Water Drinking Behavior Associated with Aversive Arousal in Rats: An Integrative Approach
Abstract
:1. History Background
2. The Problems
3. Specific Activation of a Diffuse Cholinergic System
4. Cholinergic Component of the Ascending Reticular Activating System
5. The Ascending Mesolimbic Cholinergic System for Aversive Arousal
6. The Set of Symptoms of Aversive Arousal and Their Biological Role
7. Biological Role of Aversive Arousal-Induced Drinking Response
8. Summary
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Grossman, S.P. Eating and drinking elicited by direct adrenergic or cholinergic stimulation of hypothalamus. Science 1960, 132, 301–302. [Google Scholar] [CrossRef] [PubMed]
- Grossman, S.P. Direct adrenergic and cholinergic stimulation of hypothalamic mechanisms. Am. J. Physiol. 1962, 202, 372–382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fisher, A.E.; Coury, J.N. Cholinergic tracing of a central neural circuit underlying the thirst drive. Science 1962, 138, 691–693. [Google Scholar] [CrossRef] [PubMed]
- Grossman, S.P. Behavioral effects of direct chemical stimulation of the central nervous system structures. Int. J. Neuropharmacol. 1964, 3, 45–58. [Google Scholar] [CrossRef]
- Grossman, S.P. Behavioral effects of chemical stimulation of the ventral amygdala. J. Comp. Physiol. Psychol. 1964, 57, 29–36. [Google Scholar] [CrossRef]
- Quartermain, D.; Miller, N.E. Sensory feedback in time-response of drinking elicited by carbachol in preoptic area of rat. J. Comp. Physiol. Psychol. 1966, 62, 350–353. [Google Scholar] [CrossRef]
- Miller, N.E.; Gottesman, K.S.; Emery, N. Dose response to carbachol and norepinephrine in rat hypothalamus. Am. J. Physiol. 1964, 206, 1384–1388. [Google Scholar] [CrossRef]
- Levitt, R.A.; White, C.S.; Sander, D.M. Dose-response analysis of carbachol-elicited drinking in the rat limbic system. J. Comp. Physiol. Psychol. 1970, 72, 345–350. [Google Scholar] [CrossRef]
- Levitt, R.A. Cholinergic substrate for drinking in the rat. Psychol. Rep. 1971, 29, 431–448. [Google Scholar] [CrossRef]
- Fisher, A.E. Chemical stimulation of the brain. Sci. Am. 1964, 210, 60–68. [Google Scholar] [CrossRef]
- Levitt, R.A. Biochemical blockade of cholinergic thirst. Psychon. Sci. 1969, 15, 334–340. [Google Scholar] [CrossRef] [Green Version]
- Levitt, R.A.; Boley, R.P. Drinking elicited by injection of eserine or carbachol into rat brain. Physiol. Behav. 1970, 5, 693–695. [Google Scholar] [CrossRef] [PubMed]
- Terpstra, G.K.; Slangen, J.L. Central blockade of (methyl-)atropine on carbachol drinking: A dose-response study. Physiol. Behav. 1972, 8, 715–719. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Terpstra, G.K.; Slangen, J.L. The chemical and behavioural specificity of cholinergic stimulation of the tractus diagonalis. In Control Mechanisms of Drinking; Peters, G., Fitzsimons, J.T., Peters-Haefeli, L., Eds.; Springer: New York, NY, USA, 1975; pp. 173–181. [Google Scholar]
- Swanson, L.W.; Sharpe, L.G.; Griffin, D. Drinking to intracerebral angiotensin II and carbachol: Dose-response relationships and ionic involvement. Physiol. Behav. 1973, 10, 595–600. [Google Scholar] [CrossRef]
- Aghajanian, G.K.; Davis, M. A method of direct chemical brain stimulation in behavioral studies using microiontophoresis. Pharm. Biochem. Behav. 1975, 3, 127–131. [Google Scholar] [CrossRef]
- Stricker, E.M.; Miller, N.E. Saline preference and body fluid analysis in rats after intrahypothalamic injections of carbachol. Physiol. Behav. 1968, 3, 471–475. [Google Scholar] [CrossRef]
- Beideman, L.R.; Goldstein, R. Specificity of carbachol in the elicitation of drinking. Psychon. Sci. 1970, 20, 261–262. [Google Scholar] [CrossRef] [Green Version]
- Myers, R.D. Modification of drinking patterns by chronic intracerebral infusion. In Thirst: 1st International Symposium on Thirst in the Regulation of Body Water; Wayner, M.J., Ed.; Pergamon Press: New York, NY, USA, 1964; pp. 533–549. [Google Scholar]
- Sharpe, L.G.; Myers, R.D. Feeding and drinking following stimulation of the diencephalon of the monkey with amines and other substances. Exp. Brain Res. 1969, 8, 295–310. [Google Scholar] [CrossRef]
- Hernández-Péon, R. Central neuro-humoral transmission in sleep and wakefulness. In Progress in Brain Research; Akert, K., Bally, C., Schade, J.P., Eds.; Elsevier: New York, NY, USA, 1965; Volume 18, pp. 96–117. [Google Scholar]
- Macphail, E.M.; Miller, N.E. Cholinergic brain stimulation in cats: Failure to obtain sleep. J. Comp. Physiol. Psychol. 1968, 65, 499–503. [Google Scholar] [CrossRef] [PubMed]
- Macphail, E.M. Cholinergic stimulation of dove diencephalon: A comparative study. Physiol. Behav. 1969, 4, 655–657. [Google Scholar] [CrossRef]
- Denbow, D.M.; Van Krey, H.P.; Skewes, P.A.; Lacy, M.P. Food and water intake of broiler chicks as affected by intracerebroventricular injections of cholinomimetics. Poult. Sci. 1985, 64, 991–994. [Google Scholar] [CrossRef] [PubMed]
- Ramsay, D.J.; Reid, I.A. Some central mechanisms of thirst in the dog. J. Physiol. 1975, 253, 517–525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sommer, S.R.; Novin, D.; Levine, M. Food and water intake after intrahypothalamic injections of carbachol in the rabbit. Science 1967, 156, 983–984. [Google Scholar] [CrossRef]
- Forbes, J.M.; Baile, C.A. Feeding and drinking in sheep following hypothalamic injections of carbachol. J. Dairy Sci. 1974, 57, 878–883. [Google Scholar] [CrossRef] [PubMed]
- Ellis, S.; Axt, K.; Epstein, A.N. The arousal of ingestive behaviors by chemical injection into the brain of the suckling rat. J. Neurosci. 1984, 4, 945–955. [Google Scholar] [CrossRef] [Green Version]
- Chance, W.T.; King, J.; Rosecrans, J.A. Evidence of conditioned drinking following cholinergic stimulation of the hypothalamus. Comm. Psychopharmacol. 1977, 1, 431–438. [Google Scholar]
- Levitt, R.A. Temporal decay of the blockade of carbachol drinking by atropine. Physiol. Behav. 1970, 5, 627–628. [Google Scholar] [CrossRef]
- Levitt, R.A.; Buerger, P.B. Interaction between cholinergic mechanisms and salt arousal of drinking. Learn. Motiv. 1970, 1, 297–303. [Google Scholar] [CrossRef]
- Hulst, S.G.T. Intracerebral implantation of carbachol in the rat: Its effect on water intake and body temperature. Physiol. Behav. 1972, 8, 865–872. [Google Scholar] [CrossRef] [Green Version]
- Hendler, N.H.; Blake, W.D. Hypothalamic implants of angiotensin II, carbachol, and norepinephrine on water and NaCl solution in take in rats. Comm. Behav. Biol. 1969, 4, 41–48. [Google Scholar]
- Mountford, D. Drinking following carbachol stimulation of hippocampal formation or lateral ventricles. Psychonom. Sci. 1969, 16, 124–125. [Google Scholar] [CrossRef] [Green Version]
- Levitt, R.A.; O’Hearn, J.Y. Drinking elicited by cholinergic stimulation of CNS fibres. Physiol. Behav. 1972, 8, 641–644. [Google Scholar] [CrossRef]
- Mangiapane, M.L.; Simpson, J.B. Pharmacologic independence of subfornical organ receptors mediating drinking. Brain. Res. 1979, 178, 507–517. [Google Scholar] [CrossRef] [PubMed]
- Routtenberg, A.; Fisher, A.E.; Levitt, R.A. Drinking induced by carbachol: Thirst circuit or ventricular modification? Science 1967, 157, 838–841. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Routtenberg, A.; Simpson, J.B. Carbachol-induced drinking at ventricular and subfornical organ sites of application. Life Sci. 1971, 10, 481–490. [Google Scholar] [CrossRef] [PubMed]
- Khavari, K.A. Effects of intraventricular administration of carbachol, atropine, and scopolamine on water intake of the rat. Life Sci. 1968, 7, 971–977. [Google Scholar] [CrossRef] [PubMed]
- Khavari, K.A.; Heebink, P.; Traupmann, J. Effects of intraventricular carbachol and eserine on drinking. Psychonom. Sci. 1968, 11, 93–94. [Google Scholar] [CrossRef] [Green Version]
- Myers, R.D.; Cicero, T.J. Are the cerebral ventricles involved in thirst produced by a cholinergic substance? Psychonom. Sci. 1968, 10, 93–94. [Google Scholar] [CrossRef] [Green Version]
- Miller, N.E. Some psychophysiological studies of motivation and of the behavioural effects of illness. Bull. Brit. Psychol. Soc. 1964, 17, 1–20. [Google Scholar]
- Avrith, D.B.; Fitzsimons, J.T. Increased sodium appetite in the rat induced by intracranial administration of components of the renin-angiotensin system. J. Physiol. 1980, 301, 349–364. [Google Scholar] [CrossRef] [Green Version]
- Spencer, J.; Holloway, F.A. Differentiation between carbachol and eserine during deprivation-induced drinking in the rat. Psychonom. Sci. 1972, 28, 16–18. [Google Scholar] [CrossRef] [Green Version]
- Fitzsimons, J.T. The renin-angiotensin system and drinking behavior. Prog. Brain Res. 1975, 42, 215–233. [Google Scholar] [PubMed]
- Coble, J.P.; Grobe, J.L.; Johnson, A.K.; Sigmund, C.D. Mechanisms of brain renin angiotensin system-induced drinking and blood pressure: Importance of the subfornical organ. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2015, 308, R238–R249. [Google Scholar] [CrossRef] [PubMed]
- Fitzsimons, J.T.; Setler, P.E. The relative importance of central nervous catecholaminergic and cholinergic mechanisms in drinking in response to angiotensin and other thirst stimuli. J. Physiol. 1975, 250, 613–631. [Google Scholar] [CrossRef] [Green Version]
- Hoffman, W.E.; Phillips, M.I. Independent receptors for pressor and drinking responses to central injections of angiotensin II and carbachol. Brain Res. 1977, 124, 305–315. [Google Scholar] [CrossRef]
- Nicoletta, P.; Pochiero, M.; Losi, E.; Caputi, A.P. Interaction between renin-angiotensin system and cholinergic system in brain. Neuropharmacology 1983, 22, 1269–1275. [Google Scholar] [CrossRef]
- Stein, G.W.; Levitt, R.A. Lesions effects on cholinergically elicited drinking in the rat. Physiol. Behav. 1971, 7, 517–522. [Google Scholar] [CrossRef]
- Levitt, R.A.; Fisher, A.E. Anticholinergic blockade of centrally induced thirst. Science 1966, 154, 520–521. [Google Scholar] [CrossRef]
- Buerger, P.B.; Levitt, R.A.; Irwin, D.A. Chemical stimulation of the brain: Relationship between neural activity and water ingestion in the rat. J. Comp. Physiol. Psychol. 1973, 82, 278–285. [Google Scholar] [CrossRef]
- Satoh, K.; Fibiger, H.C. Cholinergic neurons of the laterodorsal tegmental nucleus: Efferent and afferent connections. J. Comp. Neurol. 1986, 253, 277–302. [Google Scholar] [CrossRef]
- Cornwall, J.; Cooper, J.D.; Phillipson, O.T. Afferent and efferent connections of the laterodorsal tegmental nucleus in the rat. Brain Res. Bull. 1990, 25, 271–284. [Google Scholar] [CrossRef] [PubMed]
- Woolf, N.J.; Harrison, J.B.; Buchwald, J.S. Cholinergic neurons of the feline pontomesencephalon. II. Ascending anatomical projections. Brain Res. 1990, 520, 55–72. [Google Scholar] [CrossRef] [PubMed]
- Semba, K.; Fibiger, H.C. Afferent connections of the laterodorsal and pedunculopontine nuclei in the rat: A retro- and antero-grade transport and immunohistochemical study. J. Comp. Neurol. 1992, 323, 387–410. [Google Scholar] [CrossRef] [PubMed]
- Gilmor, M.L.; Nash, N.R.; Roghani, A.; Edwards, R.H.; Yi, H.; Hersch, S.M.; Levey, A.I. Expression of the putative vesicular acetylcholine transporter in rat brain and localization in cholinergic synaptic vesicles. J. Neurosci. 1996, 16, 2179–2190. [Google Scholar] [CrossRef] [Green Version]
- Gilmor, M.L.; Counts, S.E.; Wiley, R.G.; Levey, A.I. Coordinate expression of the vesicular acetylcholine transporter and choline acetyltransferase following septohippocampal pathway lesion. J. Neurochem. 1998, 71, 2411–2420. [Google Scholar] [CrossRef]
- Arvidsson, U.; Riedl, M.; Elde, R.; Meister, B. Vesicular acetylcholine transporter (VAChT) protein: A novel and unique marker for cholinergic neurons in the central and peripheral nervous systems. J. Comp. Neurol. 1997, 378, 454–467. [Google Scholar] [CrossRef]
- Hallanger, A.E.; Wainer, B.H. Ascending projections from the pedunculopontine tegmental nucleus and the adjacent mesopontine tegmentum in the rat. J. Comp. Neurol. 1988, 274, 483–515. [Google Scholar] [CrossRef]
- Bihari, A.; Hrycyshyn, A.W.; Brudzynski, S.M. Role of the mesolimbic cholinergic projection to the septum in the production of 22 kHz alarm calls in rats. Brain Res. Bull. 2003, 60, 263–274. [Google Scholar] [CrossRef]
- Consolo, S.; Bertorelli, R.; Forloni, G.L.; Butcher, L.L. Cholinergic neurons of the pontomesencephalic tegmentum release acetylcholine in the basal nuclear complex of freely moving rats. Neuroscience 1990, 37, 717–723. [Google Scholar] [CrossRef]
- Parent, M.; Descarries, L. Acetylcholine innervation of the adult rat thalamus: Distribution and ultrastructural features in dorsolateral geniculate, parafascicular, and reticular thalamic nuclei. J. Comp. Neurol. 2008, 511, 678–691. [Google Scholar] [CrossRef]
- Kita, T.; Kita, H. Cholinergic and non-cholinergic mesopontine tegmental neurons projecting to the subthalamic nucleus in the rat. Eur. J. Neurosci. 2011, 33, 433–443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oda, S.; Kuroda, M.; Kakuta, S.; Tanihata, S.; Ishikawa, Y.; Kishi, K. Ultrastructure of ascending cholinergic terminals in the anteroventral thalamic nucleus of the rat: A comparison with the mammillothalamic terminals. Brain Res. Bull. 2003, 59, 473–483. [Google Scholar] [CrossRef] [PubMed]
- Houser, C.R. Cholinergic synapses in the central nervous system: Studies of the immunocytochemical localization of choline acetyltransferase. J. Electron. Microsc. Tech. 1990, 15, 2–19. [Google Scholar] [CrossRef]
- Brodal, A. The Reticular Formation of the Brain Stem; Anatomical Aspects and Functional Correlations; Oliver and Boyd: Edinburgh, UK, 1957; p. 87. [Google Scholar]
- Brodal, A. Neurological Anatomy in Relation to Clinical Medicine, 3rd ed.; Oxford University Press: New York, NY, USA, 1981; p. 1053. [Google Scholar]
- Imon, H.; Ito, K.; Dauphin, L.; McCarley, R.W. Electrical stimulation of the cholinergic laterodorsal tegmental nucleus elicits scopolamine-sensitive excitatory postsynaptic potentials in medial pontine reticular formation neurons. Neuroscience 1996, 74, 393–401. [Google Scholar] [CrossRef] [PubMed]
- Wilson, P.M. A photographic perspective on the origins, form, course and relations of the acetylcholinesterase-containing fibres of the dorsal tegmental pathway in the rat brain. Brain Res. 1985, 357, 85–118. [Google Scholar] [CrossRef] [PubMed]
- Surkis, S.; Taylor, B.; Peskin, C.S.; Leonard, C.S. Quantitative morphology of physiologically identified and intracellularly labeled neurons from the guinea-pig laterodorsal tegmental nucleus In Vitro. Neuroscience 1996, 74, 375–392. [Google Scholar] [CrossRef] [PubMed]
- Wilson, J.R.; Manning, K.A.; Forestner, D.M.; Counts, S.E.; Uhlrich, D.J. Comparison of cholinergic and histaminergic axons in the lateral geniculate complex of the macaque monkey. Anat. Rec. 1999, 255, 295–305. [Google Scholar] [CrossRef]
- Shute, C.C.; Lewis, P.R. The ascending cholinergic reticular system: Neocortical, olfactory, and subcortical projections. Brain 1967, 90, 497–520. [Google Scholar] [CrossRef]
- Lewis, P.R.; Shute, C.C. The cholinergic limbic system: Projections to hippocampal formation, medial cortex, nuclei of the ascending cholinergic reticular system, and the subfornical organ and supra-optic crest. Brain 1967, 90, 521–540. [Google Scholar] [CrossRef]
- Jones, B.E. Reticular formation: Cytoarchitecture, transmitters, and projections. In The Rat Nervous System, 2nd ed.; Paxinos, G., Ed.; Academic Press: San Diego, CA, USA, 1995; pp. 155–171. [Google Scholar]
- Vincent, R.S. The ascending reticular activating system—From aminergic to nitric oxide. J. Chem. Neuroanat. 2000, 18, 23–30. [Google Scholar] [CrossRef]
- Karczmar, A.G. Cholinergic cells and pathways. In Exploring the Vertebrate Central Cholinergic Nervous System; Karczmar, A.G., Ed.; Springer Science+Business Media LLC: Boston, MA, USA, 2007; Chapter 2; pp. 33–79. [Google Scholar]
- Mesulam, M.-M.; Mufson, E.J.; Wainer, B.H.; Levey, A.I. Central cholinergic pathways in the rat: An overview based on an alternative nomenclature (Ch1–Ch6). Neuroscience 1983, 10, 1185–1201. [Google Scholar] [CrossRef] [PubMed]
- Mesulam, M.M.; Geula, C.; Bothwell, M.A.; Hersh, L.B. Human reticular formation: Cholinergic neurons of the pedunculopontine and laterodorsal tegmental nuclei and some cytochemical comparisons to forebrain cholinergic neurons. J. Comp. Neurol. 1989, 283, 611–633. [Google Scholar] [CrossRef] [PubMed]
- Ramón-Molinar, E.; Nauta, W.J.H. The isodendritic core of the brainstem. J. Comp. Neurol. 1966, 126, 311–336. [Google Scholar]
- Faraguna, U.; Ferrucci, M.; Giorgi, F.S.; Fornai, F. Editorial: The functional anatomy of the reticular formation. Front. Neuroanat. 2019, 13, 55. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.-L.; Morales, M. Pedunculopontine and laterodorsal tegmental nuclei contain distinct populations of cholinergic, glutamatergic, and GABAergic neurons in the rat. Eur. J. Neurosci. 2009, 29, 340–358. [Google Scholar] [CrossRef] [Green Version]
- Zhao, P.; Wang, H.; Li, A.; Sun, Q.; Jiang, T.; Li, X.; Gong, H. The mesoscopic connectome of the cholinergic pontomesencephalic tegmentum. Front. Neuroanat. 2022, 16, 843303. [Google Scholar] [CrossRef]
- Jones, B.E. Arousal systems. Front. Biosci. 2003, 8, s438–s451. [Google Scholar] [CrossRef]
- Lin, J.-S.; Anaclet, C.; Sergeeva, O.A.; Haas, H.L. The waking brain: An update. Cell. Mol. Life Sci. 2011, 68, 2499–2512. [Google Scholar] [CrossRef] [Green Version]
- Hong, R.Y.; Lee, H.S. Retrograde study of projections from the tuberomammillary nucleus to the mesopontine cholinergic complex in the rat. Brain Res. 2011, 1383, 169–178. [Google Scholar] [CrossRef]
- Bueno, D.; Lima, L.B.; Souza, R.; Gonçalves, L.; Leite, F.; Souza, S.; Furigo, I.C.; Donato, K., Jr.; Metzger, M. Connections of the laterodorsal tegmental nucleus with the habenular-interpeduncular-raphe system. J. Comp. Neurol. 2019, 527, 3046–3072. [Google Scholar] [CrossRef]
- Fuller, P.M.; Sherman, D.; Pedersen, N.P.; Saper, C.B.; Lu, J. Reassessment of the structural basis of the ascending arousal system. J. Comp. Neurol. 2011, 519, 933–956. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Routtenberg, A. The two-arousal hypothesis: Reticular formation and limbic system. Psychol. Rev. 1968, 75, 51–80. [Google Scholar] [CrossRef] [PubMed]
- Weil, J.L. A Neurophysiological Model of Emotional and Intentional Behavior; Charles C Thomas: Springfield, IL, USA, 1974; p. 189. [Google Scholar]
- Robbins, T.W.; Granon, S.; Muir, J.L.; Durantou, F.; Harrison, A.; Everitt, B.J. Neural systems underlying arousal and attention. Implications for drug abuse. Ann. N. Y. Acad. Sci. 1998, 846, 222–237. [Google Scholar] [CrossRef] [PubMed]
- Marrocco, R.T.; Witte, E.A.; Davidson, M.C. Arousal systems. Curr. Opin. Neurobiol. 1994, 4, 166–170. [Google Scholar] [CrossRef]
- Berlucchi, G. One or many arousal systems? Reflections on some of Giuseppe Moruzzi’s foresights and insights about the intrinsic regulation of brain activity. Arch. Ital. Biol. 1997, 135, 5–14. [Google Scholar]
- Berlucchi, G. Integration of brain activities: The roles of the diffusely projecting brainstem systems and the corpus callosum. Brain Res. Bull. 1999, 50, 389–390. [Google Scholar] [CrossRef]
- Robbins, T.W. Arousal systems and attentional processes. Biol. Psychol. 1997, 45, 57–71. [Google Scholar] [CrossRef]
- Grossman, S.P. Modification of emotional behavior by intracranial administration of chemicals. In Physiological Correlates of Emotion; Black, P., Ed.; Academic Press: New York, NY, USA, 1970; Chapter 5; pp. 73–93. [Google Scholar]
- Scherer, K.R.; Johnstone, T.; Klasmeyer, G. Vocal expression of emotion. In Handbook of Affective Sciences; Davidson, R.J., Scherer, K.R., Goldsmith, H.H., Eds.; Oxford University Press: Oxford, UK, 2003; Chapter 23; pp. 433–480. [Google Scholar]
- Brudzynski, S.M. Communication of emotions in animals. In Encyclopedia of Behavioral Neuroscience; Koob, G.F., Le Moal, M., Thompson, R.F., Eds.; Academic Press: Cambridge, MA, USA; Elsevier: Amsterdam, The Netherlands, 2010; Chapter 88; Volume 1, pp. 302–307. [Google Scholar]
- Brudzynski, S.M. (Ed.) Handbook of Ultrasonic Vocalization. A Window into the Emotional Brain. Handbook in Bahavioral Neuroscience; Academic Press: Cambridge, MA, USA; Elsevier B.V.: London, UK, 2018; Volume 25, p. 553. [Google Scholar]
- Burgdorf, J.S.; Brudzynski, S.M.; Moskal, J.R. Using rat ultrasonic vocalization to study the neurobiology of emotion: From basic science to the development of novel therapeutics for affective disorders. Curr. Opin. Neurobiol. 2020, 60, 192–200. [Google Scholar] [CrossRef]
- Brudzynski, S.M. Ultrasonic vocalization induced by intracerebral carbachol in rats: Localization and a dose-response study. Behav. Brain Res. 1994, 63, 133–143. [Google Scholar] [CrossRef]
- Thompson, B.; Leonard, K.C.; Brudzynski, S.M. Amphetamine-induced 50 kHz calls from rat nucleus accumbens: A quantitative mapping study and acoustic analysis. Behav. Brain Res. 2006, 168, 64–73. [Google Scholar] [CrossRef]
- Brudzynski, S.M. Ultrasonic calls of rats as indicator variables of negative or positive states. Acetylcholine-dopamine interaction and acoustic coding. Behav. Brain Res. 2007, 182, 261–273. [Google Scholar] [CrossRef] [PubMed]
- Brudzynski, S.M. Ethotransmission: Communication of emotional states through ultrasonic vocalization in rats. Curr. Opin. Neurobiol. 2013, 23, 310–317. [Google Scholar] [CrossRef] [PubMed]
- Brudzynski, S.M. The ascending mesolimbic cholinergic system—A specific division of the reticular activating system involved in the initiation of negative emotional states. J. Mol. Neurosci. 2014, 53, 436–445. [Google Scholar] [CrossRef] [PubMed]
- Brudzynski, S.M.; Kadishevitz, L.; Fu, X.-W. Mesolimbic component of the ascending cholinergic pathways: Electrophysiological-pharmacological study. J. Neurophysiol. 1998, 79, 1675–1686. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.-W.; Burke, M.W.; Calakos, N.; Beaulieu, J.-M.; Vaucher, E. Confocal analysis of cholinergic and dopaminergic inputs onto pyramidal cells in the prefrontal cortex of rodents. Front. Neuroanat. 2010, 4, 21. [Google Scholar] [CrossRef]
- Brudzynski, S.M.; Iku, A.; Harness (neé Savoy), A. Activity of cholinergic neurons in the laterodorsal tegmental nucleus during emission of 22 kHz vocalization in rats. Behav. Brain Res. 2011, 225, 276–283. [Google Scholar] [CrossRef]
- Brudzynski, S.M.; Eckersdorf, B.; Gołębiewski, H. Regional specificity of the emotional-aversive response induced by carbachol in the cat brain. A quantitative mapping study. J. Psychiat. Neurosci. 1995, 20, 119–132. [Google Scholar]
- Losier, B.J.; Semba, K. Dual projections of single cholinergic and aminergic brainstem neurons to the thalamus and basal forebrain in the rat. Brain Res. 1993, 604, 41–52. [Google Scholar] [CrossRef]
- Nauta, W.J. Hippocampal projections and related neural pathways to the midbrain in the cat. Brain 1958, 81, 319–340. [Google Scholar] [CrossRef]
- Brudzynski, S.M. Carbachol-induced agonistic behavior in cats: Aggressive or defensive response? Acta Neurobiol. Exp. (Wars.) 1981, 41, 15–32. [Google Scholar]
- Brudzynski, S.M.; Eckersdorf, B. Inhibition of locomotor activity during cholinergically induced emotional-aversive response in the cat. Behav. Brain Res. 1984, 14, 247–253. [Google Scholar] [CrossRef] [PubMed]
- Brudzynski, S.M.; Mogenson, G.J. Decrease of locomotor activity by injections of carbachol into the anterior hypothalamic/preoptic area of the rat. Brain Res. 1986, 376, 38–46. [Google Scholar] [CrossRef] [PubMed]
- Brudzynski, S.M.; Bihari, F. Ultrasonic vocalization in rats produced by cholinergic stimulation of the brain. Neurosci. Lett. 1990, 109, 222–226. [Google Scholar] [CrossRef] [PubMed]
- Brudzynski, S.M. Emission of 22 kHz vocalizations in rats as an evolutionary equivalent of human crying: Relationship to depression. Behav. Brain Res. 2019, 363, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.Y.; Wei, E.T. Mechanisms underlying the pressor responses to acute and chronic intraventricular administration of carbachol in the rat. J. Pharm. Exp. Ther. 1984, 228, 354–363. [Google Scholar]
- Martin, J.R. Mechanisms of the cardiovascular response to posterior hypothalamic nucleus administration of carbachol. J. Cardiovasc. Pharm. 1996, 27, 891–900. [Google Scholar] [CrossRef]
- Alves, F.H.F.; Crestani, C.C.; Resstel, L.B.M.; Corrêa, F.M.A. Cardiovascular effects of carbachol microinjected into the bed nucleus of the stria terminalis of the rat brain. Brain Res. 2007, 1143, 161–168. [Google Scholar] [CrossRef]
- Shimazu, T.; Matsushita, H.; Ishikawa, K. Cholinergic stimulation of rat hypothalamus: Effects on liver glycogen synthesis. Science 1976, 194, 535–536. [Google Scholar] [CrossRef]
- Korner, M.; Ramu, A. Central hyperglycemic effect of carbachol in rats. Europ. J. Pharm. 1976, 35, 207–210. [Google Scholar] [CrossRef]
- Bugajski, J.; Gadek-Michalska, A.; Borycz, J.; Bugajski, A.J.; Głód, R. Histaminergic components in carbachol-induced pituitary-adrenocortical activity. J. Physiol. Pharm. 1994, 45, 419–428. [Google Scholar]
- Bugajski, J.; Borycz, J.; Gadek-Michalska, A. Involvement of the central noradrenergic system in cholinergic stimulation of the pituitary-adrenal response. J. Physiol. Pharm. 1998, 49, 285–292. [Google Scholar]
- Miles, P.D.; Yamatani, K.; Brown, M.R.; Lickley, H.L.; Vranic, M. Intracerebroventricular administration of somatostatin octapeptide counteracts the hormonal and metabolic responses to stress in normal and diabetic dogs. Metabolism 1994, 43, 1134–1143. [Google Scholar] [CrossRef] [PubMed]
- Avery, D.D. Thermoregulatory effects of intrahypothalamic injections of adrenergic and cholinergic substances at different environmental temperatures. J. Physiol. 1972, 220, 257–266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poole, S.; Stephenson, J.D. Effects of noradrenaline and carbachol on temperature regulation of rats. Br. J. Pharm. 1979, 65, 43–51. [Google Scholar] [CrossRef] [Green Version]
- Ezzatpanah, S.; Babapour, V.; Sadeghi, B.; Haghparast, A. Chemical stimulation of the lateral hypothalamus by carbachol attenuated the formalin-induced pain behaviors in rats. Pharm. Biochem. Behav. 2015, 129, 105–110. [Google Scholar] [CrossRef]
- Klamt, J.G.; Prado, W.A. Antinociception and behavioral changes induced by carbachol microinjected into identified sites of the rat brain. Brain Res. 1991, 549, 9–18. [Google Scholar] [CrossRef]
- Haghparast, A.; Shafiei, I.; Alizadeh, A.-M.; Ezzatpanah, S.; Haghparast, A. Blockade of the orexin receptors in the CA1 region of hippocampus decreased the lateral hypothalamic-induced antinociceptive responses in the model of orofacial formalin test in the rats. Peptides 2018, 99, 217–222. [Google Scholar] [CrossRef]
- De Luca Júnior, L.A.; Saad, W.A.; Camargo, L.A.; Renzi, A.; Menani, J.V.; Saad, W.A. Carbachol injection into the medial preoptic area induces natriuresis, kaliuresis and antidiuresis in rats. Neurosci. Lett. 1989, 105, 333–339. [Google Scholar] [CrossRef]
- Sá, J.M.; Barros, M.C.; Melo, M.R.; Colombari, E.; Menani, J.V.; Colombari, D.S.A. Endogenous hydrogen peroxide affects antidiuresis to cholinergic activation in the medial septal area. Neurosci. Lett. 2019, 694, 51–56. [Google Scholar] [CrossRef]
- Evered, M.D.; Robinson, M.M.; Rose, P.A. Effect of arterial pressure on drinking and urinary responses to angiotensin II. Am. J. Physiol. 1988, 254, R69–R74. [Google Scholar] [CrossRef]
- Thunhorst, R.L.; Beltz, T.G.; Johnson, A.K. Drinking and arterial blood pressure responses to ANG II in young and old rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2010, 299, R1135–R1141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blanchard, C.D.; Blanchard, R.J. Affect and aggression: An animal model applied to human behavior. In Advances in the Study of Aggression; Blanchard, R.J., Blanchard, C.D., Eds.; Academic Press, Inc.: Orlando, FL, USA, 1984; Volume 1, pp. 2–63. [Google Scholar]
- Gross, M.; Pinhasov, A. Chronic mild stress in submissive mice: Marked polydipsia and social avoidance without hedonic deficit in the sucrose preference test. Behav. Brain Res. 2016, 298, 25–34. [Google Scholar] [CrossRef] [PubMed]
- Goto, T.; Kubota, Y.; Tanaka, Y.; Iio, W.; Moriya, N.; Toyoda, A. Subchronic and mild social defeat stress accelerates food intake and body weight gain with polydipsia-like features in mice. Behav. Brain Res. 2014, 270, 339–348. [Google Scholar] [CrossRef] [PubMed]
- Goto, T.; Toyoda, A. A mouse model of subchronic and mild social defeat stress for understanding stress-induced behavioral and physiological deficits. J. Vis. Exp. 2015, 105, 52973. [Google Scholar] [CrossRef] [Green Version]
- Valente, S.; Fisher, D. Recognizing and managing psychogenic polydipsia in mental health. J. Nurse Pract. 2010, 6, 546–550. [Google Scholar] [CrossRef]
- Ahmadi, L.; Goldman, M.B. Primary polydipsia: Update. Best Pract. Res. Clin. Endocrinol. Metab. 2020, 34, 101469. [Google Scholar] [CrossRef]
- Hew-Butler, T.; Smith-Hale, V.; Pollard-McGrandy, A.; VanSumeren, M. Of mice and men—The physiology, psychology, and pathology of overhydration. Nutrients 2019, 11, 1539. [Google Scholar] [CrossRef] [Green Version]
- Rizzuto, W.; Shemery, N.; Bukowski, J. Acute water intoxication with resultant hypo-osmolar hyponatremia complicated by hypotension secondary to diffuse third-spacing. Cureus 2021, 13, e18410. [Google Scholar] [CrossRef]
- Sailer, C.; Winzeler, B.; Christ-Crain, M. Primary polydipsia in the medical and psychiatric patient: Characteristics, complications and therapy. Swiss Med. Wkly. 2017, 147, w14514. [Google Scholar]
- Silkstone, M.; Brudzynski, S.M. The antagonistic relationship between aversive and appetitive emotional states in rats as studied by pharmacologically-induced ultrasonic vocalization from the nucleus accumbens and lateral septum. Pharm. Biochem. Behav. 2019, 181, 77–85. [Google Scholar] [CrossRef]
- Omelchenko, N.; Sesack, S.R. Cholinergic axons in the rat ventral tegmental area synapse preferentially onto mesoaccumbens dopamine neurons. J. Comp. Neurol. 2006, 494, 863–875. [Google Scholar] [CrossRef] [PubMed]
- Forster, G.L.; Blaha, C.D. Laterodorsal tegmental stimulation elicits dopamine efflux in the rat nucleus accumbens by activation of acetylcholine and glutamate receptors in the ventral tegmental area. Eur. J. Neurosci. 2000, 12, 3596–3604. [Google Scholar] [CrossRef] [PubMed]
- Gronier, B.; Perry, K.W.; Rasmussen, K. Activation of the mesocorticolimbic dopaminergic system by stimulation of muscarinic cholinergic receptors in the ventral tegmental area. Psychopharmacology 2000, 147, 347–355. [Google Scholar] [CrossRef]
- Silkstone, M.; Brudzynski, S.M. Dissimilar interaction between dopaminergic and cholinergic systems in the initiation of emission of 50-kHz and 22-kHz vocalizations. Pharm. Biochem. Behav. 2020, 188, 172815. [Google Scholar] [CrossRef] [PubMed]
- Yeomans, J.S. Muscarinic receptors in brain stem and mesopontine cholinergic arousal functions. Handb. Exp. Pharm. 2012, 208, 243–259. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brudzynski, S.M. Water Drinking Behavior Associated with Aversive Arousal in Rats: An Integrative Approach. Brain Sci. 2023, 13, 60. https://doi.org/10.3390/brainsci13010060
Brudzynski SM. Water Drinking Behavior Associated with Aversive Arousal in Rats: An Integrative Approach. Brain Sciences. 2023; 13(1):60. https://doi.org/10.3390/brainsci13010060
Chicago/Turabian StyleBrudzynski, Stefan M. 2023. "Water Drinking Behavior Associated with Aversive Arousal in Rats: An Integrative Approach" Brain Sciences 13, no. 1: 60. https://doi.org/10.3390/brainsci13010060
APA StyleBrudzynski, S. M. (2023). Water Drinking Behavior Associated with Aversive Arousal in Rats: An Integrative Approach. Brain Sciences, 13(1), 60. https://doi.org/10.3390/brainsci13010060