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Abstract: Objectives: Hemispherotomy (HT) is a surgical option for treatment of drug-resistant
seizures due to hemispheric structural lesions. Factors affecting seizure outcome have not been fully
clarified. In our study, we used a brain Machine Learning (ML) approach to evaluate the possible role
of Inter-hemispheric EEG Connectivity (IC) in predicting post-surgical seizure outcome. Methods:
We collected 21 pediatric patients with drug-resistant epilepsy; who underwent HT in our center from
2009 to 2020; with a follow-up of at least two years. We selected 5-s windows of wakefulness and sleep
pre-surgical EEG and we trained Artificial Neuronal Network (ANN) to estimate epilepsy outcome.
We extracted EEG features as input data and selected the ANN with best accuracy. Results: Among
21 patients, 15 (71%) were seizure and drug-free at last follow-up. ANN showed 73.3% of accuracy,
with 85% of seizure free and 40% of non-seizure free patients appropriately classified. Conclusions:
The accuracy level that we reached supports the hypothesis that pre-surgical EEG features may have
the potential to predict epilepsy outcome after HT. Significance: The role of pre-surgical EEG data
in influencing seizure outcome after HT is still debated. We proposed a computational predictive
model, with an ML approach, with a high accuracy level.

Keywords: hemispherotomy; seizure prediction; outcome; brain machine learning

1. Introduction

Hemispherotomy (HT) is a surgical option to treat refractory seizures due to hemi-
spheric structural lesions. The purpose of HT is to functionally isolate the epileptogenic
zone, which is widely diffused throughout the hemisphere [1]. Seizures may arise from
different regions within the same hemisphere, revealing an intrinsic multifocality [2].

Epilepsies associated with hemispheric structural lesions can be seen in the context
of specific diseases, such as Sturge–Weber syndrome (SWS), neurocutaneous diseases [3],
Rasmussen syndrome, hemiplegia-hemiconvulsion-epilepsy syndrome (HHE), isolated
hemispheric malformations of cortical development, vascular ischemic/hemorrhagic event,
trauma or infectious events [4].

Patients with such lesions usually may manifest with hemiparesis, delayed neurocog-
nitive development and drug-resistant epilepsy. Epilepsy surgery currently represents the
most effective therapeutic option [5].
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Hemispheric surgery is associated with high seizure freedom rates, ranging from 50%
to 90% [5–10], and relatively low complication rates in specialized centers [6,10]. The most
significant predictive factor of worse outcome after HT is developmental etiology, including
malformations of cortical development [3,11], whereas type of surgical procedure does
not influence the outcome [12–14]. Beside incomplete hemispheric disconnection, it is not
fully elucidated why some patients do have seizures persistence: the presence of bilateral
pathologic findings [3,6,15], contralateral EEG [3,16–18] and neuroimaging abnormalities
have been associated with a worse seizure outcome after surgery [6].

Despite normal contralateral MRI and complete disconnection on post-operative MRI,
still a substantial subset of patients do not achieve seizure freedom [3]. It still remains
unclear, which is the best combination of preoperative characteristics associated with best
chance of seizure freedom following HT.

Recently, a clinical scoring to predict seizure freedom in children undergoing cere-
bral hemispheric surgery has been proposed [15]. It comprises presurgical data (age at
seizure onset, generalized seizure semiology), underlying pathologic substrate (stroke vs.
non-stroke etiology), presence of contralateral interictal FDG-PET hypometabolism, and
history of previous resective surgery. However, the role of presurgical neurophysiologic
data in influencing seizure outcome is still debated [3,6,16].

Interhemispheric Connectivity (IC) in EEG signals has been extensively analyzed in
generalized epilepsies [19–22], vascular injuries [23] and in psychiatric disorders [24–26].
IC has never been studied as a factor influencing seizure outcome after hemispheric surgery,
and we aimed to study this parameter through an automated method.

Machine Learning (ML) provides an opportunity to objectively manipulate multi-
modal data, allowing for the production of algorithms, and it therefore has been widely
applied also for medical purposes [27]. ML techniques, including Artificial Neural Net-
works (ANNs), have been used in the field of epilepsy research for automated epilepsy
diagnosis [28,29], seizure lateralization [30,31], and prediction of postsurgical seizure
freedom [32–36].

In this study, we aimed to use ANN as computational ML technique to investigate IC.
We compared selected pre-surgical EEG features extracted from both hemispheres, pursuing
the hypothesis that an increased IC may be a predicting factor for seizure recurrence
after surgery.

2. Methods
2.1. Patients

We retrospectively recruited all pediatric patients (<18 years) who underwent HT
for drug-resistant epilepsy from January 2009 to April 2020, in Bambino Gesù Children
Hospital, Rome, Italy. All patients in our center underwent vertical parasagittal HT, as
previously published [12].

A total of 30 patients have been included in this study: we collected clinical, neurora-
diological, and neurophysiological data.

We filtered patients according to the following inclusion criteria:

- Available pre-surgical clinical and EEG data during wakefulness and sleep;
- Electroclinic concordance: unilateral seizure onset concordant with side of the lesion

at brain MR;
- Absence of signal or morphological abnormalities within the contralateral hemisphere

on pre-surgical MR;
- Complete disconnection evaluated at post-surgical brain MR, after multidisciplinary

re-evaluation;
- At least two years of post-surgical follow-up;
- No previous surgeries for the treatment of epilepsy.

Out of 30 patients extracted from our database, we included 21 patients in this study.
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2.2. Presurgical Assessment

All patients underwent routine pre-surgical evaluation, including full clinical his-
tory and neurological examination, visual analysis of long-term video-EEG monitoring
with multiple typical seizures recorded, and three Tesla brain MR with epilepsy protocol.
Seizure were classified according to the ILAE Position Paper for Classification and Termi-
nology [37]. Seizure outcome was recorded using the Engel classification [38]. Potential
surgical candidates were discussed during multi-disciplinary epilepsy surgery meetings
to determine suitability for surgery. The decision to offer surgery was based on predicted
seizure outcome from pre-surgical data and surgical risks.

2.3. EEG Data Recording, Acquisition and Processing

Our study work-up included four stages: EEG recordings and acquisition, signal
processing, EEG features extraction and classification through Artificial Neural Network,
as shown in Figure 1.
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Figure 1. Diagram of the proposed surgery outcome prediction method of our study.

EEG recordings were obtained with a video-EEG monitoring system (Micromed,
Treviso, Italy) at the Rare and Complex Epilepsy unit of the Bambino Gesù Children
Hospital in Rome, Italy. The 10–20 electrode montage was used for scalp recordings.
Monopolar recordings were obtained with a sampling frequency of 256 Hz, band-pass
filtered at between 0.5 and 45 Hz (4th order Butterworth filter) and 16-bit resolution. The
reference electrode was set on G2. The extraction of EEG data was performed primarily by
two expert neurophysiologists (CP, GCP) through visual inspection.

Before filtering, EEG signals are retained to their initial raw format and two 60-s
segments have been extracted for both wakefulness (resting state with eyes closed) and sleep
(sleep stage II) for every patient, considering the most artifact and epileptic abnormalities
free fragments. For each patient, a 120-s-length EEG was extracted.

The continuous long-term raw EEG data were first segmented into five-s non-overlapping
windows [39]. No additional artifact suppression methods were employed.

2.4. EEG Features Extraction and Classification through Artificial Neural Network (ANN)

We used, as input of our ANN, a set of EEG features during wakefulness and sleep,
from 5-s non-overlapping windows of 19 electrodes EEG recordings, removing midline
electrodes.

To quantify EEG signal, we extracted these features, shown in Table 1:

- Power Spectral Density (PSD) [40], related to frequency domain;
- Hjorth parameters, including Mobility, Complexity and Activity [41], related to time

domain, respectively.
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Table 1. EEG features that we extracted and used for our ANN.

Type Name Description

Time Domain

Complexity
Hjorth parameters quantify the dynamical

properties of signalMobility

Activity

Frequency Domain Power Spectrum (PSD) PSD quantify the signal power associated
to specific frequency range

PSD: Power Spectrum Density.

Considering a dataset of 42 EEG segments (two segments for 21 patients), we extracted
9 EEG features (6 for PSD + 3 for Hjorth analysis) from each acquiring channel (16 electrodes)
for a total of 144 features per EEG (9 × 16). Definitively, we used 288 EEG features for
each patient.

We calculated mean values of each feature for each electrode, divided for “healthy”
and “pathological” hemisphere and sub-sequentially we calculated differences between
the two hemispheres for each feature.

We performed a feature selection, dividing our features in four different subsets, in
order to reduce input data, prevent overfitting and study the best adaptation of our model.
We used the following features datasets:

• Dataset 1: all features;
• Dataset 2: all features calculated only in the total band frequency [0.5–45 Hz];
• Dataset 3: frequency-domain features (PSD) for every signal band;
• Dataset 4: time-domain features (Hjorth parameters) for every band;
• The Mean Square Error (MSE) was calculated to select the most accurate training set.

We used the inter-hemispheric difference of connectivity metrics as input in ANN,
implemented using MATLAB R2019a software package, to estimate epilepsy outcome after
hemispherotomy (seizure free SF vs. non-seizure free NSF).

ANN architecture is shown in Figure 2.
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We tested nine different network topologies as a predictive model. These architectures
were implemented by varying the number of Hidden Layers (HL) and the number of
Neurons (N) populating each HL.

The number of HL varied in the range 1–2, while the number N in each HL varied
basing on the number of N in the first HL. N was set to 5 difference values (8, 5, 4, 3 and 2,
respectively) and the number of nodes in the second HL (when defined) was the same of
the N of the first HL.

The maximum number of N (8) was estimated in according to previous study [42].
Table 2 shows the structure of the nine architectures used.

Table 2. Nine different architectures of ANN (from I to IX) defined by a specific combination of
Hidden Layers (HL) and number of Neurons (N).

ANNs HL [1–3] N Architecture

I 1 8 8

II 2 8 × 2 8 + 8

III 3 5 5

IV 1 5 × 2 5 + 5

V 2 4 4

VI 3 4 × 2 4 + 4

VII 1 3 3

VIII 2 3 × 2 3 + 3

IX 3 2 2

To verify the repeatability of our results we used a cross-validation scheme to train
and test each ANN. All networks were trained 20 times by using a random 70% as the
training test, a random 15% as validation set, and a random 15% as testing set. Accordingly,
the prediction accuracy was computed as the average of 20 iterations.

A Confusion Matrix (CM) 2 × 2 was calculated for each ANN for 20 iterations and the
mean of 20 CMs was provided for each network topology. A performance parameter (P)
was calculated as the mean (%) of the elements on the diagonal of these CMs, where the
100% indicates the absence of misclassification. We selected the very architecture with the
highest P (%) and the fastest computational speed.

3. Results
3.1. Clinical Results

Following the inclusion criteria, out of 30 patients extracted from our database, we
included 21 patients in this study. Nine patients were excluded, due to incomplete EEG
dataset, bilateral MR abnormalities or previous epilepsy surgery. Clinical, demographic
and epileptological data of our patient cohort are shown in Table 3.

Among 21 patients, 15 (71%) were seizure and drug-free at last follow-up (Engel IA).
Median follow-up duration was 5.1 years (range 2.3–12.6 years).

We observed a median age at surgery of 7 years (range 0.2–17.7 years).
Histopathological examination revealed: Rasmussen encephalitis in 4 cases (19%), mal-

formations of cortical development in 5 (24%), unspecific gliosis/inflammatory infiltrates
in 11 (52%), neuronal heterotopia in 1 (5%).
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Table 3. Clinical, demographic and epileptological data of our patient cohort. FCD: Focal Cortical
Dysplasia; HME: Hemimegaloencephaly; MCD: Malformation of Cortical Development.

Patient Age at Surgery Etiology Histology Outcome Follow-Up (Years)

1 1.3 HME FCD Ic IA 12.6

2 14.8 Rasmussen Inflammatory infiltrate IV 10.1

3 4.7 Perinatal ischemic injury Gliosis IA 4.8

4 17.7 Rasmussen Gliosis IA 7.6

5 2.9 HME FCD IIa IA 5.7

6 0.2 HME FCD IIa IA 5.8

7 4.5 Ischemic injury Gliosis IA 7.3

8 16.8 Vascular congenital abnormality Gliosis II 5.7

9 17.0 Perinatal ischemic injury Gliosis IV 7.5

10 7.0 Perinatal ischemic injury Gliosis IA 6.8

11 4.1 Hemispheric MCD FCD Ic III 4.4

12 0.2 HME FCD IIa IA 5.1

13 12.0 Post-infectious ischemic injury Gliosis IA 5.3

14 11.7 Perinatal ischemic injury Gliosis ID 4.9

15 7.0 Rasmussen Inflammatory infiltrate IA 4.8

16 8.8 Rasmussen Inflammatory infiltrate IA 2.3

17 17.9 Rasmussen Inflammatory infiltrate IA 2.9

18 0.7 Perinatal ischemic injury Gliosis IA 2.9

19 3.6 Rasmussen Inflammatory infiltrate ID 2.4

20 2.0 Hemispheric MCD Neuronal heterotopia IA 2.4

21 11.1 Rasmussen Inflammatory infiltrate IA 2.3

3.2. ANNs Performance

As concerned features selection, we found that feature dataset 1 (all features) showed
the lowest MSE (9.52%) in comparison to the other three training datasets (13.33%, 18.10%
and 14.29% for the dataset 2, 3 and 4, respectively) (Figure 3).
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Table 4 shows the prediction accuracy P (mean ± SD), with sensitivity and specificity
(mean ± SD) values, related to the nine ANN architectures only for dataset 1, that turned
out to be the best set of predictive feature for seizure outcome.

Table 4. This table shows the performance values of nine ANNs architectures. Highlighted in red,
the one with the best classification performance (II) of 73.3 %.

Architecture Accuracy (P%) Specificity (%) Sensitivity (%)

I 43.333 ± 14.91 61.000 ± 29.66 10.000 ± 22.36

II 73.333 ± 22.36 40.000 ± 54.77 40.000 ± 41.83

III 63.333 ± 29.81 86.667 ± 29.81 36.667 ± 41.50

IV 53.333 ± 18.26 83.333 ± 23.57 11.667 ± 16.24

V 66.667 ± 11.79 82.000 ± 20.49 20.000 ± 29.81

VI 63.333 ± 13.94 76.000 ± 43.36 25.000 ± 27.64

VII 63.333 ± 7.45 74.667 ± 25.56 40.000 ± 43.46

VIII 63.333 ± 24.72 63.333 ± 22.85 40.000 ± 54.77

IX 56.667 ± 9.13 65.667 ± 15.44 26.667 ± 43.46

II ANN architecture resulted to have higher mean performance value with lower
standard deviations (P = 73.33% ± 22.36%), compared with others. The “plotperform”
shows that the II ANN architecture presents a good fit of EEG data and surgery outcome
(Figure 4).
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Figure 4. The Neural Network performance plot shows that overfitting and underfitting are irrelevant
in our set. 1.4331 × 10−6 is the best performance value.

Table 5 shows the mean of CMs related to II architecture, showing that 85% of seizure
free patients and 40% of non-seizure free patients were correctly classified.
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Table 5. II architecture’s confusion matrix: the diagonal elements, highlighted in red, correspond
to the number of correctly classified entries (True Positive = 85% and True Negative = 40%). The
off-diagonal elements correspond to wrong classifications, False Negative and False Positive.

Mean of Iteration

ANNs SF (%) NSF (%)

II
SF 85 60

NSF 15 40

4. Discussion

In this study, we evaluated, the efficacy of ML technology in investigating the correla-
tion between preoperative inter-hemispheric brain connectivity and postoperative seizure
outcome, in a series of pediatric patients who underwent hemispheric disconnections for
drug-resistant epilepsy. To exclude possible bias related to bilateral pathology or surgical
failure, we selected patients with electro-radiologic concordance and complete disconnec-
tion. Interhemispheric connectivity was measured with PSD: this analysis is the most used
to extract EEG signal powers for each frequency band [43]. This method is influenced
by the time-characteristics of the window-length analysis. It may affect the accuracy of
the analysis of non-stationary signals [44]. For this purpose, we used also the Hjorth
parameters to describe the characteristics of the EEG recording simultaneously in time and
frequency domain [41]. The Hjorth analysis provides also a low computational cost [45].

Both radiologic [32,46] and intracranial neurophysiologic [47–49] ML-based studies
demonstrated that altered brain connectivity may influence postsurgical seizure outcome.
Neural network classifier examining DTI-based structural connectomes from 50 patients
with temporal lobe epilepsy yielded a positive predictive value of 88% and negative predic-
tive value of 79% in predicting Engel I outcomes [32]. Intracranial functional connectivity
showed sensitivity and specificity higher than 85% in predicting seizure freedom, with a
Support Vector Machine classifier [48,49].

Considering the homogeneous hemispheric involvement of our patients, we studied
brain connectivity as inter-hemispheric comparison between presurgical EEG data [40,41],
applying an automated ML-based method, with the hypothesis of a possible correlation
between higher IC and worse postsurgical outcome.

IC in scalp EEG has been analyzed mainly in non-surgical contexts of epilepsy so far,
such as generalized epilepsy, as childhood absence epilepsy, juvenile myoclonic epilepsy,
photosensitive epilepsy syndromes [19–22], other neurologic conditions, like vascular
injury [23] and other fields, as psychiatry [24–26]. IC has never been studied as a factor
influencing seizure outcome after hemispheric surgery.

Over the last decade, growing studies reported ML-based prediction methods to
address automated epilepsy diagnosis [28,29], seizure lateralization [30,31], and prediction
of postsurgical seizure freedom [32–36]. These studies confirmed the key-role of ML
techniques in uncovering prognostically valuable trends, on the basis of complex and
multimodal data obtained during a typical presurgical evaluation, with aim of improving
patient selection and counseling [50]. Moreover, ML was used to predict post-surgical
outcome using unimodal input data, as clinical and neuropsychologic data [36], intracranial
EEG [48,49], radiologic data [35], or multiple multimodal input data [33,36,51,52].

Despite the good accuracy in outcome prediction (usually higher than 80–90%) re-
ported in these works, they involved both adult and pediatric patients and analyzed
different surgical techniques, with strong limitation due to diffused overfitting.

In our study, we evaluated a whole pediatric cohort of patients, who underwent HT
performed with the same surgical technique, through ML-based ANN approach.

Artificial Neuronal Network is an advanced ML technology, that develops learning pat-
terns from large collections of data, by processing them through a multi-layer hierarchical
architecture [53]. To our knowledge, brain machine learning approach was never attempted
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as a tool for predicting seizure outcome after hemispheric surgery and comparing our
results with previous works might be difficult.

In our study, we adopted some selected frequency- and time-domain related EEG
features as input data of ANN (Table 1). We subsequently combined these features, during
the training phase, in four different datasets, with the purpose of minimize the number of
parameters in the final ML model, improve performance and generalizability [54].

Dataset 1 (all the features) showed the lowest MSE with an accuracy level of 73.3%.
Our model was effective in predicting seizure free patients (mean of 85%), while less
powerful in detecting relapse cases (mean of 40%).

A recent review [55] examined ML performances applied to intracranial EEG, in-
cluding 107 articles published from 2009 to 2020. ML techniques were used for different
clinical purpose. Among papers dealing with seizure detection/prediction, sensitivity
value reported ranged from 71% to 100%, specificity from 83.05% to 100%, and accuracy
levels from 57.8% to 100%. These high levels of performance might be related to the type
of signal, intracranial EEG, which has higher spatial resolution and lower noise of signal
compared to scalp-EEG.

Previous studies reported even higher values of accuracy (more than 80–90%) in seizure
outcome prediction, using the same ML classifier of our study (neural network) [51,52].
These series included adult patients, who underwent different epilepsy surgeries (anterior
temporal lobectomy or lobar/multilobar resections, respectively) and trained their ANN
with different data (clinical, electrographic, neuropsychologic, imaging, and surgical data).
Multimodal data input were also used by other studies [33,36], with different ML classifiers,
but the same high levels of accuracy (more than 89%) in predicting seizure outcome after
temporal lobe surgery. It is conceivable that the use of multimodal variables of different
nature, on a heterogeneous patient’s sample, might increase the prediction power of
classifier, and this may in part explain the lower accuracy level that we obtained.

In our study, we obtained similar results if compared to previous published data.
Previously cited papers had different data input, clinical sample, surgical population or
ML classifier, therefore results cannot be matched together.

Compared to previous studies, we applied more selected inclusion criteria (homoge-
neous population with pediatric age, same clinical history, and surgery procedure) and
decided to use only presurgical scalp EEG to train our neural network. This methodology
allowed us to test a specific hypothesis of a possible relationship between presurgical IC
and postsurgical outcome, regardless of any other variables.

5. Conclusions

The accuracy level of 73% that we obtained supports the hypothesis that presurgical
EEG connectivity might have the potential to predict epilepsy outcome after HT.

Our study has several limitations. First, this is a retrospective analysis with a small
sample of patients, compared with a high number of evaluated features, introducing over-
fitting. Moreover, we are also evaluating a scalp EEG signal, with lower spatial resolution
in comparison with its invasive counterpart (stereotactic EEG or electrocorticography),
higher level of noise and higher rate of interictal epileptiform abnormalities also in resting
state. We obtained a mean accuracy level of 73%, from 20 iterations with random patient
selection, therefore we do not predict single patient outcome or correlate outcome with
specific etiology. We believe that the inclusion of different larger datasets may allow us
to do single patient prediction and may overcome the problem of overfitting. The use of
multimodal clinical/radiologic/psychological variables may also improve its accuracy [33].

Although relatively few cases were examined, our findings suggests that machine
learning analysis might become a powerful tool to be included in standard evaluations for
epilepsy surgery centers.

Our model’s accuracy of 73% does not allow for using it as a presurgical predictive
tool in patients who will undergo hemispherotomy. Nevertheless, we believe that the im-
plementation of our model with larger datasets may allow for generalizing our encouraging
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results in predicting outcome after surgery. Besides, this semi-automated tool does not
require other examination than a routine video-EEG before surgery.
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