–10.80) | 0.810 | 0.001 |
A-P right_below | 5.89 (1.46) | 5.60 (4.65–7.03) | 5.59 (1.73) | 5.55 (4.20–7.12) | −0.298 | 0.063 |
A-P left_below | 5.86 (1.46) | 5.95 (4.97–6.43) | 6.13 (1.54) | 6.00 (5.05–7.30) | 0.271 | 0.075 |
C-C right_below | 9.36 (1.46) | 9.20 (8.45–10.10) | 9.45 (1.46) | 9.38 (8.17–10.50) | 0.090 | 0.717 |
C-C left_below | 9.18 (1.36) | 9.45 (6.00–11.30) | 9.48 (1.43) | 9.35 (8.67–10.70) | 0.300 | 0.173 |
Age, Sex | Surgical Level | mJOA (Preop; Postop) | NDI (Preop; Postop) | NRS (Preop; Postop) | Cage Size | Onset Symptoms |
---|---|---|---|---|---|---|
67, F | C5-C6 | 14; 16 | 34; 18 | 8; 9 | 6 mm | Bilateral cervicobrachialgia and paresthesia |
48, F | C4-C5 | 16; 18 | 30; 1 | 8; 0 | 5 mm | Intense cervicalgia and left brachialgia |
48, F | C4-C5 | 14; 18 | 36; 4 | 7; 0 | 5 mm | Cervicalgia, left upper limb hyposthesia, hyperreflexia |
63, M | C4-C5 | 15; 17 | 27; 10 | 9; 3 | 5 mm | Cervicalgia and left brachialgia |
76, F | C4-C5 | 10; 12 | 38; 31 | 8; 6 | 6 mm | Spastic paraparesis, hyperreflexia, upper limbs motor weakness |
71, F | C4-C5 | 8; 16 | 43; 25 | 8; 6 | 5 mm | Spastic paraparesis, hyperreflexia, upper limbs motor weakness |
42, M | C6-C7 | 14; 17 | 18; 3 | 9; 3 | 6 mm | Intense cervicalgia and right brachialgia |
64, M | C6-C7 | 16; 18 | 12; 2 | 3; 3 | 5 mm | Left upper limb motor weakness |
47, M | C5-C6 | 13; 18 | 35; 3 | 9; 0 | 5 mm | Intense cervicalgia, right brachialgia and hypoesthesia |
65, M | C6-C7 | 17; 18 | 13; 0 | 4; 0 | 5 mm | Left upper limb mild hypoesthesia |
46, F | C5-C6 | 15; 16 | 21; 18 | 8; 8 | 5 mm | Cervicalgia, walking disturbances, hyperreflexia, bilateral upper limb motor weakness |
75, M | C3-C4 | 9; 15 | 36; 28 | 0; 0 | 5 mm | Hyperreflexia, bilateral upper limb motor weakness, walking disturbances |
52, M | C3-C4 | 10; 13 | 41; 34 | 10; 8 | 6 mm | Intense cervicalgia, right brachialgia |
41, M | C6-C7 | 17; 18 | 15; 7 | 8; 3 | 5 mm | Right upper limb mild hypoesthesia |
63, M | C6-C7 | 13; 14 | 31; 26 | 2; 2 | 5 mm | Spastic paraparesis, bilateral prehensile motor deficit |
45, F | C6-C7 | 15; 17 | 26; 12 | 9; 7 | 5 mm | Right upper limb brachialgia and mild hypoesthesia |
44, M | C4-C5 | 16; 17 | 29; 15 | 7; 0 | 6 mm | Intense cervicalgia, right brachialgia and hypoesthesia, hyperreflexia |
57, M | C6-C7 | 6; 11 | 43; 11 | 10; 5 | 5 mm | Intense bilateral brachialgia, mild walking disturbances |
73, M | C4-C5 | 16; 17 | 23; 7 | 7; 3 | 5 mm | Right upper limb brachialgia and mild hypoesthesia |
49, F | C5-C6 | 14; 15 | 33; 8 | 10; 7 | 5 mm | |
52, F | C6-C7 | 16; 18 | 35; 5 | 10; 2 | 6 mm | Intense cervicalgia, left prehensile motor deficit |
59, F | C5-C6 | 15; 15 | 4; 0 | 0; 0 | 5 mm | Bilateral prehensile motor deficit, diffuse upper limbs hypoesthesia |
70, M | C6-C7 | 10; 12 | 38; 33 | 2; 2 | 5 mm | Mild spastic paraparesis, urinary incontinence |
67, M | C6-C7 | 15; 17 | 37; 5 | 9; 0 | 5 mm | Intense cervicalgia, left prehensile motor deficit |
70, M | C4-C5 | 11; 13 | 43; 38 | 7; 3 | 5 mm | Spastic paraparesis, bilateral prehensile motor deficit, urinary incontinence |
73, M | C4-C5 | 12; 14 | 20; 7 | 8; 5 | 6 mm | Intense bilateral brachialgia, hyperreflexia, urinary incontinence |
60, M | C3-C4 | 1; 2 | 47; 45 | 8; 4 | 6 mm | Cervicalgia, severe spastic paraparesis, hyperreflexia, bilateral clonus, urinary incontinence |
50, M | C4-C5 | 12; 15 | 29; 10 | 5; 1 | 6 mm | Right upper limb brachialgia and mild hypoesthesia |
Authors, Year | N° of Patients | Type of Study | Clinical Parameter | Pre and Postop Radiological Parameter | Results |
---|---|---|---|---|---|
Wu C et al., 2021 [24] | 61 | Retrospective | VAS, mJOA | Intervertebral disk height of level treated and upper and lower levels (and ratio); Regional curvature and global curvature of cervical spine; Height and area of the neural foraminal of level treated, lower and upper levels. | Positive correlation between pre and postop intervertebral disk ratio and pre and postop area and height of neural foramina of the surgical segment; Improvement of postoperative mJOA and VAS scores. |
Sun B et al., 2021 [19] | 538 | Retrospective | NDI, mJOA, BMI | Width of the intervertebral foramen of treated segment; Height of the intervertebral foramen; Only preoperative C2-C7 Cobb angle. | Pain relief was negatively affected by the symptomduration and ratio of disc space distraction; An increase in the preoperative width of the intervertebral foramen decrease the possibility of persistent pain. |
Abudouaini H et al., 2021 [26] | 148 | Retrospective | VAS, mJOA, NDI | Intervertebral height; Cervical curvature; Functional spine unit (FSU); Intervertebral foramen diameter. | No clear correlation between IH changes and clinical efficacy within a year of surgery; If postoperative IH changes are maintained at 2 to 4 mm after a year, satisfactory imaging parameters and relatively low complications using a zero-profile device |
Suk K-S et al., 2015 [27] | 44 | Prospective | VAS, NDI, donor site pain, subjective improvement rate | Anterior and posterior disk height; Height anterior-posterior diameter of the foramen; Cobb angle. | Foraminal dimension was negativelycorrelated with the arm pain; Restoration of posterior diskheight was necessary to widen the foraminal dimension; Increased lordosis of the fusion segment did not help to widenthe foraminal dimension. |
Sekerci Z et al., 2006 [28] | 20 | Prospective | N/A | Mean height of neural foramina; Mean height of disk space. | Restoring foraminal height and maintenance of stability achieved by using implantation of PEEKcage containing synthetic bone; Use of synthetic graft material allowed for shorthospital stays and avoided donor site-related complications. |
Bartels RHM et al., 2001 [29] | 13 | Prospective | N/A | Mean angle between the two adja-cent endplates; Mean height of neural foramina. | Height of neural foramina increased 1 year after surgery; Angle between two adjacent endplates increased postop (improvement of cervical lordosis). |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maugeri, R.; Brunasso, L.; Sciortino, A.; Scerrati, A.; Buscemi, F.; Basile, L.; Giammalva, G.R.; Costanzo, R.; Bencivinni, F.; Bruno, E.; et al. The Impact of Single-Level ACDF on Neural Foramen and Disc Height of Surgical and Adjacent Cervical Segments: A Case-Series Radiological Analysis. Brain Sci. 2023, 13, 101. https://doi.org/10.3390/brainsci13010101
Maugeri R, Brunasso L, Sciortino A, Scerrati A, Buscemi F, Basile L, Giammalva GR, Costanzo R, Bencivinni F, Bruno E, et al. The Impact of Single-Level ACDF on Neural Foramen and Disc Height of Surgical and Adjacent Cervical Segments: A Case-Series Radiological Analysis. Brain Sciences. 2023; 13(1):101. https://doi.org/10.3390/brainsci13010101
Chicago/Turabian StyleMaugeri, Rosario, Lara Brunasso, Andrea Sciortino, Alba Scerrati, Felice Buscemi, Luigi Basile, Giuseppe Roberto Giammalva, Roberta Costanzo, Francesco Bencivinni, Eleonora Bruno, and et al. 2023. "The Impact of Single-Level ACDF on Neural Foramen and Disc Height of Surgical and Adjacent Cervical Segments: A Case-Series Radiological Analysis" Brain Sciences 13, no. 1: 101. https://doi.org/10.3390/brainsci13010101
APA StyleMaugeri, R., Brunasso, L., Sciortino, A., Scerrati, A., Buscemi, F., Basile, L., Giammalva, G. R., Costanzo, R., Bencivinni, F., Bruno, E., Matranga, D., Maniscalco, L., Gioia, F., Tumbiolo, S., & Iacopino, D. G. (2023). The Impact of Single-Level ACDF on Neural Foramen and Disc Height of Surgical and Adjacent Cervical Segments: A Case-Series Radiological Analysis. Brain Sciences, 13(1), 101. https://doi.org/10.3390/brainsci13010101